Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
LA NEURONA
Las neuronas (del griego νεῦρον, cuerda, nervio) son un tipo de células del
sistema nervioso cuya principal car...
adicional. Hay lisosomas primarios y secundarios (estos últimos, ricos en
lipofuscina, pueden marginar al núcleo en indivi...
FUNCIÓN DE LAS NEURONAS
Las neuronas tienen la capacidad de comunicarse con precisión, rapidez y a
larga distancia con otr...
Anuncio
Anuncio
Anuncio
Anuncio
Próximo SlideShare
La neurona
La neurona
Cargando en…3
×

Eche un vistazo a continuación

1 de 21 Anuncio

Más Contenido Relacionado

Presentaciones para usted (20)

Similares a La neurona (20)

Anuncio

Más reciente (20)

Anuncio

La neurona

  1. 1. LA NEURONA Las neuronas (del griego νεῦρον, cuerda, nervio) son un tipo de células del sistema nervioso cuya principal característica es la excitabilidad eléctrica de su membrana plasmática; están especializadas en la recepción de estímulos y conducción del impulso nervioso (en forma de potencial de acción) entre ellas o con otros tipos celulares, como por ejemplo las fibras musculares de la placa motora. Altamente diferenciadas, la mayoría de las neuronas no se dividen una vez alcanzada su madurez; no obstante, una minoría sí lo hace.2 Las neuronas presentan unas características morfológicas típicas que sustentan sus funciones: un cuerpo celular llamado soma o «pericarion», central; una o varias prolongaciones cortas que generalmente transmiten impulsos hacia el soma celular, denominadas dendritas; y una prolongación larga, denominada axón o «cilindroeje», que conduce los impulsos desde el soma hacia otra neurona u órgano diana. La neurogénesis en seres adultos, fue descubierta apenas en el último tercio del siglo XX. Hasta hace pocas décadas se creía que, a diferencia de la mayoría de las otras células del organismo, las neuronas normales en el individuo maduro no se regeneraban, excepto las células olfatorias. Núcleo Situado en el cuerpo celular, suele ocupar una posición central y ser muy conspicuo (visible), especialmente en las neuronas pequeñas. Contiene uno o dos nucléolos prominentes, así como una cromatina dispersa, lo que da idea de la relativamente alta actividad transcripcional de este tipo celular. La envoltura nuclear, con multitud de poros nucleares, posee una lámina nuclear muy desarrollada. Entre ambos puede aparecer el cuerpo accesorio de Cajal, una estructura esférica de en torno a 1 μm de diámetro que corresponde a una acumulación de proteínas ricas en los aminoácidos arginina y tirosina. Pericarion Diversos orgánulos llenan el citoplasma que rodea al núcleo. El orgánulo más notable, por estar el pericarion lleno de ribosomas libres y adheridos al retículo rugoso, es la llamada sustancia de Nissl, al microscopio óptico, se observan como grumos basófilos, y, al electrónico, como apilamientos de cisternas del retículo endoplasmático. Tal abundancia de los orgánulos relacionados en la síntesis proteica se debe a la alta tasa biosintética del pericarion. Estos son particularmente notables en neuronas motoras somáticas, como las del ucerno anterior de la médula espinal o en ciertos núcleos de nervios craneales motores. Los cuerpos de Nissl no solamente se hallan en el pericarion sino también en las dendritas, aunque no en el axón, y es lo que permite diferenciar de dendritas y axones en el neurópilo. El aparato de Golgi, que se descubrió originalmente en las neuronas, es un sistema muy desarrollado de vesículas aplanadas y agranulares pequeñas. Es la región donde los productos de la sustancia de Nissl posibilitan una síntesis
  2. 2. adicional. Hay lisosomas primarios y secundarios (estos últimos, ricos en lipofuscina, pueden marginar al núcleo en individuos de edad avanzada debido a su gran aumento).6 Las mitocondrias, pequeñas y redondeadas, poseen habitualmente crestas longitudinales. En cuanto al citoesqueleto, el pericarion es rico en microtúbulos (clásicamente, de hecho, denominados neurotúbulos, si bien son idénticos a los microtúbulos de células no neuronales) y filamentos intermedios (denominados neurofilamentos por la razón antes mencionada). Los neurotúbulos se relacionan con el transporte rápido de las moléculas de proteínas que se sintetizan en el cuerpo celular y que se llevan a través de las dendritas y el axón. Dendritas Las dendritas son ramificaciones que proceden del soma neuronal que consisten en proyecciones citoplasmáticas envueltas por una membrana plasmática sin envoltura de mielina. En ocasiones, poseen un contorno irregular, desarrollando espinas. Sus orgánulos y componentes característicos son: muchos microtúbulos y pocos neurofilamentos, ambos dispuestos en haces paralelos; muchas mitocondrias; grumos de Nissl, más abundantes en la zona adyacente al soma; retículo endoplasmático liso, especialmente en forma de vesículas relacionadas con la sinapsis. Axón El axón es una prolongación del soma neuronal recubierta por una o más células de Schwann en el sistema nervioso periférico de vertebrados, con producción o no de mielina. Puede dividirse, de forma centrífuga al pericarion, en: cono axónico, segmento inicial, resto del axón.  