SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Date

Calc. by

Chk'd by

Date

App'd by

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

RC BEAM ANALYSIS & DESIGN (EN1992-1)
In accordance with recommended values

Load Envelope - Com bination 1
36.192

0.0
mm
A

8000
1

B

8000
2

C

8000
2

C

Load Envelope - Com bination 2
36.192

0.0
mm
A

8000
1

B

Date
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Date

Calc. by

Chk'd by

Date

App'd by

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Load Envelope - Com bination 3
36.192

0.0
mm
A

8000
1

B

8000
2

C

Date
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Date

App'd by

Date

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Support conditions
Support A

Vertically restrained
Rotationally restrained

Support B

Vertically restrained
Rotationally free

Support C

Vertically restrained
Rotationally restrained

Applied loading
Permanent self weight of beam × 1
Permanent full UDL 10 kN/m
Variable full UDL 5 kN/m
Load combinations
Load combination 1

Support A

Permanent × 1.35
Variable × 1.50

Span 1

Permanent × 1.35
Variable × 1.50

Support B

Permanent × 1.35

Span 2

Permanent × 1.35

Variable × 1.50
Variable × 1.50
Support C

Permanent × 1.35
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Date

App'd by

Date

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Variable × 1.50
Load combination 2

Support A

Permanent × 1.35
Variable × 1.50

Span 1

Permanent × 1.35
Variable × 1.50

Support B

Permanent × 1.35

Span 2

Permanent × 1.35

Variable × 1.50
Variable × 0.00
Support C

Permanent × 1.35
Variable × 0.00

Load combination 3

Support A

Permanent × 1.35

Span 1

Permanent × 1.35

Variable × 0.00
Variable × 0.00
Support B

Permanent × 1.35
Variable × 1.50

Span 2

Permanent × 1.35

Support C

Permanent × 1.35

Variable × 1.50
Variable × 1.50
Analysis results
Maximum moment support A;

MA_max = -203 kNm;

MA_red = -203 kNm;

Maximum moment span 1 at 4104 mm;

Ms1_max = 102 kNm;

Ms1_red = 102 kNm;

Maximum moment support B;

MB_max = -193 kNm;

MB_red = -193 kNm;

Maximum moment span 2 at 3896 mm;

Ms2_max = 102 kNm;

Ms2_red = 102 kNm;

Maximum moment support C;

MC_max = -203 kNm;

MC_red = -203 kNm;

Maximum shear support A;

VA_max = 149 kN;

VA_red = 142 kN

Maximum shear support A span 1 at 843 mm;

VA_s1_max = 118 kN;

VA_s1_red = 118 kN

Maximum shear support B;

VB_max = -145 kN;

VB_red = -145 kN

Maximum shear support B span 1 at 7158 mm;

VB_s1_max = -114 kN;

VB_s1_red = -114 kN

Maximum shear support B span 2 at 843 mm;

VB_s2_max = 114 kN;

VB_s2_red = 114 kN

Maximum shear support C;

VC_max = -149 kN;

VC_red = -149 kN

Maximum shear support C span 2 at 7158 mm;

VC_s2_max = -118 kN;

VC_s2_red = -118 kN

Maximum reaction at support A;

RA = 149 kN

Unfactored permanent load reaction at support A;

RA_Permanent = 85 kN
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Date

App'd by

Date

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Unfactored variable load reaction at support A;

RA_Variable = 20 kN

Maximum reaction at support B;

RB = 290 kN

Unfactored permanent load reaction at support B;

RB_Permanent = 170 kN

Unfactored variable load reaction at support B;

RB_Variable = 40 kN

Maximum reaction at support C;

RC = 149 kN

Unfactored permanent load reaction at support C;

RC_Permanent = 85 kN

Unfactored variable load reaction at support C;

RC_Variable = 20 kN

Rectangular section details
Section width;

b = 500 mm

Section depth;

h = 900 mm

Concrete details (Table 3.1 - Strength and deformation characteristics for concrete)
Concrete strength class;

C40/50

Characteristic compressive cylinder strength;

fck = 40 N/mm

Characteristic compressive cube strength;

fck,cube = 50 N/mm

Mean value of compressive cylinder strength;

fcm = fck + 8 N/mm = 48 N/mm

Mean value of axial tensile strength;

fctm = 0.3 N/mm × (fck/ 1 N/mm )

Secant modulus of elasticity of concrete;

Ecm = 22 kN/mm × [fcm/10 N/mm ]

Partial factor for concrete (Table 2.1N);

γC = 1.50

Compressive strength coefficient (cl.3.1.6(1));

αcc = 1.00

Design compressive concrete strength (exp.3.15);

fcd = αcc × fck / γC = 26.7 N/mm

Maximum aggregate size;

hagg = 20 mm

2
2
2

2

2

2 2/3

2

2 0.3

Reinforcement details
Characteristic yield strength of reinforcement;

fyk = 500 N/mm

2

Partial factor for reinforcing steel (Table 2.1N);

