SlideShare una empresa de Scribd logo

Algebra 5 productos notables

C
cmcoaquira

Algebra 5 productos notables

1 de 4
Descargar para leer sin conexión
UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU
BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18
UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU
BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18
UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU
BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18
UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU
Universidad Peruana Unión – Juliaca Mg. Carlos M. Coaquira Tuco
Programa Nacional de Beca 18 Lic. Joel Chavarrí Becerra
Lic. Derly Huanca Quispe
|
Son los resultados de ciertas multiplicaciones indicadas
que se obtienen en forma directa, sin necesidad de
efectuar la operación de multiplicación.
PRINCIPALES IDENTIDADES:
Trinomio cuadrado perfecto:
(a + b)2
= a2
+ 2ab + b2
(a – b)2
= a2
– 2ab + b2
* Identidades de Legendre:
(a + b)2
+ (a – b)2
= 2(a2
+ b2
)
(a + b)2
– (a – b)2
= 4ab
Diferencia de cuadrados:
(a + b) (a – b) = a2
– b2
Desarrollo de un binomio al cubo:
(a + b)3
= a3
+ b3
+ 3ab(a + b)
(a – b)3
= a3
– b3
– 3ab(a – b)
Suma y diferencia de cubos:
(a + b) (a2
– ab + b2
) = a3
+ b3
(a – b) (a2
+ ab + b2
) = a3
– b3
Multiplicación de binomios con término
común:
(x + a) (x + b) = x2
+ (a+b)x + ab
1. Reducir:
2
22
)rq()pnm(
)rqpnm()rqpnm(











2. Reducir:
)b3a(a
)ba()ba(
22
33


3. Si: x = 1313 
y = 1313 
hallar: x2
– y2
4. Reducir:
M = (a+2) (a+3) (a+4) (a+5) – (a2
+7a) (a2
+7a+22)
5. Si: 5
x
1
x 
halle: x3
+ x–3
6. Si: x2
+ 12y = (y + 6)2
, hallar:
10 4224
3
22
yyx2x.yx 



 



 
7. Si: a + b = 3 y ab = 1
halle: a4
+ a2
+ a + b2
+ b + b4
8. Si: a4
+ b6
= 2
halle:
222222
232232
)aa()aa(
)ba()ba(



9. De la ecuación:
ba
4
b
1
a
1


- 2 - Productos Notables
1
Reducir:
n
1n1n
1n
ba
)ba(




10. Si: x +
x
2
= 1
halle: (x – 3) (x + 2) (x – 4) (x + 3)
11. Si se cumple:
x
y2
y2
x
 = 2
calcular:
8
y
x








12. Si: x +
x
1
= 3,
halle: x2
–
2
x
1
; x > 1
13. Reducir:
16 1688
2)23()97()13()5( 
14. Sabiendo que x2
– 3x + 1 = 0
Calcular el valor de:
A =
32
23
x
1
x
1
xx 
15. Si a +
a
1
= 3, hallar el valor de
R =






























a
a/1
a/1
a
a
1
a
a
1
a
16. Si: x2
+ 1 = –x
halle: x19
+
25
x
1
1. Reducir:
C = [ (m + n)2
– (m – n)2
]2
– 16 m2
n2
A) mn B) m+n C) 0 D) 1 E) –1
2. Reducir:
M =    babababa 
A) 2a C) 0 E) 2a – 2b
B) 2b D) 2a + 2b
3. Reducir:
(x – 1)3
– x3
+ 1
A) x C) 2x E) N.A.
B) x + 1 D) 3x (1 – x)
4. Reducir:
W = 2222
abb.abb  ; a > 0
A) b B) a C) a D) b E) 0
5. Simplificar:
Z = (x2
+ x + 4) (x2
+ x + 2) – (x2
+ x + 8) (x2
+ x – 2)
A) 8 B) 16 C) 24 D) 18 E) 43
6. Reducir:
P = (x + 2)3
– (x – 2)3
– 12x2
A) 4 B) 6 C) 10 D) 16 E) 1
7. Simplificar:
R = (x + y + 1) (x + y – 1) – (x – y + 1) (x – y – 1)
A) xy C) x + y E) 4xy
B) 2xy D) x – y
8. Si a+ b = 1 y a2
+ b2
= 3
hallar: P = (a + 1)(b + 1)
A) 4 B) 1 C) 3 D) 2 E) N.A.
9. Si: a+b = ab = 3
calcular R = a(a + a2
+ a3
) + b(b + b2
+ b3
)
A) 1 B) 2 C) –3 D) –6 E) N.A.
10. Reducir:
A =
3 2
)1x(x3)1xx()1x( 
A) x B) x–1 C) x+1 D) –x E) 1
11. Si x +
x
1
= 4, calcular:
3
3
x
1
x 
A) 26 B) 18 C) 52 D) 36 E) N.A.
12. Si: a + b = 4; ab = 3.
hallar: W = a3
+ b3
; si a > b
A) 64 B) 28 C) 26 D) –26 E) –27
- 3 - Productos Notables
1
13. Si x + y = a, x.y = b, hallar: x3
+ y3
A) a3
C) a3
+ 3ab E) N.A.
B) a2
+ 3ab D) a3
– 3ab
14. Simplificar:
2
2
2
2
2
1m
m2
1m
1m




