Cono axónico. Adyacente al pericarion, es muy visible en las neuronas de gran tamaño. En él se observa la progresiva desaparición de los grumos de Nissl y la abundancia de microtúbulos y neurfilamentos que, en esta zona, se organizan en haces paralelos que se proyectarán a lo largo del axón.  Segmento inicial. En él comienza la mielinización externa. En el citoplasma, a esa altura se detecta una zona rica en material electronodenso en continuidad con la membrana plasmática, constituido por material filamentoso y partículas densas; se asume que interviene en la generación del potencial de acción que transmitirá la señal sináptica. En cuanto al citoesqueleto, posee esta zona la organización propia del resto del axón. Los microtúbulos, ya polarizados, poseen la proteína τ pero no la proteína MAP-2.  Resto del axón. En esta sección comienzan a aparecer los nódulos de Ranvier y las sinapsis.
  3. 3. FUNCIÓN DE LAS NEURONAS Las neuronas tienen la capacidad de comunicarse con precisión, rapidez y a larga distancia con otras células, ya sean nerviosas, musculares o glandulares. A través de las neuronas se transmiten señales eléctricas denominadas impulsos nerviosos. Estos impulsos nerviosos viajan por toda la neurona comenzando por las dendritas, y pasa por toda la neurona hasta llegar a los botones terminales, que pueden conectar con otra neurona, fibras musculares o glándulas. La conexión entre una neurona y otra se denomina sinapsis. Las neuronas conforman e interconectan los tres componentes del sistema nervioso: sensitivo, motor e integrador o mixto; de esta manera, un estímulo que es captado en alguna región sensorial entrega cierta información que es conducida a través de las neuronas y es analizada por el componente integrador, el cual puede elaborar una respuesta, cuya señal es conducida a través de las neuronas. Dicha respuesta es ejecutada mediante una acción motora, como la contracción muscular o secreción glandular. El impulso nervioso Las neuronas transmiten ondas de naturaleza eléctrica originadas como consecuencia de un cambio transitorio de la permeabilidad en la membrana plasmática. Su propagación se debe a la existencia de una diferencia de potencial o potencial de membrana (que surge gracias a las concentraciones
  4. 4. distintas de iones a ambos lados de la membrana, según describe el potencial de Nernst) entre la parte interna y externa de la célula (por lo general de -70 mV). La carga de una célula inactiva se mantiene en valores negativos (el interior respecto al exterior) y varía dentro de unos estrechos márgenes. Cuando el potencial de membrana de una célula excitable se despolariza más allá de un cierto umbral (de 65mV a 55mV app) la célula genera (o dispara) un potencial de acción. Un potencial de acción es un cambio muy rápido en la polaridad de la membrana de negativo a positivo y vuelta a negativo, en un ciclo que dura unos milisegundos. El potencial de acción Cuando las sustancias químicas hacen contacto con la superficie de la neurona, estas cambian el balance de iones (átomos cargados electrónicamente) entre el interior y el exterior de la membrana celular. Cuando este cambio alcanza un nivel umbral, este efecto se expande a través de la membrana de la célula hasta el axón. Cuando alcanza al axón, se inicia un potencial de acción. La superficie del axón contiene cientos de miles de minúsculos mecanismos llamados bombas de sodio. Cuando la carga entra en el axón, las bombas de sodio a la base del axón hacen que los átomos de sodio entren en el axón, cambiando el balance eléctrico entre dentro y fuera. Esto causa que la siguiente bomba de sodio haga los mismo, mientras que las anteriores bombas retornan el sodio hacia fuera, y así en todo el recorrido hacia abajo del axón. ¡El potencial de acción viaja a una media de entre 2 y 400 kilómetros por hora!