γS = 1.15

Design yield strength of reinforcement;

fyd = fyk / γS = 435 N/mm

= 3.5 N/mm

2

2

2

= 35220 N/mm

2
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/04/2013

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Nominal cover to reinforcement
Nominal cover to top reinforcement;

cnom_t = 35 mm

Nominal cover to bottom reinforcement;

cnom_b = 35 mm

Nominal cover to side reinforcement;

cnom_s = 35 mm

Support A

Rectangular section in flexure (Section 6.1)
Minimum moment factor (cl.9.2.1.2(1));

β1 = 0.15

Design bending moment;

M = max(abs(MA_red), β1 × abs(Ms1_red)) = 203 kNm

Depth to tension reinforcement;

d = h - cnom_t - φv - φtop / 2 = 843 mm

Percentage redistribution;

mrA = 0 %

Redistribution ratio;

δ = min(1 - mrA, 1) = 1.000
2

K = M / (b × d × fck) = 0.014
2

K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196
K' > K - No compression reinforcement is required
0.5

Lever arm;

z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) = 800 mm

Depth of neutral axis;

x = 2.5 × (d - z) = 105 mm

Area of tension reinforcement required;

As,req = M / (fyd × z) = 583 mm

2

Tension reinforcement provided;

4 × 25φ bars

Area of tension reinforcement provided;

As,prov = 1963 mm

Minimum area of reinforcement (exp.9.1N);

As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm

Maximum area of reinforcement (cl.9.2.1.1(3));

2

As,max = 0.04 × b × h = 18000 mm

2

PASS - Area of reinforcement provided is greater than area of reinforcement required
Minimum bottom reinforcement at supports
Minimum reinforcement factor (cl.9.2.1.4(1));

β2 = 0.25

Area of reinforcement to adjacent span;

As,span = 1963 mm

2

2
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Date

App'd by

Date

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Minimum bottom reinforcement to support;

As2,min = β2 × As,span = 491 mm

Bottom reinforcement provided;

2 × 20φ bars

Area of bottom reinforcement provided;

As2,prov = 628 mm

2

2

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required
Rectangular section in shear (Section 6.2)
Design shear force at support A;

VEd,max = abs(max(VA_max, VA_red)) = 149 kN

Maximum design shear force (exp.6.9);

VRd,max = b × z × v1 × fcd / (cot(θ) + tan(θ)) = 1855 kN

PASS - Design shear force at support is less than maximum design shear force
Design shear force span 1 at 843 mm;

VEd = max(VA_s1_max, VA_s1_red) = 118 kN

Design shear stress;

vEd = VEd / (b × z) = 0.294 N/mm

Strength reduction factor (cl.6.2.3(3));

v1 = 0.6 × [1 - fck / 250 N/mm ] = 0.504

Compression chord coefficient (cl.6.2.3(3));

αcw = 1.00

2

2

Angle of concrete compression strut (cl.6.2.3);
θ = min(max(0.5 × Asin[min(2 × vEd / (αcw × fcd × v1),1)], 21.8 deg), 45deg) = 21.8 deg
2

Area of shear reinforcement required (exp.6.13);

Asv,req = vEd × b / (fyd × cot(θ)) = 135 mm /m

Shear reinforcement provided;

2 × 10φ legs at 300 c/c

Area of shear reinforcement provided;

Asv,prov = 524 mm /m

Minimum area of shear reinforcement (exp.9.5N);

Asv,min = 0.08 N/mm × b × (fck / 1 N/mm )

2

2

2 0.5

/ fyk =

2

506 mm /m
PASS - Area of shear reinforcement provided exceeds minimum required
Maximum longitudinal spacing (exp.9.6N);

svl,max = 0.75 × d = 632 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Crack control (Section 7.3)
Maximum crack width;

wk = 0.3 mm

Mean value of concrete tensile strength;

fct,eff = fctm = 3.5 N/mm

Stress distribution coefficient;

kc = 0.4

Non-uniform self-equilibrating stress coefficient;

k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500

2

mm, 0.65), 1) = 0.86
Depth of tensile zone;

hcr = h - x = 795 mm

Area of concrete in the tensile zone;

Act = hcr × b = 397344 mm

Adjusted maximum bar diameter (exp.7.6N);

φmod = φtop × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc ×

2

2

hcr) = 7 mm
Maximum adjusted bar diameter;

φmax = 32 mm

Tension bar spacing;

sbar = (b - 2 × (cnom_s + φv) - φtop) / (Ntop - 1) = 128 mm

Maximum tension bar spacing;

smax = 300 mm

Minimum allowable bar spacing;

smin = max(φtop, hagg + 5 mm, 20 mm) + φtop = 50 mm

Maximum stress permitted (Tables 7.2N & 7.3N);

σs = 280 N/mm

2

Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm

2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control
PASS - Actual bar spacing exceeds minimum allowable
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/04/2013

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Mid span 1

Rectangular section in flexure (Section 6.1) - Positive midspan moment
Design bending moment;