A) 1 C) 2 E) N.A.
B) 0 D) m2
+ 1
15. Efectuar:
E = (a + b + c) (a + b – c) – (a – b + c) (a – b – c)
A) 4ab C) 4ac E) abc
B) 4bc D) 4abc
16. Para:
m = (x + x –1
)
n = (x – x –1
)
halle: m2
– n2
A) 1 B) 4 C) x–1
D) x E) 0
17. Efectuar:
E = (x2
+ 5x + 5)2
– (x + 1) (x + 2) (x + 3) (x + 4)
A) 7 B) 1 C) –2 D) 0 E) 3
18. Sea:











2233
22
yx
1
xy
1
3
y
1
x
1
xy
2
y
1
x
1
A ; xy  0
si se cumple: 9(x + y) =xy,
calcule: A
A) 1/9 B) 1/3 C) 3 D) 9 E) 1
19. Si: x +
x
1
= 4
halle: x2
+ x +
2
x
1
+
x
1
A) 16 B) 18 C) 14 D) 10 E) 4
20. Si a + b = 5 y
2
ba
ba










= 11, hallar ab.
A) 5 B) 7 C) 9 D) 11 E) N.A.
21. Reducir
(x2
– 4x – 1)2
– (x2
– 4x – 2)2
–
22
23
)4x2x(
)8x(2


A) – 9 B) – 3 C) – 11 D) 0 E) 10
22. Calcular U + N, si:
U = (a + b – c + d) (a – b + c + d)
N = (a + b + c – d) (b – a + c + d)
A) ad + bc C) 4 (ad + bc) E) 2 (a2
– b2
)
B) ad – bc D) 4
23. Si: a–1
+ b–1
= 4(a + b) –1
calcular: E =
b2a
ba2
a
b
b
a



A) 1 B) 2 C) 3 D) 4 E) N.A.
24. Simplificar:
5 1025 102
yxx.yxx 
A) y2
C) x2
E) N.A.
B) x2
– 1 D) 0
25. Si a + b = 5 y ab = 3, hallar el valor numérico de
P =
ba
ba 55


A) – 5 B) 1 C) – 1 D) 5 E) 12
26. Si: a4x
+ a–4x
= 34, calcular R = ax
– a–x
A) 1 B) 2 C) 3 D) 4 E) N.A.
27. Reducir:
T =
1
a1
1a
1a
4
1a
2
1a
2
1a2a 3
b
b.b















A) ba
B) 1 C) ba+1
D) ba – 1
E) N.A.
28. Efectuar:
E = (x + 2) (x + 3) (x + 4) (x + 5) – (x2
+ 7x + 11)2
A) x2
– 7 C) x2
– 1 E) –1
B) 1 D) x – 1
29. Si: A + B = 8 ; A.B = 2
hallar: A6
+ B6
A) 8 B) –8 C) –16 D) 16 E) N.A.
- 4 - Productos Notables
1
30. Si: (a + b + c + d)2
= 4 (a + b) (c + d)
calcular: M =
cb
ad
bd
ca
dc
ba








A) 0 B) 1 C) –1 D) 3 E) –3
31. Si: x + x–1
= 5 , calcular: x6
+ x–6
A) 12 B) 15 C) 16 D) 18 E) 20
32. Simplificar:
(a – b) (a + b – c) + (b – c) (b + c – a) + (c – a) (c + a – b)
A) 0 B) ab C) bc D) ac E) abc
33. Si:
x
y
y
x 22
 = 3(x – y)
hallar: K =
222
88
)yx(
)yx(3 
A) 4 B) 6 C) 1 D) 0 E) 2
34. Si se cumple que:
(x + y + 2z)2
+ (x + y – 2z)2
= 8z (x + y)
hallar:
E =
879
yz
xz
yz
zx
z2
yx


























 
A) 3 B) 1 C) –1 D) 0 E) N.A.
35. Si:
2
2
x
1
x  = 3.
hallar: C =
3 1010
2xx  
A) 3 B) –3 C) 5 D) –2 E) 4
36. Si: xy = 1, hallar:
K = x
1x
1y
2
2


+ y
1y
1x
2
2


Además x ; y    x ; y > 0
A) 1 B) –2 C) 2 D) 0 E) 1/2
37. Si: x2
+ 1 = 3 x
halle: 3 (2 + 3 )