  5. 5. LA SINAPSIS Cuando el potencial de acción alcanza la terminación del axón, causa que diminutas burbujas químicas llamadas vesículas descarguen su contenido en el salto sináptico. Esas sustancias químicas son llamadas neurotransmisores . Estos navegan a través del salto sináptico hasta la siguiente neurona, donde encuentran sitios especiales en la membrana celular de la siguiente neurona llamados receptores. El neurotransmisor actúa como una pequeña llave, y el lugar receptor como una pequeña cerradura. Cuando se encuentran, abren un camino de paso para los iones, los cuales cambian el balance de iones fuera y dentro de la siguiente neurona. Y el proceso completo comienza de nuevo. Mientras que la mayoría de los neurotransmisores son excitatorios – p. Ej. Excitan la siguiente neurona – también hay neurotransmisores inhibitorios. Estos hacen más difícil para los neurotransmisores excitatorios tener su efecto.
  6. 6. SISTEMA NERVIOSO HUMANO Anatómicamente, el sistema nervioso de los seres humanos se agrupa en distintos órganos, los cuales conforman estaciones por donde pasan las vías neurales. Así, con fines de estudio, se pueden agrupar estos órganos, según su ubicación, en dos partes: sistema nervioso central y sistema nervioso periférico. Esquema del Sistema Nervioso Central humano. Se compone de dos partes: encéfalo (cerebro, cerebelo, tallo encefálico) y médula espinal.23 Los colores son con fines didácticos. SISTEMA NERVIOSO CENTRAL El sistema nervioso central está formado por el encéfalo y la médula espinal, se encuentra protegido por tres membranas, las meninges. En su interior existe un sistema de cavidades conocidas como ventrículos, por las cuales circula el líquido cefalorraquídeo.
  7. 7. El encéfalo es la parte del sistema nervioso central que está protegida por los huesos del cráneo. Está formado por el cerebro, el cerebelo y el tronco del encéfalo. Cerebro es la parte más voluminosa. Está dividido en dos hemisferios, uno derecho y otro izquierdo, separados por la cisura interhemisférica y comunicados mediante el Cuerpo calloso. La superficie se denomina corteza cerebral y está formada por replegamientos denominados circunvoluciones constituidas de sustancia gris. Subyacente a la misma se encuentra la sustancia blanca. En zonas profundas existen áreas de sustancia gris conformando núcleos como el tálamo, el núcleo caudado o el hipotálamo. Cerebelo está en la parte inferior y posterior del encéfalo, alojado en la fosa cerebral posterior junto al tronco del encéfalo. Tronco del encéfalo compuesto por el mesencéfalo, la protuberancia anular y el bulbo raquídeo. Conecta el cerebro con la médula espinal.  La médula espinal es una prolongación del encéfalo, como si fuese un cordón que se extiende por el interior de la columna vertebral. En ella la sustancia gris se encuentra en el interior y la blanca en el exterior.21 Sistema nervioso central Encéfalo Prosencéfalo Telencéfalo Rinencefalo, amígdala, hipocampo, neocórtex, ventrículos laterales Diencéfalo Epitálamo, tálamo, hipotálamo, subtálamo, pituitaria, pineal, tercer ventrículo Tallo cerebral Mesencéfalo Téctum, pedúnculo cerebral, pretectum, acueducto de Silvio Rombencéfalo Metencéfalo Puente troncoencefálico, cerebelo Mielencéfalo Médula oblonga Médula espinal