M = abs(Ms1_red) = 102 kNm

Depth to tension reinforcement;

d = h - cnom_b - φv - φbot / 2 = 843 mm

Percentage redistribution;

mrs1 = Ms1_red / Ms1_max - 1 = 0 %

Redistribution ratio;

δ = min(1 - mrs1, 1) = 1.000
2

K = M / (b × d × fck) = 0.007
2

K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196
K' > K - No compression reinforcement is required
0.5

Lever arm;

z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) = 800 mm

Depth of neutral axis;

x = 2.5 × (d - z) = 105 mm

Area of tension reinforcement required;

As,req = M / (fyd × z) = 292 mm

2

Tension reinforcement provided;

4 × 25φ bars

Area of tension reinforcement provided;

As,prov = 1963 mm

Minimum area of reinforcement (exp.9.1N);

As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm

Maximum area of reinforcement (cl.9.2.1.1(3));

2

As,max = 0.04 × b × h = 18000 mm

2

2

PASS - Area of reinforcement provided is greater than area of reinforcement required
Rectangular section in shear (Section 6.2)
Shear reinforcement provided;

2 × 10φ legs at 300 c/c

Area of shear reinforcement provided;

Asv,prov = 524 mm /m

Minimum area of shear reinforcement (exp.9.5N);

Asv,min = 0.08 N/mm × b × (fck / 1 N/mm )

2

2

2 0.5

2

/ fyk = 506 mm /m

PASS - Area of shear reinforcement provided exceeds minimum required
Maximum longitudinal spacing (exp.9.6N);

svl,max = 0.75 × d = 632 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Design shear resistance (assuming cot(θ) is 2.5);

Vprov = 2.5 × Asv,prov × z × fyd = 455.5 kN

Shear links provided valid between 0 mm and 8000 mm with tension reinforcement of 1963 mm

2
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Date

App'd by

Date

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Crack control (Section 7.3)
Maximum crack width;

wk = 0.3 mm

Mean value of concrete tensile strength;

fct,eff = fctm = 3.5 N/mm

Stress distribution coefficient;

kc = 0.4

Non-uniform self-equilibrating stress coefficient;

k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500

2

mm, 0.65), 1) = 0.86
Depth of tensile zone;

hcr = h - x = 795 mm

Area of concrete in the tensile zone;

Act = hcr × b = 397344 mm

2

2

Adjusted maximum bar diameter (exp.7.6N);

φmod = φbot × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc ×

hcr) = 7 mm
Maximum adjusted bar diameter;

φmax = 32 mm

Tension bar spacing;

sbar = (b - 2 × (cnom_s + φv) - φbot) / (Nbot - 1) = 128 mm

Maximum tension bar spacing;

smax = 300 mm

Minimum allowable bar spacing;

smin = max(φbot, hagg + 5 mm, 20 mm) + φbot = 50 mm

Maximum stress permitted (Tables 7.2N & 7.3N);

σs = 280 N/mm

2

Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm

2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control
PASS - Actual bar spacing exceeds minimum allowable
Deflection control (Section 7.4)
2 0.5

Reference reinforcement ratio;

ρm0 = (fck / 1 N/mm )

Required tension reinforcement ratio;

ρm = As,req / (b × d) = 0.001

/ 1000 = 0.006

Required compression reinforcement ratio;

ρ'm = As2,req / (b × d) = 0.000

Structural system factor (Table 7.4N);

Kb = 1.3

Basic allowable span to depth ratio (7.16a);

span_to_depthbasic = Kb × [11 + 1.5 × (fck / 1
2 0.5

N/mm )

2 0.5

× ρm0 / ρm + 3.2 × (fck / 1 N/mm )

× (ρm0

1.5

/ ρm - 1) ] = 735.018
2

Reinforcement factor (exp.7.17);

Ks = As,prov × 500 N/mm / (As,req × fyk) = 6.718

Flange width factor;

F1 = 1.000

Long span supporting brittle partition factor;

F2 = 1.000

Allowable span to depth ratio;

span_to_depthallow = span_to_depthbasic × Ks × F1 ×
F2 = 4937.972

Actual span to depth ratio;

span_to_depthactual = Ls1 / d = 9.496
PASS - Actual span to depth ratio is within the allowable limit

Support B
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/04/2013

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Rectangular section in flexure (Section 6.1)
Design bending moment;

M = abs(MB_red) = 193 kNm

Depth to tension reinforcement;

d = h - cnom_t - φv - φtop / 2 = 843 mm

Percentage redistribution;

mrB = 0 %

Redistribution ratio;

δ = min(1 - mrB, 1) = 1.000
2

K = M / (b × d × fck) = 0.014
2

K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196
K' > K - No compression reinforcement is required
0.5

Lever arm;

z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) =

800 mm
Depth of neutral axis;

x = 2.5 × (d - z) = 105 mm

Area of tension reinforcement required;

As,req = M / (fyd × z) = 555 mm

2

Tension reinforcement provided;

4 × 25φ bars

Area of tension reinforcement provided;

As,prov = 1963 mm

Minimum area of reinforcement (exp.9.1N);