1x
x2
1
10
5
A) 1 B) –1 C) 0 D) 2 E) –2
38. Si: x =
11n
1n1n
2
22


; y =
1n
1n
2
2


;
x4
+ y4
= 119, hallar: x – y
A) 6n B) 3 C) n2
– 1 D) 4 E) N.A.
39. Hallar el valor numérico de:
M(x) =
5
5
1x
1x
6
2
3






 
para x =
2
1
2
5

A) 0 B) 1 C) –1 D) 2 E) 5
40. Si: x2
+ 1 = –x
halle: x37
+
49
x
1
A) 1 B) 0 C) –1 D) 2 E) 1/2
Publicidad

Recomendados

TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSCliffor Jerry Herrera Castrillo
 
Productos notables - Factorizacion
 Productos notables - Factorizacion Productos notables - Factorizacion
Productos notables - Factorizacionjorge la chira
 
Aduni repaso algebra 1
Aduni repaso algebra 1Aduni repaso algebra 1
Aduni repaso algebra 1Gerson Quiroz
 
Algebra 2 ecuaciones exponenciales
Algebra 2 ecuaciones exponencialesAlgebra 2 ecuaciones exponenciales
Algebra 2 ecuaciones exponencialescmcoaquira
 
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)George Montenegro
 
Chuyên đề 4 bất đẳng thức và bất phương trình
Chuyên đề 4 bất đẳng thức và bất phương trìnhChuyên đề 4 bất đẳng thức và bất phương trình
Chuyên đề 4 bất đẳng thức và bất phương trìnhphamchidac
 

Más contenido relacionado

La actualidad más candente

Balotario de preguntas de aritmetica
Balotario de preguntas de aritmeticaBalotario de preguntas de aritmetica
Balotario de preguntas de aritmeticaCarlos Anco Yucra
 
Banco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdfBanco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdfStevenHoppings1
 
Semana 3 cs numeracion i
Semana 3 cs numeracion iSemana 3 cs numeracion i
Semana 3 cs numeracion iFranco Choque
 
Ecuaciones bicuadradas, de grado mayor que 2, racionales e irracionales. es_a...
Ecuaciones bicuadradas, de grado mayor que 2, racionales e irracionales. es_a...Ecuaciones bicuadradas, de grado mayor que 2, racionales e irracionales. es_a...
Ecuaciones bicuadradas, de grado mayor que 2, racionales e irracionales. es_a...Educación
 
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcỨng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcNhập Vân Long
 
Problemas de repaso de Álgebra ADUNI ccesa007
Problemas de repaso de Álgebra  ADUNI ccesa007Problemas de repaso de Álgebra  ADUNI ccesa007
Problemas de repaso de Álgebra ADUNI ccesa007Demetrio Ccesa Rayme
 
Trigonometria Pre-Uni
Trigonometria Pre-UniTrigonometria Pre-Uni
Trigonometria Pre-UniEstudiante
 
Aduni repaso trigonometria 1
Aduni repaso trigonometria 1Aduni repaso trigonometria 1
Aduni repaso trigonometria 1Gerson Quiroz
 
Teoria y problemas de congruencia de triangulos ccesa007
Teoria y problemas de congruencia de triangulos  ccesa007Teoria y problemas de congruencia de triangulos  ccesa007
Teoria y problemas de congruencia de triangulos ccesa007Demetrio Ccesa Rayme
 
Guía n°4 teorema de thales segundo medio
Guía n°4 teorema de thales segundo medioGuía n°4 teorema de thales segundo medio
Guía n°4 teorema de thales segundo medioFabiola Nahuelman
 
Aritmetica san marco
Aritmetica san marcoAritmetica san marco
Aritmetica san marcoVictor Manuel
 
BĐT Côsi ngược dấu
BĐT Côsi ngược dấuBĐT Côsi ngược dấu
BĐT Côsi ngược dấunhankhangvt
 

La actualidad más candente (20)

Balotario de preguntas de aritmetica
Balotario de preguntas de aritmeticaBalotario de preguntas de aritmetica
Balotario de preguntas de aritmetica
 
Banco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdfBanco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdf
 
Productos Notables
Productos NotablesProductos Notables
Productos Notables
 
Semana 3 cs numeracion i
Semana 3 cs numeracion iSemana 3 cs numeracion i
Semana 3 cs numeracion i
 
Prueba raices diagnostico II Medio
Prueba raices diagnostico II MedioPrueba raices diagnostico II Medio
Prueba raices diagnostico II Medio
 
Ecuaciones bicuadradas, de grado mayor que 2, racionales e irracionales. es_a...
Ecuaciones bicuadradas, de grado mayor que 2, racionales e irracionales. es_a...Ecuaciones bicuadradas, de grado mayor que 2, racionales e irracionales. es_a...
Ecuaciones bicuadradas, de grado mayor que 2, racionales e irracionales. es_a...
 