  8. 8. SISTEMA NERVIOSO PERIFÉRICO Sistema nervioso periférico está formado por los nervios, craneales y espinales, que emergen del sistema nervioso central y que recorren todo el cuerpo, conteniendo axones de vías neurales con distintas funciones y por los ganglios periféricos, que se encuentran en el trayecto de los nervios y que contienen cuerpos neuronales, los únicos fuera del sistema nervioso central. o Los nervios craneales son 12 pares que envían información sensorial procedente del cuello y la cabeza hacia el sistema nervioso central. Reciben órdenes motoras para el control de la musculatura esquelética del cuello y la cabeza. Estos tractos nerviosos son:  Par I. Nervio olfatorio, con función únicamente sensitiva quimiorreceptora.  Par II. Nervio óptico, con función únicamente sensitiva fotorreceptora.  Par III. Nervio motor ocular común, con función motora para varios músculos del ojo.  Par IV. Nervio patético, con función motora para el músculo oblicuo mayor del ojo.  Par V. Nervio trigémino, con función sensitiva facial y motora para los músculos de la masticación.  Par VI. Nervio abducens externo, con función motora para el músculo recto del ojo.  Par VII. Nervio facial, con función motora somática para los músculos faciales y sensitiva para la parte más anterior de la lengua.  Par VIII. Nervio auditivo, recoge los estímulos auditivos y del equilibrio-orientación.  Par IX. Nervio glosofaríngeo, con función sensitiva quimiorreceptora (gusto) y motora para faringe.  Par X. Nervio neumogástrico o vago, con función sensitiva y motora de tipo visceral para casi todo el cuerpo.  Par XI. Nervio espinal, con función motora somática para el cuello y parte posterior de la cabeza.  Par XII. Nervio hipogloso, con función motora para la lengua. o Los nervios espinales son 31 pares y se encargan de enviar información sensorial (tacto, dolor y temperatura) del tronco y las extremidades, de la posición, el estado de la musculatura y las articulaciones del tronco y las extremidades hacia el sistema nervioso central y, desde el mismo, reciben órdenes motoras para el control de la musculatura esquelética que se conducen por la médula espinal. Estos tractos nerviosos son:  Ocho pares de nervios raquídeos cervicales (C1-C8)  Doce pares de nervios raquídeos torácicos (T1-T12)  Cinco pares de nervios raquídeos lumbares (L1-L5)  Cinco pares de nervios raquídeos sacros (S1-S5)  Un par de nervios raquídeos coccígeos (Co)
  9. 9. CLASIFICACIÓN FUNCIONAL Una división menos anatómica pero es la más funcional, es la que divide al sistema nervioso de acuerdo al rol que cumplen las diferentes vías neurales, sin importar si éstas recorren parte del sistema nervioso central o el periférico:  El sistema nervioso somático, también llamado sistema nervioso de la vida de relación, está formado por el conjunto de neuronas que regulan las funciones voluntarias o conscientes en el organismo (p.e. movimiento muscular, tacto).  El sistema nervioso autónomo, también llamado sistema nervioso vegetativo o sistema nervioso visceral, está formado por el conjunto de neuronas que regulan las funciones involuntarias o inconscientes en el organismo (p.e. movimiento intestinal, sensibilidad visceral). A su vez el sistema vegetativo se clasifica en simpático y parasimpático, sistemas que tienen funciones en su mayoría antagónicas. En color azul se muestra la inervación parasimpática, en color rojo la inervación simpática.
