SlideShare a Scribd company logo
1 of 7
Download to read offline
TALAT Lecture 2301

                        Design of Members

               Axial force and bending moment


       Example 9.4 : Beam-column with cross weld

                                   7 pages

                               Advanced Level

    prepared by Torsten Höglund, Royal Institute of Technology, Stockholm




Date of Issue: 1999
 EAA - European Aluminium Association



TALAT 2301 – Example 9.4                1
Example 9.4. Beam-column with cross weld
The beam-column is subject to an eccentric axial force with same eccentricity at both ends. The beam is prevente
from warping at the ends by rigid rectangular hollow beams. These beams are simply supported at the load point
and D. The structure is a text beam.

There is a welded joint a a section xsw from the support A.
                        t




Dimensions and material properties
                 Section height:                      h     100 . mm
                 Flange depth:                        b     49.9 . mm
                 Web thickness:                       tw        4.88 . mm
                 Flange thickness:                    tf     4.97 . mm
                 Overall length:                      l beam       1201 . mm
                 Cross beams:                         bb        140 . mm
                 Support                              rb        30 . mm
                 Eccentricity                         exc       200 . mm
                 Location of cross weld               x sw       170 . mm


                 Alloy: EN AW-6082 T6                 heat_treated           1          (if heat-treated then 1 else 0)
Note: Values
from tests !     f 0.2     311 . MPa       f haz     223 . MPa


[1] (5.4), (5.5) f o     f 0.2             fa      f haz                         E    70000 . MPa        G   27000 . MPa
[1] (5.6)
                 Partial safety factors:                   γ M11.10                                 γ M2 1.25
                 Inner radius:                             r 0 . mm
                 Web height:                               bw      h      2 .t f     2 .r           b w = 90 mm




TALAT 2301 – Example 9.4                                    2
Moment and force
                Axial force (compression)                                                                                     N Ed   17 . kN

                Bending moment at the ends                                       M y.Ed               N Ed . exc              M y.Ed = 3.4 kNm

                S.I. units:                     kN 1000 . newton                 kNm kN . m                        MPa 1000000 . Pa


Classification of the cross section
                (Detail calculations omitted)                                                                   y-y-axis bending            class y         3
                                                                                                                z-z-axis bending            class z         3
                                                                                                                axial force                 class c         3

Cross weld
[1] 5.5         HAZ softening at a sectionx sw = 170 mm from the column end

[1] Table 5.2   ρ haz 0.65                    In this example use value from tests f haz = 223 MPa

                                                       f haz . γ M2                           f haz . γ M2
                which means                   ρ haz                 ρ haz 0.815
                                                                         =            fu                   f u = 311 MPa
                                                         f o . γ M1                         ρ haz . γ M1


Design resistance, y-y -axis bending
[1] 5.6.1                                                 W
                Elastic modulus of the gross cross section el:

                       2 .b .t f           2 .t f .t w
                                                                                                       2
                Ag                 h                                      A g = 935.499 mm

                        1. . 3
                                             tw . h      2 .t f           I g = 1.418 . 10 mm
                                                                  3                           6         4
                Ig        bh           b
                       12
                        I g .2
                                                                          W el = 2.836 . 10 mm
                                                                                                  4         3
                W el
                           h

[1] Tab. 5.3
[1] (5.15)      Shape factor α for class 3 cross-section, say                                                             α y 1
                                                                                                                                        f o . α y . W el
                                                                                                                          M y.Rd
[1] (5.14)                                                     M
                Design moment of resistance of the cross section c,Rd                                                                      γ M1

                                                                                                                          M y.Rd = 8 kNm

Design resistance, z-z-axis bending
                Cross section class                                                                                       class z = 3
                                                                                     t f .b
                                                                                              3
                                                                                2.                                        I z = 1.029 . 10 mm
                                                                                                                                            5       4
                Gross cross section:                                       Iz
                                                                                     12
                                                                                  I z.2
                                                                                                                          W z = 4.125 . 10 mm
                                                                                                                                                3       3
                Section module:                                            Wz
                                                                                      b
                Shape factor:                                                                                             α z 1
                                                                                          f o .α z.W z
                Bending resistance:                                        M z.Rd                                         M z.Rd = 1.166 kNm
                                                                                                  γ M1

TALAT 2301 – Example 9.4                                              3
Axial force resistance, y-y buckling
[1] 5.8.4       Cross section area of gross cross sectionAgr