As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769

mm

2

2

Maximum area of reinforcement (cl.9.2.1.1(3));

As,max = 0.04 × b × h = 18000 mm

2

PASS - Area of reinforcement provided is greater than area of reinforcement required
Rectangular section in shear (Section 6.2)
Design shear force at support B;

VEd,max = abs(max(VB_max, VB_red)) = 145 kN

Maximum design shear force (exp.6.9);

VRd,max = b × z × v1 × fcd / (cot(θ) + tan(θ)) = 1855

kN
PASS - Design shear force at support is less than maximum design shear force
Design shear force span 1 at 7158 mm;

VEd = abs(min(VB_s1_max, VB_s1_red)) = 114 kN

Design shear stress;

vEd = VEd / (b × z) = 0.285 N/mm

Strength reduction factor (cl.6.2.3(3));

v1 = 0.6 × [1 - fck / 250 N/mm ] = 0.504

2

2
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Date

App'd by

Date

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Compression chord coefficient (cl.6.2.3(3));

αcw = 1.00

Angle of concrete compression strut (cl.6.2.3);
θ = min(max(0.5 × Asin[min(2 × vEd / (αcw × fcd × v1),1)], 21.8 deg), 45deg) = 21.8 deg
2

Area of shear reinforcement required (exp.6.13);

Asv,req = vEd × b / (fyd × cot(θ)) = 131 mm /m

Shear reinforcement provided;

2 × 10φ legs at 300 c/c

Area of shear reinforcement provided;

Asv,prov = 524 mm /m

Minimum area of shear reinforcement (exp.9.5N);

Asv,min = 0.08 N/mm × b × (fck / 1 N/mm )

2

2

2 0.5

/ fyk =

2

506 mm /m
PASS - Area of shear reinforcement provided exceeds minimum required
Maximum longitudinal spacing (exp.9.6N);

svl,max = 0.75 × d = 632 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Design shear force span 2 at 843 mm;

VEd = max(VB_s2_max, VB_s2_red) = 114 kN

Design shear stress;

vEd = VEd / (b × z) = 0.285 N/mm

Strength reduction factor (cl.6.2.3(3));

v1 = 0.6 × [1 - fck / 250 N/mm ] = 0.504

Compression chord coefficient (cl.6.2.3(3));

αcw = 1.00

2

2

Angle of concrete compression strut (cl.6.2.3);
θ = min(max(0.5 × Asin[min(2 × vEd / (αcw × fcd × v1),1)], 21.8 deg), 45deg) = 21.8 deg
2

Area of shear reinforcement required (exp.6.13);

Asv,req = vEd × b / (fyd × cot(θ)) = 131 mm /m

Shear reinforcement provided;

2 × 10φ legs at 300 c/c

Area of shear reinforcement provided;

Asv,prov = 524 mm /m

Minimum area of shear reinforcement (exp.9.5N);

Asv,min = 0.08 N/mm × b × (fck / 1 N/mm )

2

2

2 0.5

/ fyk =

2

506 mm /m
PASS - Area of shear reinforcement provided exceeds minimum required
Maximum longitudinal spacing (exp.9.6N);

svl,max = 0.75 × d = 632 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Crack control (Section 7.3)
Maximum crack width;

wk = 0.3 mm

Mean value of concrete tensile strength;

fct,eff = fctm = 3.5 N/mm

Stress distribution coefficient;

kc = 0.4

Non-uniform self-equilibrating stress coefficient;

k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500

2

mm, 0.65), 1) = 0.86
Depth of tensile zone;

hcr = h - x = 795 mm

Area of concrete in the tensile zone;

Act = hcr × b = 397344 mm

Adjusted maximum bar diameter (exp.7.6N);

φmod = φtop × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc ×

2

2

hcr) = 7 mm
Maximum adjusted bar diameter;

φmax = 32 mm

Tension bar spacing;

sbar = (b - 2 × (cnom_s + φv) - φtop) / (Ntop - 1) = 128 mm

Maximum tension bar spacing;

smax = 300 mm

Minimum allowable bar spacing;

smin = max(φtop, hagg + 5 mm, 20 mm) + φtop = 50 mm

Maximum stress permitted (Tables 7.2N & 7.3N);

σs = 280 N/mm

2

Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm

2
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/04/2013

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

PASS - Area of tension reinforcement provided exceeds minimum required for crack control
PASS - Actual bar spacing exceeds minimum allowable
Mid span 2

Rectangular section in flexure (Section 6.1) - Positive midspan moment
Design bending moment;

M = abs(Ms2_red) = 102 kNm

Depth to tension reinforcement;

d = h - cnom_b - φv - φbot / 2 = 843 mm

Percentage redistribution;

mrs2 = Ms2_red / Ms2_max - 1 = 0 %

Redistribution ratio;

δ = min(1 - mrs2, 1) = 1.000
2

K = M / (b × d × fck) = 0.007
2

K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196
K' > K - No compression reinforcement is required
0.5