  10. 10. o El sistema nervioso parasimpático al ser un sistema de reposo da prioridad a la activación de las funciones peristálticas y secretoras del aparato digestivo y urinario al mismo tiempo que propicia la relajación de esfínteres para el desalojo de las excretas y orina; también provoca la broncoconstricción y secreción respiratoria; fomenta la vasodilatación para redistribuir el riego sanguíneo a las vísceras y favorecer la excitación sexual; y produce miosis al contraer el esfínter del iris y la de acomodación del ojo a la visión próxima al contraer el músculo ciliar. En cambio este sistema inhibe las funciones encargadas del comportamiento de huida propiciando la disminución de la frecuencia como de la fuerza de la contracción cardiaca. El sistema parasimpático tiende a ignorar el patrón de metamerización corporal inervando la mayor parte del cuerpo por medio del nervio vago, que es emitido desde la cabeza (bulbo raquídeo). Los nervios que se encargan de inervar la misma cabeza son emitidos desde el mesencéfalo y bulbo. Los nervios que se encargan de inervar los segmentos digestivo-urinarios más distales y órganos sexuales son emitidos desde las secciones medulares S2 a S4. o El sistema nervioso simpático al ser un sistema del comportamiento de huida o escape da prioridad a la aceleración y fuerza de contracción cardiaca, estimula la piloerección y sudoración, favorece y facilita los mecanismos de activación del sistema nervioso somático para la contracción muscular voluntaria oportuna, provoca la broncodilatación de vías respiratorias para favorecer la rápida oxigenación, propicia la vasoconstriccion redirigiendo el riego sanguíneo a músculos, corazón y sistema nervioso, provoca la midriasis para la mejor visualización del entorno, y estimula las glándulas suprarrenales para la síntesis y descarga adrenérgica. En cambio este inhibe las funciones encargadas del reposo como la peristalsis intestinal a la vez que aumenta el tono de los esfínteres urinarios y digestivos, todo esto para evitar el desalojo de excretas. En los machos da fin a la excitación sexual mediante el proceso de la eyaculación. El sistema simpático sigue el patrón de metamerización corporal inervando la mayor parte del cuerpo, incluyendo a la cabeza, por medio de los segmentos medulares T1 a L2. Cabe mencionar que las neuronas de ambos sistemas (somático y autónomo) pueden llegar o salir de los mismos órganos si es que éstos tienen funciones voluntarias e involuntarias (y, de hecho, estos órganos son la mayoría). En algunos textos se considera que el sistema nervioso autónomo es una subdivisión del sistema nervioso periférico, pero esto es incorrecto ya que, en su recorrido, algunas neuronas del sistema nervioso autónomo pueden pasar tanto por el sistema nervioso central como por el periférico, lo cual ocurre también en el sistema nervioso somático. La división entre sistema nervioso central y periférico tiene solamente fines anatómicos
  11. 11. EL SISTEMA NERVIOSO TIENE DOS GRANDES DIVISIONES: EL CENTRAL Y EL PERIFÉRICO El Sistema Nervioso se empieza a formar a los pocos días de haberse implantado el huevo fecundado en el útero de la madre. Es tan importante, que es la primera parte del cuerpo que se forma y desde ese momento, empieza a realizar la mayoría de sus funciones y no deja de crecer y desarrollarse. Más o menos a la séptima semana del embarazo, el cerebro y la médula espinal que son sus principales partes, son fácilmente reconocibles mediante un ultrasonido. El Sistema Nervioso está integrado principalmente por el cerebro, que es el "motor del cuerpo", la médula espinal y todos los millones de nervios que llegan a cada parte del cuerpo. Este sistema es muy complejo, para poder realizar tantas funciones se divide a su vez en dos grandes “sistemas” que son: -El Sistema Nervioso Central (SNC), formado por el cerebro y la médula espinal. -El Sistema Nervioso Periférico (SNP), integrado por una enorme red de nervios que salen del Sistema Nervioso Central y se van ramificando hacia todo el cuerpo. Estos dos sistemas funcionan en perfecta coordinación, el Sistema Nervioso Periférico es el encargado de llevar mensajes al sistema Nervioso Central y el Central manda sus instrucciones a través del periférico y registra lo que sucede al interior y al exterior del cuerpo.