                             b .h               tw . h         2 .t f
                                                                                                                                              2
                A gr                    b                                                                              A gr = 935.499 mm


                Cross section area of class 3 cross section                                                            A eff       A gr

                                                                                                    A eff
                Effective cross section factor                                             η                           η =1
                                                                                                    A gr

                Second moment of area of gross cross section:
                                                                        2
                         2. . 3                           h        tf         1.
                                            2 .b .t f .                                2 .t f .t w                     I y = 1.418 . 10 mm
                                                                                              3                                           6   4
                Iy         btf                                                   h
                        12                                     2             12

[1] Table 5.7   Effective buckling length                                      l yc    l beam         rb
                                                                                                                       l yc = 1.231 m

                                                                                         π .E .I y
                                                                                          2

                Buckling load                                                  N cr                                    N cr = 646.436 kN
                                                                                                2
                                                                                          l yc

                                                                                         A gr . η . f o
[1] 5.8.4.1     Slenderness parameter                                          λ y                                    λ y 0.671
                                                                                                                        =
                                                                                               N cr

[1] Table 5.6   α      if ( heat_treated 1 , 0.2 , 0.32 )                                                             α = 0.2
                λ o if ( heat_treated 1 , 0.1 , 0 )                                                                   λ o 0.1
                                                                                                                        =

                       0.5 . 1      α . λ y
                                                                               2
                φ                                             λ o           λ y                                       φ = 0.782

                                        1
                χ y                                                                                                   χ y = 0.844
                                            2             2
                         φ          φ            λ y

[1] Table 5.5   Symmetric profile                                                                                     k1       1
[1] Table 5.5   No longitudinal welds                                                                                 k2       1
                                                                                                      fo
                Axial force resistance                         N y.Rd         χ .y . k 1 . k 2 .
                                                                                 η                          .A
                                                                                                                 gr   N y.Rd = 223.4 kN
                                                                                                    γ M1




TALAT 2301 – Example 9.4                                                           4
Axial force resistance, z-z axis buckling
              Effective buckling length                                l zc         l beam        rb                      l zc = 1.231 m

                                                                                     π .E .I z
                                                                                      2

              Buckling load                                            N cr                                               N cr = 46.9 kN
                                                                                           2
                                                                                      l zc

                                                                                     A gr . η . f o
[1] 5.8.4.1   Slenderness parameter                                    λ z                                                λ z 2.49
                                                                                                                            =
                                                                                          N cr

                   0.5 . 1       α . λ z
                                                                       2
[1] 5.8.4.1   φ                                          λ o     λ z                                                      φ = 3.839

                                     1
              χ z                                                                                                         χ z = 0.148
                                      2              2
                    φ            φ            λ z
                                                                                                        fo
[1] 5.8.4.1   Axial load resistance                            N z.Rd          χ .z . k 1 . k 2 .
                                                                                  η                           .A
                                                                                                                   gr     N z.Rd = 39.118 kN
                                                                                                       γ M1
                                                                                     fo
              and without column buckling                        N Rd          η.            .A
                                                                                                  gr                      N Rd = 264.5 kN
                                                                                    γ M1


Flexural buckling of beam-column
                                                                                                                                        x sw
[1] 5.8.4.1   Cross weld from column end                                        x sw = 170 mm                      l yc = 1.231 m                 = 0.138
                                                                                                                                           l yc
[1] 5.9.4.5   HAZ reduction factors, see above                                  ρ haz 0.815
                                                                                    =

                                         fu         γ M1
[1] (5.51)    ω 0 ρ haz .                       .                                    ω 0 if ω 0 > 1 , 1 , ω 0                           ω 0 0.717
                                                                                                                                          =
                                     γ M2 f o
                                         ω 0
[1] (5.49)    ω x                                                                                                                       ω x 0.788
                                                                                                                                          =
                                                            π . x sw
                     χ y             1        χ y . sin
                                                               l yc

              Exponents in interaction formulae
                             2
[1] (5.42c)   ξ 0 α y                                 ξ 0      if ξ 0 < 1 , 1 , ξ 0                                                     ξ 0 1
                                                                                                                                          =

[1] 5.9.4.2   ξ yc ξ 0 . χ y                          ξ yc if ξ yc < 0.8 , 0.8 , ξ yc                                                   ξ yc 0.844
                                                                                                                                           =