01 polinomios i
01 polinomios i01 polinomios i
01 polinomios i
 
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcỨng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức
 
Problemas de repaso de Álgebra ADUNI ccesa007
Problemas de repaso de Álgebra  ADUNI ccesa007Problemas de repaso de Álgebra  ADUNI ccesa007
Problemas de repaso de Álgebra ADUNI ccesa007
 
Trigonometria Pre-Uni
Trigonometria Pre-UniTrigonometria Pre-Uni
Trigonometria Pre-Uni
 
Algebra integral
Algebra integralAlgebra integral
Algebra integral
 
2014 iii 07 cocientes notables
2014 iii 07 cocientes notables2014 iii 07 cocientes notables
2014 iii 07 cocientes notables
 
Aduni repaso trigonometria 1
Aduni repaso trigonometria 1Aduni repaso trigonometria 1
Aduni repaso trigonometria 1
 
Modelo de examen bimestral iii 2do solucion completa
Modelo de examen bimestral iii  2do solucion completaModelo de examen bimestral iii  2do solucion completa
Modelo de examen bimestral iii 2do solucion completa
 
Teoría de la divisibilidad
Teoría de la divisibilidadTeoría de la divisibilidad
Teoría de la divisibilidad
 
Teoria y problemas de congruencia de triangulos ccesa007
Teoria y problemas de congruencia de triangulos  ccesa007Teoria y problemas de congruencia de triangulos  ccesa007
Teoria y problemas de congruencia de triangulos ccesa007
 
Guía n°4 teorema de thales segundo medio
Guía n°4 teorema de thales segundo medioGuía n°4 teorema de thales segundo medio
Guía n°4 teorema de thales segundo medio
 
2004 iii 14 funciones
2004 iii 14 funciones2004 iii 14 funciones
2004 iii 14 funciones
 
Aritmetica san marco
Aritmetica san marcoAritmetica san marco
Aritmetica san marco
 
BĐT Côsi ngược dấu
BĐT Côsi ngược dấuBĐT Côsi ngược dấu
BĐT Côsi ngược dấu
 

Destacado

Destacado (20)

Factorización y productos notables 2° a b-c
Factorización y productos notables 2° a b-cFactorización y productos notables 2° a b-c
Factorización y productos notables 2° a b-c
 
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
 
Algebra pre uni (1)
Algebra pre uni (1)Algebra pre uni (1)
Algebra pre uni (1)
 
U.a.i algebra i
U.a.i algebra iU.a.i algebra i
U.a.i algebra i
 
Productos notables
Productos notablesProductos notables
Productos notables
 
Productos notables
Productos notablesProductos notables
Productos notables
 
Productos notables y factorización de polinomios
Productos notables y factorización de polinomiosProductos notables y factorización de polinomios
Productos notables y factorización de polinomios
 
Ejercicios de Productos notables
Ejercicios de Productos notablesEjercicios de Productos notables
Ejercicios de Productos notables
 
Leithold - formulario integrales
Leithold  -  formulario integralesLeithold  -  formulario integrales
Leithold - formulario integrales
 
Productos Notables
Productos NotablesProductos Notables
Productos Notables
 
Productos notables
Productos notablesProductos notables
Productos notables
 
Productos Notables y Factorización
Productos Notables y FactorizaciónProductos Notables y Factorización
Productos Notables y Factorización
 
Productos notables
Productos notablesProductos notables
Productos notables
 
Productos notables, Demostraciones de cada uno.
Productos notables, Demostraciones de cada uno.Productos notables, Demostraciones de cada uno.
Productos notables, Demostraciones de cada uno.
 
Cociente notables
Cociente notablesCociente notables
Cociente notables
 
Examen de admisión uni 2016
Examen de admisión uni 2016Examen de admisión uni 2016
Examen de admisión uni 2016
 
Productos Notables
Productos NotablesProductos Notables
Productos Notables
 
Semana 4
Semana 4Semana 4
Semana 4
 
Ejercicios resueltos de radicales
Ejercicios resueltos de radicalesEjercicios resueltos de radicales
Ejercicios resueltos de radicales
 
Algebra(3) 5° 1 b
Algebra(3) 5° 1 bAlgebra(3) 5° 1 b
Algebra(3) 5° 1 b
 

Similar a Algebra 5 productos notables

Cepre tema 02 operaciones con polinomios productos notables-2016-ii
Cepre tema 02 operaciones con polinomios productos notables-2016-iiCepre tema 02 operaciones con polinomios productos notables-2016-ii
Cepre tema 02 operaciones con polinomios productos notables-2016-iiJavier Faustino Saldarriaga Herrera
 
Operadores cedeu
Operadores cedeuOperadores cedeu
Operadores cedeuaitnas
 
16 ejercicios álgebra de polinomios (parte b)
16 ejercicios álgebra de polinomios (parte b)16 ejercicios álgebra de polinomios (parte b)
16 ejercicios álgebra de polinomios (parte b)Marcelo Calderón
 
14 ejercicios álgebra de polinomios (parte a)
14 ejercicios álgebra de polinomios (parte a)14 ejercicios álgebra de polinomios (parte a)
14 ejercicios álgebra de polinomios (parte a)Marcelo Calderón
 