  12. 12. NEUROTRANSMISORES En el sistema nervioso existen docenas o probablemente cientos de neurotransmisores distintos. Cada uno tiene unas funciones muy concretas y determinadas. Existen muchas sustancias que modifican la acción de estos neurotransmisores, pueden impedir que el neurotransmisor ejerza su efecto, uniéndose al receptor correspondiente e inactivándolo, o bien pueden aumentar su efecto, por ejemplo impidiendo que sea destruido o retirado. Estas sustancias modifican el funcionamiento del sistema nervioso de muchas maneras distintas. Algunas de ellas son fármacos que se administran para tratar alguna alteración del sistema nervioso, otras son drogas que se toman con el fin de experimentar sus efectos. Algunos ejemplos de estas sustancias, y su forma de actuar son:  ALCOHOL: aumenta el efecto del neurotransmisor GABA. Este neurotransmisor es inhibidor, es decir, dificulta la producción del potencial de acción de las neuronas, por ese motivo el alcohol disminuye la actividad del sistema nervioso, y produce entorpecimiento del pensamiento, trastornos en los movimientos, y en cantidades mayores pérdida del conocimiento y coma.  ANTIDEPRESIVOS: (p.ej. Prozac) aumentan el efecto del neurotransmisor serotonina impidiendo que sea recaptado por la terminación de la fibra nerviosa, con lo que permanece más tiempo unido al receptor y hace más efecto. Aunque la causa de la depresión es todavía muy poco conocida, de alguna manera el aumento de los efectos de la serotonina mejora el estado de ánimo de los pacientes.  ANTIPSICÓTICOS: se utilizan para tratar los síntomas de los pacientes con esquizofrenia, y actúan bloqueando el receptor del neurotransmisor dopamina. Parece que en la esquizofrenia existe un exceso de activación de este receptor.  CAFEÍNA: bloquea el receptor del neurotransmisor adenosina, que es uno de los varios neurotransmisores que intervienen en la producción del sueño. Por eso la cafeína tiene el efecto de “mantenernos despiertos”.  CANABIS: En la planta cannabis sativa existe una sustancia (llamada delta-9-tetrahidrocannabinol) activadora del receptor de un neurotransmisor denominado anandamida, que funciona en distintos aspectos de la memoria, la atención y la percepción.  COCAÍNA: Aumenta el efecto del neurotransmisor noradrenalina, impidiendo que sea recaptado. Esto produce excitación, euforia y disminución de la sensación de fatiga.  NICOTINA: la nicotina activa a uno de los varios tipos de receptores a los que se une el neurotransmisor acetilcolina. Esto, a su vez, activa la producción del neurotransmisor dopamina, uno de cuyos efectos es
  13. 13. producir adicción. La nicotina es una de las sustancias más adictivas que se conocen.  OPIOIDES: (p.ej. morfina o heroína) Activan el receptor de un grupo de neurotransmisores denominados endorfinas y encefalinas, que sirven para interrumpir la transmisión del dolor.  TRANQUILIZANTES: (p.ej. Valium) aumentan el efecto del neurotransmisor GABA disminuyendo la actividad del sistema nervioso.
  14. 14. SISTEMA ENDOCRINO Las piezas fundamentales de sistema endocrino son las hormonas y las glándulas. En calidad de mensajeros químicos del cuerpo, las hormonas transmiten información e instrucciones entre conjuntos de células. Aunque por el torrente sanguíneo circulan muchas hormonas diferentes, cada tipo de hormona está diseñado para repercutir solamente sobre determinadas células. Una glándula es un conjunto de células que fabrican y secretan (o segregan) sustancias. Las glándulas seleccionan y extraen materiales de la sangre, los procesan y secretan el producto químico resultante para que sea utilizado en otra parte del cuerpo. Algunos tipos de glándulas liberan los productos que sintetizan en áreas específicas del cuerpo. Por ejemplo, las glándulas exocrinas, como las sudoríparas y las salivares, liberan secreciones sobre la piel o en el interior de la boca. Sin embargo, las glándulas endocrinas liberan más de 20 tipos de hormonas diferentes directamente en el torrente sanguíneo, desde donde son transportadas a otras células y partes del cuerpo. Las principales glándulas que componen el sistema endocrino humano incluyen: el hipotálamo la hipófisis la glándula tiroidea