              Flexural buckling check                                                                   N Ed = 17 kN                    M y.Ed = 3.4 kNm
                                                     ξ yc
                                 N Ed                          M y.Ed
[1] 5.4.4     Uy                                                                                                                        U y = 0.73
                        χ .y x . N Rd
                           ω                                ω 0 . M y.Rd




TALAT 2301 – Example 9.4                                                   5
Lateral-torsional buckling
                                                                                                            t f .I z
                                                                                                                2
                                                                                                 h
                                                                                                                                                     I w = 2.324 . 10 mm
                                                                                                                                                                    8            6
[1] Annex J      Warping constant:                                                 Iw
Figure J.2                                                                                           4
                                                                                            2 .b .t 3 h .t 3
                                                                                                   f      w
                                                                                                                                                     I t = 7.958 . 10 mm
                                                                                                                                                                    3            4
                 Torsional constant:                                               It
                                                                                                                3

                                                                                                                2 .b b                               W y = 2.836 . 10 mm
                                                                                                                                                                        4            3
                 Lateral buckling length                                           L       l beam                                Wy     W el


                 Constant bending moment,warping prevented at the ends

[1] H.1.2(2)     C1, k and kw constants                                            C1            1                      k    1         kw      0.5


                         C 1 .π .E .I z                                       ( k .L ) .G .I t
                               2                                                      2
                                                             2       Iw
                                            .           k        .
[1] H.1.3(2)     M cr                                                                                                   L = 921 mm                   M cr = 9.026 kNm
                            ( k .L )
                                                                                   2.
                                                                                        E .I z
                                       2            kw               Iz        π

                           α y .W y .f o
[1] 5.6.6.3(3)   λ LT                                                                                                                                λ LT 0.988
                                                                                                                                                        =
                                 M cr

[1] 5.6.6.3(2)   α LT if class z > 2 , 0.2 , 0.1                                                                                                     α LT 0.2
                                                                                                                                                         =


                 λ 0LT if class z > 2 , 0.4 , 0.6                                                                                                    λ 0LT 0.4
                                                                                                                                                         =


                 φ LT 0.5 . 1          α LT . λ LT
                                                                                                            2
[1] 5.6.6.3(1)                                                            λ 0LT             λ LT                                                     φ LT 1.047
                                                                                                                                                        =

                                                1
                 χ LT                                                                                                                                χ LT = 0.718
                                                        2                 2
                         φ LT              φ LT                  λ LT

                                                                                                                                                           l beam
                 Check three sections                                     i     1 .. 3           xs                 0 . mm       xs     x sw         xs                     rb
                                                                                                   1                               2                   3      2
                                                                                                          T
                                                                                                     xs
                 l zc   l beam     2 .r b                                                                       = ( 0 0.135 0.5 )
                                                                                                     l zc

                 HAZ reduction factors                                                           (ω0 = 1 except at x s )
                                                                                                                      2

                                           fu           γ M1
[1] (5.51)       ω 0     ρ haz .                    .                                            ω 0 if ω 0 > 1 , 1 , ω 0
                   i               γ M2                     fo                                     i       i              i

                                                                                                                                                   T
                 Weld at section i = 2                                                           ω 0 if i 2 , ω 0 , 1                            ω 0 = ( 1 0.717 1 )
                                                                                                   i             i




TALAT 2301 – Example 9.4                                                           6
ω 0                                  T
[1] (5.49)        ω x                                                     ω x = ( 6.76 1.44 1 )
or (5.52)                                         π .x s
                        χ z       1   χ z . sin
                                                    l zc

                                           ω 0                                T
[1] (5.50)        ω xLT                                                   ω xLT = ( 1.39 0.86 1 )
or (5.53)                                                  π .x s
                             χ LT      1   χ LT . sin
                                                            l zc

                  η 0 α z .α y
                         2    2
[1] (5.42a)                                  η 0 if η 0 < 1 , 1 , if η 0 > 2 , 2 , η 0                               η 0 1
                                                                                                                        =
                              2
[1] (5.42b)       γ 0 α z                    γ 0     if γ    0 < 1 , 1 , if γ   0> 2 , 2 , γ    0                    γ 01
                                                                                                                       =
                              2
[1] (5.42c)       ξ 0 α y                    ξ 0     if ξ 0 < 1 , 1 , ξ 0                                            ξ 0 1
                                                                                                                       =