Lever arm;

z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) =

800 mm
Depth of neutral axis;

x = 2.5 × (d - z) = 105 mm

Area of tension reinforcement required;

As,req = M / (fyd × z) = 292 mm

2

Tension reinforcement provided;

4 × 25φ bars

Area of tension reinforcement provided;

As,prov = 1963 mm

Minimum area of reinforcement (exp.9.1N);

As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm

Maximum area of reinforcement (cl.9.2.1.1(3));

As,max = 0.04 × b × h = 18000 mm

2

2

PASS - Area of reinforcement provided is greater than area of reinforcement required
Rectangular section in shear (Section 6.2)
Shear reinforcement provided;

2 × 10φ legs at 300 c/c

Area of shear reinforcement provided;

Asv,prov = 524 mm /m

Minimum area of shear reinforcement (exp.9.5N);

Asv,min = 0.08 N/mm × b × (fck / 1 N/mm )

2

2

2 0.5

/ fyk =

2

506 mm /m
PASS - Area of shear reinforcement provided exceeds minimum required

2
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Date

App'd by

Date

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Maximum longitudinal spacing (exp.9.6N);

svl,max = 0.75 × d = 632 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Design shear resistance (assuming cot(θ) is 2.5);

Vprov = 2.5 × Asv,prov × z × fyd = 455.5 kN

Shear links provided valid between 0 mm and 8000 mm with tension reinforcement of 1963 mm

2

Crack control (Section 7.3)
Maximum crack width;

wk = 0.3 mm

Mean value of concrete tensile strength;

fct,eff = fctm = 3.5 N/mm

Stress distribution coefficient;

kc = 0.4

Non-uniform self-equilibrating stress coefficient;

k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500

2

mm, 0.65), 1) = 0.86
Depth of tensile zone;

hcr = h - x = 795 mm

Area of concrete in the tensile zone;

Act = hcr × b = 397344 mm

Adjusted maximum bar diameter (exp.7.6N);

φmod = φbot × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc ×

2

2

hcr) = 7 mm
Maximum adjusted bar diameter;

φmax = 32 mm

Tension bar spacing;

sbar = (b - 2 × (cnom_s + φv) - φbot) / (Nbot - 1) = 128 mm

Maximum tension bar spacing;

smax = 300 mm

Minimum allowable bar spacing;

smin = max(φbot, hagg + 5 mm, 20 mm) + φbot = 50 mm

Maximum stress permitted (Tables 7.2N & 7.3N);

σs = 280 N/mm

2

Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm

2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control
PASS - Actual bar spacing exceeds minimum allowable
Deflection control (Section 7.4)
2 0.5

Reference reinforcement ratio;

ρm0 = (fck / 1 N/mm )

Required tension reinforcement ratio;

ρm = As,req / (b × d) = 0.001

Required compression reinforcement ratio;

ρ'm = As2,req / (b × d) = 0.000

/ 1000 = 0.006

Structural system factor (Table 7.4N);

Kb = 1.3

Basic allowable span to depth ratio (7.16a);

span_to_depthbasic = Kb × [11 + 1.5 × (fck / 1
2 0.5

N/mm )

2 0.5

× ρm0 / ρm + 3.2 × (fck / 1 N/mm )

× (ρm0

1.5

/ ρm - 1) ] = 735.018
2

Reinforcement factor (exp.7.17);

Ks = As,prov × 500 N/mm / (As,req × fyk) = 6.718

Flange width factor;

F1 = 1.000

Long span supporting brittle partition factor;

F2 = 1.000

Allowable span to depth ratio;

span_to_depthallow = span_to_depthbasic × Ks × F1 ×
F2 = 4937.972

Actual span to depth ratio;

span_to_depthactual = Ls2 / d = 9.496
PASS - Actual span to depth ratio is within the allowable limit

Support C
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/04/2013

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Rectangular section in flexure (Section 6.1)
Minimum moment factor (cl.9.2.1.2(1));

β1 = 0.15

Design bending moment;

M = max(abs(MC_red), β1 × abs(Ms2_red)) = 203 kNm

Depth to tension reinforcement;

d = h - cnom_t - φv - φtop / 2 = 843 mm

Percentage redistribution;

mrC = 0 %

Redistribution ratio;

δ = min(1 - mrC, 1) = 1.000
2

K = M / (b × d × fck) = 0.014
2

K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196
K' > K - No compression reinforcement is required
0.5

Lever arm;

z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) =

800 mm
Depth of neutral axis;

x = 2.5 × (d - z) = 105 mm

Area of tension reinforcement required;

As,req = M / (fyd × z) = 583 mm

Tension reinforcement provided;

4 × 25φ bars

Area of tension reinforcement provided;

As,prov = 1963 mm

Minimum area of reinforcement (exp.9.1N);

As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm

Maximum area of reinforcement (cl.9.2.1.1(3));

As,max = 0.04 × b × h = 18000 mm

2

2

2

PASS - Area of reinforcement provided is greater than area of reinforcement required
Minimum bottom reinforcement at supports
Minimum reinforcement factor (cl.9.2.1.4(1));

β2 = 0.25

Area of reinforcement to adjacent span;

As,span = 1963 mm

Minimum bottom reinforcement to support;

As2,min = β2 × As,span = 491 mm

Bottom reinforcement provided;

2 × 20φ bars

Area of bottom reinforcement provided;

As2,prov = 628 mm

2

2

2

2
Project

Job Ref.