Algebra 6 factorizacion 1
Algebra 6 factorizacion 1Algebra 6 factorizacion 1
Algebra 6 factorizacion 1cmcoaquira
 
Productos notables i
Productos notables iProductos notables i
Productos notables iEdgar Sanchez
 
Productos notables i
Productos notables iProductos notables i
Productos notables iEdgar Sanchez
 
Teoria y problemas resueltos de productos notables ccesa007
Teoria y problemas resueltos de productos notables ccesa007Teoria y problemas resueltos de productos notables ccesa007
Teoria y problemas resueltos de productos notables ccesa007Demetrio Ccesa Rayme
 
Matematica 1º2 b
Matematica 1º2 bMatematica 1º2 b
Matematica 1º2 b349juan
 
EXPONENTES Y RADICALES
EXPONENTES Y RADICALESEXPONENTES Y RADICALES
EXPONENTES Y RADICALESaldomat07
 
15 algebra de polinomios (parte b)
15 algebra de polinomios (parte b)15 algebra de polinomios (parte b)
15 algebra de polinomios (parte b)Marcelo Calderón
 

Similar a Algebra 5 productos notables (20)

Productos notables 5 to
Productos notables   5 toProductos notables   5 to
Productos notables 5 to
 
Semana 3 cs
Semana 3 csSemana 3 cs
Semana 3 cs
 
Cepre tema 02 operaciones con polinomios productos notables-2016-ii
Cepre tema 02 operaciones con polinomios productos notables-2016-iiCepre tema 02 operaciones con polinomios productos notables-2016-ii
Cepre tema 02 operaciones con polinomios productos notables-2016-ii
 
Operadores matematicos
Operadores matematicosOperadores matematicos
Operadores matematicos
 
Operadores cedeu
Operadores cedeuOperadores cedeu
Operadores cedeu
 
16 ejercicios álgebra de polinomios (parte b)
16 ejercicios álgebra de polinomios (parte b)16 ejercicios álgebra de polinomios (parte b)
16 ejercicios álgebra de polinomios (parte b)
 
14 ejercicios álgebra de polinomios (parte a)
14 ejercicios álgebra de polinomios (parte a)14 ejercicios álgebra de polinomios (parte a)
14 ejercicios álgebra de polinomios (parte a)
 
Algebra 6 factorizacion 1
Algebra 6 factorizacion 1Algebra 6 factorizacion 1
Algebra 6 factorizacion 1
 
Productos notables i
Productos notables iProductos notables i
Productos notables i
 
Productos notables i
Productos notables iProductos notables i
Productos notables i
 
Semana 1 cs
Semana 1 csSemana 1 cs
Semana 1 cs
 
P-06-OR-2012-III_SEMANA.07.doc
P-06-OR-2012-III_SEMANA.07.docP-06-OR-2012-III_SEMANA.07.doc
P-06-OR-2012-III_SEMANA.07.doc
 
Teoria y problemas resueltos de productos notables ccesa007
Teoria y problemas resueltos de productos notables ccesa007Teoria y problemas resueltos de productos notables ccesa007
Teoria y problemas resueltos de productos notables ccesa007
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricas
 
PRODUCTOS NOTABLES
PRODUCTOS NOTABLESPRODUCTOS NOTABLES
PRODUCTOS NOTABLES
 
Matematica 1º2 b
Matematica 1º2 bMatematica 1º2 b
Matematica 1º2 b
 
Productos notables division
Productos notables   divisionProductos notables   division
Productos notables division
 
EXPONENTES Y RADICALES
EXPONENTES Y RADICALESEXPONENTES Y RADICALES
EXPONENTES Y RADICALES
 
Balotario de trigonometria final 2013
Balotario de trigonometria final 2013Balotario de trigonometria final 2013
Balotario de trigonometria final 2013
 
15 algebra de polinomios (parte b)
15 algebra de polinomios (parte b)15 algebra de polinomios (parte b)
15 algebra de polinomios (parte b)
 

Último

EVALUACION PARCIAL II.pdf
EVALUACION PARCIAL II.pdfEVALUACION PARCIAL II.pdf
EVALUACION PARCIAL II.pdfmatepura
 
Evaluación 2probabilidad y estadistica periodo enero marzo.doc
Evaluación 2probabilidad y estadistica periodo enero marzo.docEvaluación 2probabilidad y estadistica periodo enero marzo.doc
Evaluación 2probabilidad y estadistica periodo enero marzo.docMatematicaFisicaEsta
 
TRABAJO FINAL HIDRÁULICA 2 Universidad Central.pptx
TRABAJO FINAL HIDRÁULICA 2 Universidad Central.pptxTRABAJO FINAL HIDRÁULICA 2 Universidad Central.pptx
TRABAJO FINAL HIDRÁULICA 2 Universidad Central.pptxBrayanTats
 
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJOSISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJOCristianPantojaCampa
 