  15. 15. las glándulas paratiroideas las glándulas suprarrenales la glándula pineal las glándulas reproductoras (que incluyen los ovarios y los testículos). El hipotálamo El hipotálamo, un conjunto de células especializadas ubicado en la parte central inferior del cerebro, es el principal nexo de unión entre los sistemas endocrino y nervioso. Las células nerviosas del hipotálamo controlan el funcionamiento de la hipófisis, segregando sustancias químicas que bien estimulan o bien inhiben las secreciones hormonales de esta última glándula. La hipófisis A pesar de no ser mayor que un guisante, la hipófisis, ubicada en la base del cerebro, justo debajo del hipotálamo, se considera la parte más importante del sistema endocrino. Se suele denominar la "glándula maestra" porque fabrica hormonas que regulan el funcionamiento de otras glándulas endocrinas. La fabricación y secreción de hormonas hipofisarias puede verse influida por factores como las emociones y los cambios estacionales. A tal efecto, el hipotálamo envía información procesada por el cerebro (como la temperatura medioambiental, los patrones de exposición solar y los sentimientos) a la hipófisis. La diminuta hipófisis se divide en dos partes: el lóbulo anterior y el lóbulo posterior El lóbulo anterior regula la actividad de las glándulas tiroidea, suprarrenales y reproductoras, y produce diversas hormonas, entre las que cabe destacar: la hormona del crecimiento, que estimula el crecimiento óseo y de otros tejidos corporales y desempeña un papel importante en la utilización de los nutrientes y minerales la prolactina, que activa la producción de leche en las mujeres que dan el pecho la tirotropina, que estimula a la glándula tiroidea a producir hormonas tiroideas la corticotropina, que estimula a las glándulas suprarrenales a producir determinadas hormonas. La hipófisis también segrega endorfinas, unas sustancias químicas que actúan sobre el sistema nervioso reduciendo la sensación de dolor. Además, la
  16. 16. hipófisis segrega hormonas que estimulan a los órganos reproductores a fabricar hormonas sexuales. La hipófisis también controla la ovulación y el ciclo menstrual en las mujeres. El lóbulo posterior de la hipófisis libera la hormona antidiurética, también denominada vasopresina, que ayuda a controlar el equilibrio entre agua y sales minerales en el organismo. El lóbulo posterior de la hipófisis también produce oxitocina, que desencadena las contracciones uterinas necesarias para dar a luz. La glándula tiroidea La glándula tiroidea, ubicada en la parte anterior e inferior del cuello, tiene forma de pajarita o mariposa y produce las hormonas tiroideas tiroxina y triiodotironina. Estas hormonas controlan la velocidad a la cual las células queman el combustible de los alimentos para producir energía. La producción y liberación de hormonas tiroideas está controlada por la tirotropina, secretada por la hipófisis. Cuantas más hormonas tiroideas haya en el torrente sanguíneos de una persona, más rápidamente ocurrirán las reacciones químicas que tienen lugar en su organismo. ¿Por qué son tan importantes las hormonas tiroideas? Por diversos motivos; por ejemplo, ayudan a crecer y desarrollarse a los huesos de los niños y jóvenes y desempeñan un papel fundamental en el desarrollo del cerebro y del sistema nervioso en los niños. Las glándulas paratiroideas Pegadas a la glándula tiroidea, hay cuatro glándulas diminutas que funcionan conjuntamente denominadas glándulas paratiroideas. Liberan la hormona paratiroidea, que regula la concentración de calcio en sangre con la ayuda de la calcitonina, fabricada por la glándula tiroidea. Los glándulas suprarrenales En el cuerpo humano también hay dos glándulas suprarrenales, de forma triangular, una encima de cada riñón. Las glándulas suprarrenales constan de dos partes, cada una de las cuales fabrica distintas hormonas y desempeña distintas funciones. La parte más externa, la corteza suprarrenal, produce unas hormonas denominadas corticoesteroides, que contribuyen a regular el equilibrio entre sales minerales y agua, la respuesta al estrés, el metabolismo, el sistema inmunitario y el desarrollo y la función sexuales. La parte más