RC Beam Analysis & Design Example (EN1992-1)
Sheet no./rev.

Section

1

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Chk'd by

Date

App'd by

Date

-

Dr.C.Sachpazis 23/04/2013

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required
Rectangular section in shear (Section 6.2)
Design shear force at support C;

VEd,max = abs(max(VC_max, VC_red)) = 149 kN

Maximum design shear force (exp.6.9);

VRd,max = b × z × v1 × fcd / (cot(θ) + tan(θ)) = 1855 kN

PASS - Design shear force at support is less than maximum design shear force
Design shear force span 2 at 7158 mm;

VEd = abs(min(VC_s2_max, VC_s2_red)) = 118 kN

Design shear stress;

vEd = VEd / (b × z) = 0.294 N/mm

Strength reduction factor (cl.6.2.3(3));

v1 = 0.6 × [1 - fck / 250 N/mm ] = 0.504

Compression chord coefficient (cl.6.2.3(3));

αcw = 1.00

2

2

Angle of concrete compression strut (cl.6.2.3);
θ = min(max(0.5 × Asin[min(2 × vEd / (αcw × fcd × v1),1)], 21.8 deg), 45deg) = 21.8 deg
2

Area of shear reinforcement required (exp.6.13);

Asv,req = vEd × b / (fyd × cot(θ)) = 135 mm /m

Shear reinforcement provided;

2 × 10φ legs at 300 c/c

Area of shear reinforcement provided;

Asv,prov = 524 mm /m

Minimum area of shear reinforcement (exp.9.5N);

Asv,min = 0.08 N/mm × b × (fck / 1 N/mm )

2

2

2 0.5

/ fyk =

2

506 mm /m
PASS - Area of shear reinforcement provided exceeds minimum required
Maximum longitudinal spacing (exp.9.6N);

svl,max = 0.75 × d = 632 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Crack control (Section 7.3)
Maximum crack width;

wk = 0.3 mm

Mean value of concrete tensile strength;

fct,eff = fctm = 3.5 N/mm

Stress distribution coefficient;

kc = 0.4

Non-uniform self-equilibrating stress coefficient;

k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500

2

mm, 0.65), 1) = 0.86
Depth of tensile zone;

hcr = h - x = 795 mm

Area of concrete in the tensile zone;

Act = hcr × b = 397344 mm

Adjusted maximum bar diameter (exp.7.6N);

φmod = φtop × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc ×

2

2

hcr) = 7 mm
Maximum adjusted bar diameter;

φmax = 32 mm

Tension bar spacing;

sbar = (b - 2 × (cnom_s + φv) - φtop) / (Ntop - 1) = 128 mm

Maximum tension bar spacing;

smax = 300 mm

Minimum allowable bar spacing;

smin = max(φtop, hagg + 5 mm, 20 mm) + φtop = 50 mm

Maximum stress permitted (Tables 7.2N & 7.3N);

σs = 280 N/mm

2

Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm

2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control
PASS - Actual bar spacing exceeds minimum allowable

Más contenido relacionado

La actualidad más candente

Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Dr.Costas Sachpazis
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleDr.Costas Sachpazis
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Dr.Costas Sachpazis
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Dr.Costas Sachpazis
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...Dr.Costas Sachpazis
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Dr.Costas Sachpazis
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Dr.Costas Sachpazis
 
Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Dr.Costas Sachpazis
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Dr.Costas Sachpazis
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleDr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Dr.Costas Sachpazis
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Dr.Costas Sachpazis
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Dr.Costas Sachpazis
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Dr.Costas Sachpazis
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Dr.Costas Sachpazis
 

La actualidad más candente (20)

Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall example
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
 

Similar a Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)

Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Dr.Costas Sachpazis
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Dr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Dr.Costas Sachpazis
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Dr.Costas Sachpazis
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Dr.Costas Sachpazis
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleDr.Costas Sachpazis
 
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Dr.Costas Sachpazis
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Dr.Costas Sachpazis
 
Sachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drainSachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drainDr.Costas Sachpazis
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacityDr.Costas Sachpazis
 

Similar a Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3) (13)

Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drainSachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drain
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 

Más de Dr.Costas Sachpazis

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptDr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςDr.Costas Sachpazis
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsDr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςDr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Dr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsDr.Costas Sachpazis
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Dr.Costas Sachpazis
 
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr.Costas Sachpazis
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Dr.Costas Sachpazis
 
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...Dr.Costas Sachpazis
 

Más de Dr.Costas Sachpazis (20)

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
 
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
 
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
 

Último

原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024CristobalHeraud
 
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...Yantram Animation Studio Corporation
 