TR-518 DiseñoCostadoCamino Emiratos Resumen.pdf
TR-518 DiseñoCostadoCamino Emiratos Resumen.pdfTR-518 DiseñoCostadoCamino Emiratos Resumen.pdf
TR-518 DiseñoCostadoCamino Emiratos Resumen.pdfFRANCISCOJUSTOSIERRA
 
POLÍTICAS INTERNAS DE OSC TELECOMS SAC..
POLÍTICAS INTERNAS DE OSC TELECOMS SAC..POLÍTICAS INTERNAS DE OSC TELECOMS SAC..
POLÍTICAS INTERNAS DE OSC TELECOMS SAC..CristianPantojaCampa
 
Políticas OSC 7_Consolidado............pdf
Políticas OSC 7_Consolidado............pdfPolíticas OSC 7_Consolidado............pdf
Políticas OSC 7_Consolidado............pdfCristianPantojaCampa
 
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdfHOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdfJULIODELPIERODIAZRUI
 
Presentacióndel curso de Cálculo diferencial
Presentacióndel curso de  Cálculo diferencialPresentacióndel curso de  Cálculo diferencial
Presentacióndel curso de Cálculo diferencialProfe Mate
 
Evaluacioìn 2estadistica (1).pdf
Evaluacioìn 2estadistica (1).pdfEvaluacioìn 2estadistica (1).pdf
Evaluacioìn 2estadistica (1).pdfmatepura
 

Último (19)

EVALUACION PARCIAL II.pdf
EVALUACION PARCIAL II.pdfEVALUACION PARCIAL II.pdf
EVALUACION PARCIAL II.pdf
 
Evaluación 2probabilidad y estadistica periodo enero marzo.doc
Evaluación 2probabilidad y estadistica periodo enero marzo.docEvaluación 2probabilidad y estadistica periodo enero marzo.doc
Evaluación 2probabilidad y estadistica periodo enero marzo.doc
 
TRABAJO FINAL HIDRÁULICA 2 Universidad Central.pptx
TRABAJO FINAL HIDRÁULICA 2 Universidad Central.pptxTRABAJO FINAL HIDRÁULICA 2 Universidad Central.pptx
TRABAJO FINAL HIDRÁULICA 2 Universidad Central.pptx
 
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJOSISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
 
EVALUACION PARCIAL II.pdf
EVALUACION PARCIAL II.pdfEVALUACION PARCIAL II.pdf
EVALUACION PARCIAL II.pdf
 
Practica_14.pdf
Practica_14.pdfPractica_14.pdf
Practica_14.pdf
 
EP 2_NIV 2024.docx
EP 2_NIV 2024.docxEP 2_NIV 2024.docx
EP 2_NIV 2024.docx
 
EVALUACION II.pdf
EVALUACION II.pdfEVALUACION II.pdf
EVALUACION II.pdf
 
TR-518 DiseñoCostadoCamino Emiratos Resumen.pdf
TR-518 DiseñoCostadoCamino Emiratos Resumen.pdfTR-518 DiseñoCostadoCamino Emiratos Resumen.pdf
TR-518 DiseñoCostadoCamino Emiratos Resumen.pdf
 
POLÍTICAS INTERNAS DE OSC TELECOMS SAC..
POLÍTICAS INTERNAS DE OSC TELECOMS SAC..POLÍTICAS INTERNAS DE OSC TELECOMS SAC..
POLÍTICAS INTERNAS DE OSC TELECOMS SAC..
 
Políticas OSC 7_Consolidado............pdf
Políticas OSC 7_Consolidado............pdfPolíticas OSC 7_Consolidado............pdf
Políticas OSC 7_Consolidado............pdf
 
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdfHOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
 
EP - 01.pdf
EP - 01.pdfEP - 01.pdf
EP - 01.pdf
 
Dina202400-TF.pdf
Dina202400-TF.pdfDina202400-TF.pdf
Dina202400-TF.pdf
 
Presentacióndel curso de Cálculo diferencial
Presentacióndel curso de  Cálculo diferencialPresentacióndel curso de  Cálculo diferencial
Presentacióndel curso de Cálculo diferencial
 
Evaluacioìn 2estadistica (1).pdf
Evaluacioìn 2estadistica (1).pdfEvaluacioìn 2estadistica (1).pdf
Evaluacioìn 2estadistica (1).pdf
 
Arquitecto Graneros - Rancagua - Mostazal
Arquitecto Graneros - Rancagua - MostazalArquitecto Graneros - Rancagua - Mostazal
Arquitecto Graneros - Rancagua - Mostazal
 
DISTANCIAMIENTOS -norma, arquitectura chilena-
DISTANCIAMIENTOS -norma, arquitectura chilena-DISTANCIAMIENTOS -norma, arquitectura chilena-
DISTANCIAMIENTOS -norma, arquitectura chilena-
 