  17. 17. interna, la médula suprarrenal, produce catecolaminas, como la adrenalina. También denominada epinefrina, esta hormona eleva la tensión arterial y la frecuencia cardiaca en situaciones de estrés. La glándula pineal La glándula pineal se encuentra justo en centro del cerebro. Secreta melatonina, una hormona que probablemente influye en que tengas sueño por las noches y te despiertes por las mañanas. Las gónadas Las gónadas son la principal fuente de hormonas sexuales. La mayoría de la gente no piensa en ello, pero tanto los hombres como las mujeres tienen gónadas. En los hombres, las gónadas masculinas, o testículos, se encuentran en el escroto. Segregan unas hormonas denominadas andrógenos, la más importante de las cuales es la testosterona. Estas hormonas indican a los chicos cuándo ha llegado el momento de iniciar los cambios corporales asociados a la pubertad, incluyendo el crecimiento del pene, el estirón, el cambio de voz y el crecimiento de la barba y del vello púbico. En colaboración con otras hormonas secretadas por la hipófisis, la testosterona también indica a los chicos cuándo ha llegado el momento de producir esperma en los testículos. Las gónadas femeninas, los ovarios, se encuentran dentro de la pelvis. Producen ovocitos y secretan las hormonas femeninas: el estrógeno y la progesterona. El estrógeno indica a las chicas cuándo tienen que iniciar los cambios corporales asociados a la pubertad. Durante esta etapa del desarrollo, a las chicas les crecen los senos, empiezan a acumular grasa en caderas y muslos y experimentan un estirón. Tanto el estrógeno como la progesterona participan también en la regulación del ciclo menstrual y desempeñan un papel importante en el embarazo. A pesar de que las glándulas endocrinas son las principales productoras de hormonas, algunos órganos que no forman parte del sistema endocrino -como el cerebro, el corazón, los pulmones, los riñones, el hígado y la piel- también producen y segregan hormonas. El páncreas forma parte tanto del sistema de secreción hormonal como del digestivo porque también produce y secreta enzimas digestivas. Este órgano produce dos hormonas importantes: la insulina y el glucagón. Ambas colaboran para mantener una concentración estable de glucosa, o azúcar, en sangre y para abastecer al cuerpo de
  18. 18. suficiente combustible para que produzca la energía que necesita y mantenga sus reservas de energía. ¿Qué función desempeña el sistema endocrino? Las hormonas, una vez secretadas, circulan por el torrente sanguíneo desde la glándula endocrina hasta las células diseñadas para recibir el mensaje de que aquellas son portadoras. Estas células se denominan células diana. A lo largo de este recorrido por el torrente sanguíneo, unas proteínas especiales se unen a diversas hormonas. Estas proteínas actúan como portadoras, controlando la cantidad de hormona disponible que debe interactuar con las células diana. Las células diana tienen receptores en los que solo encajan hormonas específicas, de modo que cada tipo de hormona se comunica solamente con un tipo específico de células diana que posee receptores para esa hormona. Cuando una hormona llega a su célula diana, se adhiere a los receptores específicos de esa célula y la combinación de hormona-receptor transmite instrucciones químicas sobre el funcionamiento interno de la célula. Cuando las concentraciones hormonales alcanzan el nivel normal, el sistema endocrino ayuda al cuerpo a mantener esa concentración hormonal en sangre. Por ejemplo, si la glándula tiroidea ha segregado una cantidad adecuada de hormonas tiroideas, la hipófisis capta una concentración normal de esa hormona en el torrente sanguíneo y ajusta en consonancia su liberación de
  19. 19. tirotropina, la hormona hipofisiaria que estimula a la glándula tiroidea a producir hormonas tiroideas. Otro ejemplo de este proceso lo encontramos en las glándulas paratiroideas. La hormona paratiroidea incrementa la concentración de calcio en sangre. Cuando esta concentración aumenta, las glándulas paratiroideas captan el cambio y, consecuentemente, reducen la secreción de hormona paratiroidea. Este proceso de ajuste se denomina sistema de retroalimentación negativa. RELACIÓN ENTRE EL SISTEMA NERVIOSO Y EL SISTEMA ENDOCRINO El sistema endocrino esta íntimamente relacionado con nuestro sistema nervioso, ya que los efectos ocasionados por las hormonas las reflejamos psicológicamente con nuestras conductas, es decir que nuestro comportamiento y manifestaciones externas son un reflejo de nuestros cambios hormonales y de nuestro bienestar interno. El sistema nervioso y el endocrino poseen las mismas funciones: integrar y controlar las funciones que permiten coordinar las actividades de nuestro organismo. Existen sensibles diferencias entre ambos en cuanto a la forma en que actúan. El sistema endocrino utiliza mensajeros químicos, las hormonas, mientras que el nervioso utiliza impulsos. El medio de transporte de la hormona es la sangre, siendo una acción lenta y prolongada, mientras que el sistema nervioso utiliza una red de neuronas y da lugar a acciones rápidas y de corta duración.

×