[1] 5.9.4.3       η c η 0 .χ z               η c if η c < 0.8 , 0.8 , η c                        χ y 0.844
                                                                                                   =                 η c 0.8
                                                                                                                       =

                  γ c γ 0                                                                        χ z = 0.148         γ c1
                                                                                                                       =

                  ξ zc ξ 0 . χ z             ξ zc if ξ zc < 0.8 , 0.8 , ξ zc                                         ξ zc 0.8
                                                                                                                        =


Lateral-torsional buckling of beam-column                                                       M z.Ed   0 . kNm
[1] (5.43)

                             ηc                               γc                         ξ zc
                 N Ed                      M y.Ed                          M z.Ed
                                                                                                         T
U LT                                                                                                 U LT = ( 0.535 1.071 1.104 )
             χ .z x . N Rd
                ω                   χ LT . ω xLT . M y.Rd              ω 0 . M z.Rd

                   Max utilisation, lateral-torsional buckling                  U z.max         max U LT           U z.max = 1.104
                   Max utilisation, flexural buckling                                                              U y = 0.73


Comment: U z.max = 1.104          mean that the test failure load exceeded the characteristic strength with 10.4%




TALAT 2301 – Example 9.4                                      7

More Related Content

What's hot

10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paper
Eddy Ching
 
fm全国大会用
fm全国大会用 fm全国大会用
fm全国大会用
vinie99
 
Lecture 9 shear force and bending moment in beams
Lecture 9 shear force and bending moment in beamsLecture 9 shear force and bending moment in beams
Lecture 9 shear force and bending moment in beams
Deepak Agarwal
 
Dry Gas Seal Presentation
Dry Gas Seal PresentationDry Gas Seal Presentation
Dry Gas Seal Presentation
IONEL DUTU
 
Mt 610 phasetransformationsinsolids_iii
Mt 610 phasetransformationsinsolids_iiiMt 610 phasetransformationsinsolids_iii
Mt 610 phasetransformationsinsolids_iii
Abhijeet Dash
 

What's hot (6)

Rc04 bending2
Rc04 bending2Rc04 bending2
Rc04 bending2
 
10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paper
 
fm全国大会用
fm全国大会用 fm全国大会用
fm全国大会用
 
Lecture 9 shear force and bending moment in beams
Lecture 9 shear force and bending moment in beamsLecture 9 shear force and bending moment in beams
Lecture 9 shear force and bending moment in beams
 
Dry Gas Seal Presentation
Dry Gas Seal PresentationDry Gas Seal Presentation
Dry Gas Seal Presentation
 
Mt 610 phasetransformationsinsolids_iii
Mt 610 phasetransformationsinsolids_iiiMt 610 phasetransformationsinsolids_iii
Mt 610 phasetransformationsinsolids_iii
 

Similar to TALAT Lecture 2301: Design of Members Example 9.4: Beam-column with cross weld

MET 304 Shafts and keys-mod#3
MET 304 Shafts and keys-mod#3MET 304 Shafts and keys-mod#3
MET 304 Shafts and keys-mod#3
hotman1991
 
Revited joints
Revited jointsRevited joints
Revited joints
hotman1991
 
Fatigue behavior of welded steel
Fatigue behavior of welded steelFatigue behavior of welded steel
Fatigue behavior of welded steel
AygMA
 

Similar to TALAT Lecture 2301: Design of Members Example 9.4: Beam-column with cross weld (20)

TALAT Lecture 2301: Design of Members Example 7.1: Concentrated force
TALAT Lecture 2301: Design of Members Example 7.1: Concentrated forceTALAT Lecture 2301: Design of Members Example 7.1: Concentrated force
TALAT Lecture 2301: Design of Members Example 7.1: Concentrated force
 
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
 
TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...
 
Bridge rf cal sheet 0 1
Bridge rf cal sheet 0 1Bridge rf cal sheet 0 1
Bridge rf cal sheet 0 1
 
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...
 
Conceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxConceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptx
 
MET 304 Shafts and keys-mod#3
MET 304 Shafts and keys-mod#3MET 304 Shafts and keys-mod#3
MET 304 Shafts and keys-mod#3
 
Prestress loss due to friction & anchorage take up
Prestress loss due to friction & anchorage take upPrestress loss due to friction & anchorage take up
Prestress loss due to friction & anchorage take up
 
Revited joints
Revited jointsRevited joints
Revited joints
 
MET 304 Revited joints
MET 304 Revited jointsMET 304 Revited joints
MET 304 Revited joints
 
Compression member
Compression memberCompression member
Compression member
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concrete
 
SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM
 
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
 
Roof bar design
Roof bar designRoof bar design
Roof bar design
 
singly-reinforced-beam.ppt
singly-reinforced-beam.pptsingly-reinforced-beam.ppt
singly-reinforced-beam.ppt
 
Unit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptxUnit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptx
 
Materiaalkunde_1_slides_chapter5.pdf
Materiaalkunde_1_slides_chapter5.pdfMateriaalkunde_1_slides_chapter5.pdf
Materiaalkunde_1_slides_chapter5.pdf
 
Fatigue behavior of welded steel
Fatigue behavior of welded steelFatigue behavior of welded steel
Fatigue behavior of welded steel
 
Design of SR Framed str beam.ppt
Design of SR Framed str beam.pptDesign of SR Framed str beam.ppt
Design of SR Framed str beam.ppt
 

More from CORE-Materials

More from CORE-Materials (20)

Drawing Processes
Drawing ProcessesDrawing Processes
Drawing Processes
 
Testing Techniques for Composite Materials
Testing Techniques for Composite MaterialsTesting Techniques for Composite Materials
Testing Techniques for Composite Materials
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming Techniques
 
The role of technology in sporting performance
The role of technology in sporting performanceThe role of technology in sporting performance
The role of technology in sporting performance
 
Chemical analysis in the electron microscope
Chemical analysis in the electron microscopeChemical analysis in the electron microscope
Chemical analysis in the electron microscope
 
The scanning electron microscope
The scanning electron microscopeThe scanning electron microscope
The scanning electron microscope
 
The transmission electron microscope
The transmission electron microscopeThe transmission electron microscope
The transmission electron microscope
 
Electron diffraction
Electron diffractionElectron diffraction
Electron diffraction
 
Electrons and their interaction with the specimen
Electrons and their interaction with the specimenElectrons and their interaction with the specimen
Electrons and their interaction with the specimen
 
Electron microscopy and other techniques
Electron microscopy and other techniquesElectron microscopy and other techniques
Electron microscopy and other techniques
 
Microscopy with light and electrons
Microscopy with light and electronsMicroscopy with light and electrons
Microscopy with light and electrons
 
Durability of Materials
Durability of MaterialsDurability of Materials
Durability of Materials
 
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumTALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on Aluminium
 
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumTALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of Aluminium
 
TALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsTALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion Coatings
 
TALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumTALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of Aluminium
 
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumTALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
 
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsTALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
 

Recently uploaded

Recently uploaded (20)

Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health Education
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 