(办理学位证)约克圣约翰大学毕业证,KCL成绩单原版一比一
(办理学位证)约克圣约翰大学毕业证,KCL成绩单原版一比一(办理学位证)约克圣约翰大学毕业证,KCL成绩单原版一比一
(办理学位证)约克圣约翰大学毕业证,KCL成绩单原版一比一D SSS
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVAAnastasiya Kudinova
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIyuj
 
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full NightCall Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...Rishabh Aryan
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social MediaD SSS
 
韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作7tz4rjpd
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造kbdhl05e
 
Design and Managing Service in the field of tourism and hospitality industry
Design and Managing Service in the field of tourism and hospitality industryDesign and Managing Service in the field of tourism and hospitality industry
Design and Managing Service in the field of tourism and hospitality industryrioverosanniejoy
 
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services DubaiDubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubaikojalkojal131
 
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改yuu sss
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in designnooreen17
 
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一diploma 1
 
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一F La
 

Último (20)

原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
 
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
 
(办理学位证)约克圣约翰大学毕业证,KCL成绩单原版一比一
(办理学位证)约克圣约翰大学毕业证,KCL成绩单原版一比一(办理学位证)约克圣约翰大学毕业证,KCL成绩单原版一比一
(办理学位证)约克圣约翰大学毕业证,KCL成绩单原版一比一
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AI
 
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full NightCall Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media
 
韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造
 
Design and Managing Service in the field of tourism and hospitality industry
Design and Managing Service in the field of tourism and hospitality industryDesign and Managing Service in the field of tourism and hospitality industry
Design and Managing Service in the field of tourism and hospitality industry
 
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services DubaiDubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
 
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in design
 
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
 
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
 

Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)