1ra PRACTICA Est-Niv.pdf
1ra PRACTICA Est-Niv.pdf1ra PRACTICA Est-Niv.pdf
1ra PRACTICA Est-Niv.pdf
 

Algebra 5 productos notables

  • 1. UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU BECA 18 UPeU Universidad Peruana Unión – Juliaca Mg. Carlos M. Coaquira Tuco Programa Nacional de Beca 18 Lic. Joel Chavarrí Becerra Lic. Derly Huanca Quispe | Son los resultados de ciertas multiplicaciones indicadas que se obtienen en forma directa, sin necesidad de efectuar la operación de multiplicación. PRINCIPALES IDENTIDADES: Trinomio cuadrado perfecto: (a + b)2 = a2 + 2ab + b2 (a – b)2 = a2 – 2ab + b2 * Identidades de Legendre: (a + b)2 + (a – b)2 = 2(a2 + b2 ) (a + b)2 – (a – b)2 = 4ab Diferencia de cuadrados: (a + b) (a – b) = a2 – b2 Desarrollo de un binomio al cubo: (a + b)3 = a3 + b3 + 3ab(a + b) (a – b)3 = a3 – b3 – 3ab(a – b) Suma y diferencia de cubos: (a + b) (a2 – ab + b2 ) = a3 + b3 (a – b) (a2 + ab + b2 ) = a3 – b3 Multiplicación de binomios con término común: (x + a) (x + b) = x2 + (a+b)x + ab 1. Reducir: 2 22 )rq()pnm( )rqpnm()rqpnm(            2. Reducir: )b3a(a )ba()ba( 22 33   3. Si: x = 1313  y = 1313  hallar: x2 – y2 4. Reducir: M = (a+2) (a+3) (a+4) (a+5) – (a2 +7a) (a2 +7a+22) 5. Si: 5 x 1 x  halle: x3 + x–3 6. Si: x2 + 12y = (y + 6)2 , hallar: 10 4224 3 22 yyx2x.yx            7. Si: a + b = 3 y ab = 1 halle: a4 + a2 + a + b2 + b + b4 8. Si: a4 + b6 = 2 halle: 222222 232232 )aa()aa( )ba()ba(    9. De la ecuación: ba 4 b 1 a 1  
  • 2. - 2 - Productos Notables 1 Reducir: n 1n1n 1n ba )ba(     10. Si: x + x 2 = 1 halle: (x – 3) (x + 2) (x – 4) (x + 3) 11. Si se cumple: x y2 y2 x  = 2 calcular: 8 y x         12. Si: x + x 1 = 3, halle: x2 – 2 x 1 ; x > 1 13. Reducir: 16 1688 2)23()97()13()5(  14. Sabiendo que x2 – 3x + 1 = 0 Calcular el valor de: A = 32 23 x 1 x 1 xx  15. Si a + a 1 = 3, hallar el valor de R =                               a a/1 a/1 a a 1 a a 1 a 16. Si: x2 + 1 = –x halle: x19 + 25 x 1 1. Reducir: C = [ (m + n)2 – (m – n)2 ]2 – 16 m2 n2 A) mn B) m+n C) 0 D) 1 E) –1 2. Reducir: M =    babababa  A) 2a C) 0 E) 2a – 2b B) 2b D) 2a + 2b 3. Reducir: (x – 1)3 – x3 + 1 A) x C) 2x E) N.A. B) x + 1 D) 3x (1 – x) 4. Reducir: W = 2222 abb.abb  ; a > 0 A) b B) a C) a D) b E) 0 5. Simplificar: Z = (x2 + x + 4) (x2 + x + 2) – (x2 + x + 8) (x2 + x – 2) A) 8 B) 16 C) 24 D) 18 E) 43 6. Reducir: P = (x + 2)3 – (x – 2)3 – 12x2 A) 4 B) 6 C) 10 D) 16 E) 1 7. Simplificar: R = (x + y + 1) (x + y – 1) – (x – y + 1) (x – y – 1) A) xy C) x + y E) 4xy B) 2xy D) x – y 8. Si a+ b = 1 y a2 + b2 = 3 hallar: P = (a + 1)(b + 1) A) 4 B) 1 C) 3 D) 2 E) N.A. 9. Si: a+b = ab = 3 calcular R = a(a + a2 + a3 ) + b(b + b2 + b3 ) A) 1 B) 2 C) –3 D) –6 E) N.A. 10. Reducir: A = 3 2 )1x(x3)1xx()1x(  A) x B) x–1 C) x+1 D) –x E) 1 11. Si x + x 1 = 4, calcular: 3 3 x 1 x  A) 26 B) 18 C) 52 D) 36 E) N.A. 12. Si: a + b = 4; ab = 3. hallar: W = a3 + b3 ; si a > b A) 64 B) 28 C) 26 D) –26 E) –27