TALAT Lecture 2301: Design of Members Example 9.4: Beam-column with cross weld

  • 1. TALAT Lecture 2301 Design of Members Axial force and bending moment Example 9.4 : Beam-column with cross weld 7 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 9.4 1
  • 2. Example 9.4. Beam-column with cross weld The beam-column is subject to an eccentric axial force with same eccentricity at both ends. The beam is prevente from warping at the ends by rigid rectangular hollow beams. These beams are simply supported at the load point and D. The structure is a text beam. There is a welded joint a a section xsw from the support A. t Dimensions and material properties Section height: h 100 . mm Flange depth: b 49.9 . mm Web thickness: tw 4.88 . mm Flange thickness: tf 4.97 . mm Overall length: l beam 1201 . mm Cross beams: bb 140 . mm Support rb 30 . mm Eccentricity exc 200 . mm Location of cross weld x sw 170 . mm Alloy: EN AW-6082 T6 heat_treated 1 (if heat-treated then 1 else 0) Note: Values from tests ! f 0.2 311 . MPa f haz 223 . MPa [1] (5.4), (5.5) f o f 0.2 fa f haz E 70000 . MPa G 27000 . MPa [1] (5.6) Partial safety factors: γ M11.10 γ M2 1.25 Inner radius: r 0 . mm Web height: bw h 2 .t f 2 .r b w = 90 mm TALAT 2301 – Example 9.4 2
  • 3. Moment and force Axial force (compression) N Ed 17 . kN Bending moment at the ends M y.Ed N Ed . exc M y.Ed = 3.4 kNm S.I. units: kN 1000 . newton kNm kN . m MPa 1000000 . Pa Classification of the cross section (Detail calculations omitted) y-y-axis bending class y 3 z-z-axis bending class z 3 axial force class c 3 Cross weld [1] 5.5 HAZ softening at a sectionx sw = 170 mm from the column end [1] Table 5.2 ρ haz 0.65 In this example use value from tests f haz = 223 MPa f haz . γ M2 f haz . γ M2 which means ρ haz ρ haz 0.815 = fu f u = 311 MPa f o . γ M1 ρ haz . γ M1 Design resistance, y-y -axis bending [1] 5.6.1 W Elastic modulus of the gross cross section el: 2 .b .t f 2 .t f .t w 2 Ag h A g = 935.499 mm 1. . 3 tw . h 2 .t f I g = 1.418 . 10 mm 3 6 4 Ig bh b 12 I g .2 W el = 2.836 . 10 mm 4 3 W el h [1] Tab. 5.3 [1] (5.15) Shape factor α for class 3 cross-section, say α y 1 f o . α y . W el M y.Rd [1] (5.14) M Design moment of resistance of the cross section c,Rd γ M1 M y.Rd = 8 kNm Design resistance, z-z-axis bending Cross section class class z = 3 t f .b 3 2. I z = 1.029 . 10 mm 5 4 Gross cross section: Iz 12 I z.2 W z = 4.125 . 10 mm 3 3 Section module: Wz b Shape factor: α z 1 f o .α z.W z Bending resistance: M z.Rd M z.Rd = 1.166 kNm γ M1 TALAT 2301 – Example 9.4 3
  • 4. Axial force resistance, y-y buckling [1] 5.8.4 Cross section area of gross cross sectionAgr b .h tw . h 2 .t f 2 A gr b A gr = 935.499 mm Cross section area of class 3 cross section A eff A gr A eff Effective cross section factor η η =1 A gr Second moment of area of gross cross section: 2 2. . 3 h tf 1. 2 .b .t f . 2 .t f .t w I y = 1.418 . 10 mm 3 6 4 Iy btf h 12 2 12 [1] Table 5.7 Effective buckling length l yc l beam rb l yc = 1.231 m π .E .I y 2 Buckling load N cr N cr = 646.436 kN 2 l yc A gr . η . f o [1] 5.8.4.1 Slenderness parameter λ y λ y 0.671 = N cr [1] Table 5.6 α if ( heat_treated 1 , 0.2 , 0.32 ) α = 0.2 λ o if ( heat_treated 1 , 0.1 , 0 ) λ o 0.1 = 0.5 . 1 α . λ y 2 φ λ o λ y φ = 0.782 1 χ y χ y = 0.844 2 2 φ φ λ y [1] Table 5.5 Symmetric profile k1 1 [1] Table 5.5 No longitudinal welds k2 1 fo Axial force resistance N y.Rd χ .y . k 1 . k 2 . η .A gr N y.Rd = 223.4 kN γ M1 TALAT 2301 – Example 9.4 4
  • 5. Axial force resistance, z-z axis buckling Effective buckling length l zc l beam rb l zc = 1.231 m π .E .I z 2 Buckling load N cr N cr = 46.9 kN 2 l zc A gr . η . f o [1] 5.8.4.1 Slenderness parameter λ z λ z 2.49 = N cr 0.5 . 1 α . λ z 2 [1] 5.8.4.1 φ λ o λ z φ = 3.839 1 χ z χ z = 0.148 2 2 φ φ λ z fo [1] 5.8.4.1 Axial load resistance N z.Rd χ .z . k 1 . k 2 . η .A gr N z.Rd = 39.118 kN γ M1 fo and without column buckling N Rd η. .A gr N Rd = 264.5 kN γ M1 Flexural buckling of beam-column x sw [1] 5.8.4.1 Cross weld from column end x sw = 170 mm l yc = 1.231 m = 0.138 l yc [1] 5.9.4.5 HAZ reduction factors, see above ρ haz 0.815 = fu γ M1 [1] (5.51) ω 0 ρ haz . . ω 0 if ω 0 > 1 , 1 , ω 0 ω 0 0.717 = γ M2 f o ω 0 [1] (5.49) ω x ω x 0.788 = π . x sw χ y 1 χ y . sin l yc Exponents in interaction formulae 2 [1] (5.42c) ξ 0 α y ξ 0 if ξ 0 < 1 , 1 , ξ 0 ξ 0 1 = [1] 5.9.4.2 ξ yc ξ 0 . χ y ξ yc if ξ yc < 0.8 , 0.8 , ξ yc ξ yc 0.844 = Flexural buckling check N Ed = 17 kN M y.Ed = 3.4 kNm ξ yc N Ed M y.Ed [1] 5.4.4 Uy U y = 0.73 χ .y x . N Rd ω ω 0 . M y.Rd TALAT 2301 – Example 9.4 5
  • 6. Lateral-torsional buckling t f .I z 2 h I w = 2.324 . 10 mm 8 6 [1] Annex J Warping constant: Iw Figure J.2 4 2 .b .t 3 h .t 3 f w I t = 7.958 . 10 mm 3 4 Torsional constant: It 3 2 .b b W y = 2.836 . 10 mm 4 3 Lateral buckling length L l beam Wy W el Constant bending moment,warping prevented at the ends [1] H.1.2(2) C1, k and kw constants C1 1 k 1 kw 0.5 C 1 .π .E .I z ( k .L ) .G .I t 2 2 2 Iw . k . [1] H.1.3(2) M cr L = 921 mm M cr = 9.026 kNm ( k .L ) 2. E .I z 2 kw Iz π α y .W y .f o [1] 5.6.6.3(3) λ LT λ LT 0.988 = M cr [1] 5.6.6.3(2) α LT if class z > 2 , 0.2 , 0.1 α LT 0.2 = λ 0LT if class z > 2 , 0.4 , 0.6 λ 0LT 0.4 = φ LT 0.5 . 1 α LT . λ LT 2 [1] 5.6.6.3(1) λ 0LT λ LT φ LT 1.047 = 1 χ LT χ LT = 0.718 2 2 φ LT φ LT λ LT l beam Check three sections i 1 .. 3 xs 0 . mm xs x sw xs rb 1 2 3 2 T xs l zc l beam 2 .r b = ( 0 0.135 0.5 ) l zc HAZ reduction factors (ω0 = 1 except at x s ) 2 fu γ M1 [1] (5.51) ω 0 ρ haz . . ω 0 if ω 0 > 1 , 1 , ω 0 i γ M2 fo i i i T Weld at section i = 2 ω 0 if i 2 , ω 0 , 1 ω 0 = ( 1 0.717 1 ) i i TALAT 2301 – Example 9.4 6
  • 7. ω 0 T [1] (5.49) ω x ω x = ( 6.76 1.44 1 ) or (5.52) π .x s χ z 1 χ z . sin l zc ω 0 T [1] (5.50) ω xLT ω xLT = ( 1.39 0.86 1 ) or (5.53) π .x s χ LT 1 χ LT . sin l zc η 0 α z .α y 2 2 [1] (5.42a) η 0 if η 0 < 1 , 1 , if η 0 > 2 , 2 , η 0 η 0 1 = 2 [1] (5.42b) γ 0 α z γ 0 if γ 0 < 1 , 1 , if γ 0> 2 , 2 , γ 0 γ 01 = 2 [1] (5.42c) ξ 0 α y ξ 0 if ξ 0 < 1 , 1 , ξ 0 ξ 0 1 = [1] 5.9.4.3 η c η 0 .χ z η c if η c < 0.8 , 0.8 , η c χ y 0.844 = η c 0.8 = γ c γ 0 χ z = 0.148 γ c1 = ξ zc ξ 0 . χ z ξ zc if ξ zc < 0.8 , 0.8 , ξ zc ξ zc 0.8 = Lateral-torsional buckling of beam-column M z.Ed 0 . kNm [1] (5.43) ηc γc ξ zc N Ed M y.Ed M z.Ed T U LT U LT = ( 0.535 1.071 1.104 ) χ .z x . N Rd ω χ LT . ω xLT . M y.Rd ω 0 . M z.Rd Max utilisation, lateral-torsional buckling U z.max max U LT U z.max = 1.104 Max utilisation, flexural buckling U y = 0.73 Comment: U z.max = 1.104 mean that the test failure load exceeded the characteristic strength with 10.4% TALAT 2301 – Example 9.4 7