  • 3. - 3 - Productos Notables 1 13. Si x + y = a, x.y = b, hallar: x3 + y3 A) a3 C) a3 + 3ab E) N.A. B) a2 + 3ab D) a3 – 3ab 14. Simplificar: 2 2 2 2 2 1m m2 1m 1m                     A) 1 C) 2 E) N.A. B) 0 D) m2 + 1 15. Efectuar: E = (a + b + c) (a + b – c) – (a – b + c) (a – b – c) A) 4ab C) 4ac E) abc B) 4bc D) 4abc 16. Para: m = (x + x –1 ) n = (x – x –1 ) halle: m2 – n2 A) 1 B) 4 C) x–1 D) x E) 0 17. Efectuar: E = (x2 + 5x + 5)2 – (x + 1) (x + 2) (x + 3) (x + 4) A) 7 B) 1 C) –2 D) 0 E) 3 18. Sea:            2233 22 yx 1 xy 1 3 y 1 x 1 xy 2 y 1 x 1 A ; xy  0 si se cumple: 9(x + y) =xy, calcule: A A) 1/9 B) 1/3 C) 3 D) 9 E) 1 19. Si: x + x 1 = 4 halle: x2 + x + 2 x 1 + x 1 A) 16 B) 18 C) 14 D) 10 E) 4 20. Si a + b = 5 y 2 ba ba           = 11, hallar ab. A) 5 B) 7 C) 9 D) 11 E) N.A. 21. Reducir (x2 – 4x – 1)2 – (x2 – 4x – 2)2 – 22 23 )4x2x( )8x(2   A) – 9 B) – 3 C) – 11 D) 0 E) 10 22. Calcular U + N, si: U = (a + b – c + d) (a – b + c + d) N = (a + b + c – d) (b – a + c + d) A) ad + bc C) 4 (ad + bc) E) 2 (a2 – b2 ) B) ad – bc D) 4 23. Si: a–1 + b–1 = 4(a + b) –1 calcular: E = b2a ba2 a b b a    A) 1 B) 2 C) 3 D) 4 E) N.A. 24. Simplificar: 5 1025 102 yxx.yxx  A) y2 C) x2 E) N.A. B) x2 – 1 D) 0 25. Si a + b = 5 y ab = 3, hallar el valor numérico de P = ba ba 55   A) – 5 B) 1 C) – 1 D) 5 E) 12 26. Si: a4x + a–4x = 34, calcular R = ax – a–x A) 1 B) 2 C) 3 D) 4 E) N.A. 27. Reducir: T = 1 a1 1a 1a 4 1a 2 1a 2 1a2a 3 b b.b                A) ba B) 1 C) ba+1 D) ba – 1 E) N.A. 28. Efectuar: E = (x + 2) (x + 3) (x + 4) (x + 5) – (x2 + 7x + 11)2 A) x2 – 7 C) x2 – 1 E) –1 B) 1 D) x – 1 29. Si: A + B = 8 ; A.B = 2 hallar: A6 + B6 A) 8 B) –8 C) –16 D) 16 E) N.A.
  • 4. - 4 - Productos Notables 1 30. Si: (a + b + c + d)2 = 4 (a + b) (c + d) calcular: M = cb ad bd ca dc ba         A) 0 B) 1 C) –1 D) 3 E) –3 31. Si: x + x–1 = 5 , calcular: x6 + x–6 A) 12 B) 15 C) 16 D) 18 E) 20 32. Simplificar: (a – b) (a + b – c) + (b – c) (b + c – a) + (c – a) (c + a – b) A) 0 B) ab C) bc D) ac E) abc 33. Si: x y y x 22  = 3(x – y) hallar: K = 222 88 )yx( )yx(3  A) 4 B) 6 C) 1 D) 0 E) 2 34. Si se cumple que: (x + y + 2z)2 + (x + y – 2z)2 = 8z (x + y) hallar: E = 879 yz xz yz zx z2 yx                             A) 3 B) 1 C) –1 D) 0 E) N.A. 35. Si: 2 2 x 1 x  = 3. hallar: C = 3 1010 2xx   A) 3 B) –3 C) 5 D) –2 E) 4 36. Si: xy = 1, hallar: K = x 1x 1y 2 2   + y 1y 1x 2 2   Además x ; y    x ; y > 0 A) 1 B) –2 C) 2 D) 0 E) 1/2 37. Si: x2 + 1 = 3 x halle: 3 (2 + 3 )           1x x2 1 10 5 A) 1 B) –1 C) 0 D) 2 E) –2 38. Si: x = 11n 1n1n 2 22   ; y = 1n 1n 2 2   ; x4 + y4 = 119, hallar: x – y A) 6n B) 3 C) n2 – 1 D) 4 E) N.A. 39. Hallar el valor numérico de: M(x) = 5 5 1x 1x 6 2 3         para x = 2 1 2 5  A) 0 B) 1 C) –1 D) 2 E) 5 40. Si: x2 + 1 = –x halle: x37 + 49 x 1 A) 1 B) 0 C) –1 D) 2 E) 1/2