  • 1. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Date Calc. by Chk'd by Date App'd by - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info RC BEAM ANALYSIS & DESIGN (EN1992-1) In accordance with recommended values Load Envelope - Com bination 1 36.192 0.0 mm A 8000 1 B 8000 2 C 8000 2 C Load Envelope - Com bination 2 36.192 0.0 mm A 8000 1 B Date
  • 2. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Date Calc. by Chk'd by Date App'd by - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Load Envelope - Com bination 3 36.192 0.0 mm A 8000 1 B 8000 2 C Date
  • 3. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Date App'd by Date - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Support conditions Support A Vertically restrained Rotationally restrained Support B Vertically restrained Rotationally free Support C Vertically restrained Rotationally restrained Applied loading Permanent self weight of beam × 1 Permanent full UDL 10 kN/m Variable full UDL 5 kN/m Load combinations Load combination 1 Support A Permanent × 1.35 Variable × 1.50 Span 1 Permanent × 1.35 Variable × 1.50 Support B Permanent × 1.35 Span 2 Permanent × 1.35 Variable × 1.50 Variable × 1.50 Support C Permanent × 1.35
  • 4. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Date App'd by Date - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Variable × 1.50 Load combination 2 Support A Permanent × 1.35 Variable × 1.50 Span 1 Permanent × 1.35 Variable × 1.50 Support B Permanent × 1.35 Span 2 Permanent × 1.35 Variable × 1.50 Variable × 0.00 Support C Permanent × 1.35 Variable × 0.00 Load combination 3 Support A Permanent × 1.35 Span 1 Permanent × 1.35 Variable × 0.00 Variable × 0.00 Support B Permanent × 1.35 Variable × 1.50 Span 2 Permanent × 1.35 Support C Permanent × 1.35 Variable × 1.50 Variable × 1.50 Analysis results Maximum moment support A; MA_max = -203 kNm; MA_red = -203 kNm; Maximum moment span 1 at 4104 mm; Ms1_max = 102 kNm; Ms1_red = 102 kNm; Maximum moment support B; MB_max = -193 kNm; MB_red = -193 kNm; Maximum moment span 2 at 3896 mm; Ms2_max = 102 kNm; Ms2_red = 102 kNm; Maximum moment support C; MC_max = -203 kNm; MC_red = -203 kNm; Maximum shear support A; VA_max = 149 kN; VA_red = 142 kN Maximum shear support A span 1 at 843 mm; VA_s1_max = 118 kN; VA_s1_red = 118 kN Maximum shear support B; VB_max = -145 kN; VB_red = -145 kN Maximum shear support B span 1 at 7158 mm; VB_s1_max = -114 kN; VB_s1_red = -114 kN Maximum shear support B span 2 at 843 mm; VB_s2_max = 114 kN; VB_s2_red = 114 kN Maximum shear support C; VC_max = -149 kN; VC_red = -149 kN Maximum shear support C span 2 at 7158 mm; VC_s2_max = -118 kN; VC_s2_red = -118 kN Maximum reaction at support A; RA = 149 kN Unfactored permanent load reaction at support A; RA_Permanent = 85 kN
  • 5. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Date App'd by Date - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Unfactored variable load reaction at support A; RA_Variable = 20 kN Maximum reaction at support B; RB = 290 kN Unfactored permanent load reaction at support B; RB_Permanent = 170 kN Unfactored variable load reaction at support B; RB_Variable = 40 kN Maximum reaction at support C; RC = 149 kN Unfactored permanent load reaction at support C; RC_Permanent = 85 kN Unfactored variable load reaction at support C; RC_Variable = 20 kN Rectangular section details Section width; b = 500 mm Section depth; h = 900 mm Concrete details (Table 3.1 - Strength and deformation characteristics for concrete) Concrete strength class; C40/50 Characteristic compressive cylinder strength; fck = 40 N/mm Characteristic compressive cube strength; fck,cube = 50 N/mm Mean value of compressive cylinder strength; fcm = fck + 8 N/mm = 48 N/mm Mean value of axial tensile strength; fctm = 0.3 N/mm × (fck/ 1 N/mm ) Secant modulus of elasticity of concrete; Ecm = 22 kN/mm × [fcm/10 N/mm ] Partial factor for concrete (Table 2.1N); γC = 1.50 Compressive strength coefficient (cl.3.1.6(1)); αcc = 1.00 Design compressive concrete strength (exp.3.15); fcd = αcc × fck / γC = 26.7 N/mm Maximum aggregate size; hagg = 20 mm 2 2 2 2 2 2 2/3 2 2 0.3 Reinforcement details Characteristic yield strength of reinforcement; fyk = 500 N/mm 2 Partial factor for reinforcing steel (Table 2.1N); γS = 1.15 Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm = 3.5 N/mm 2 2 2 = 35220 N/mm 2
  • 6. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Dr.C.Sachpazis 23/04/2013 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Nominal cover to reinforcement Nominal cover to top reinforcement; cnom_t = 35 mm Nominal cover to bottom reinforcement; cnom_b = 35 mm Nominal cover to side reinforcement; cnom_s = 35 mm Support A Rectangular section in flexure (Section 6.1) Minimum moment factor (cl.9.2.1.2(1)); β1 = 0.15 Design bending moment; M = max(abs(MA_red), β1 × abs(Ms1_red)) = 203 kNm Depth to tension reinforcement; d = h - cnom_t - φv - φtop / 2 = 843 mm Percentage redistribution; mrA = 0 % Redistribution ratio; δ = min(1 - mrA, 1) = 1.000 2 K = M / (b × d × fck) = 0.014 2 K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196 K' > K - No compression reinforcement is required 0.5 Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) = 800 mm Depth of neutral axis; x = 2.5 × (d - z) = 105 mm Area of tension reinforcement required; As,req = M / (fyd × z) = 583 mm 2 Tension reinforcement provided; 4 × 25φ bars Area of tension reinforcement provided; As,prov = 1963 mm Minimum area of reinforcement (exp.9.1N); As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm Maximum area of reinforcement (cl.9.2.1.1(3)); 2 As,max = 0.04 × b × h = 18000 mm 2 PASS - Area of reinforcement provided is greater than area of reinforcement required Minimum bottom reinforcement at supports Minimum reinforcement factor (cl.9.2.1.4(1)); β2 = 0.25 Area of reinforcement to adjacent span; As,span = 1963 mm 2 2
  • 7. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Date App'd by Date - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Minimum bottom reinforcement to support; As2,min = β2 × As,span = 491 mm Bottom reinforcement provided; 2 × 20φ bars Area of bottom reinforcement provided; As2,prov = 628 mm 2 2 PASS - Area of reinforcement provided is greater than minimum area of reinforcement required Rectangular section in shear (Section 6.2) Design shear force at support A; VEd,max = abs(max(VA_max, VA_red)) = 149 kN Maximum design shear force (exp.6.9); VRd,max = b × z × v1 × fcd / (cot(θ) + tan(θ)) = 1855 kN PASS - Design shear force at support is less than maximum design shear force Design shear force span 1 at 843 mm; VEd = max(VA_s1_max, VA_s1_red) = 118 kN Design shear stress; vEd = VEd / (b × z) = 0.294 N/mm Strength reduction factor (cl.6.2.3(3)); v1 = 0.6 × [1 - fck / 250 N/mm ] = 0.504 Compression chord coefficient (cl.6.2.3(3)); αcw = 1.00 2 2 Angle of concrete compression strut (cl.6.2.3); θ = min(max(0.5 × Asin[min(2 × vEd / (αcw × fcd × v1),1)], 21.8 deg), 45deg) = 21.8 deg 2 Area of shear reinforcement required (exp.6.13); Asv,req = vEd × b / (fyd × cot(θ)) = 135 mm /m Shear reinforcement provided; 2 × 10φ legs at 300 c/c Area of shear reinforcement provided; Asv,prov = 524 mm /m Minimum area of shear reinforcement (exp.9.5N); Asv,min = 0.08 N/mm × b × (fck / 1 N/mm ) 2 2 2 0.5 / fyk = 2 506 mm /m PASS - Area of shear reinforcement provided exceeds minimum required Maximum longitudinal spacing (exp.9.6N); svl,max = 0.75 × d = 632 mm PASS - Longitudinal spacing of shear reinforcement provided is less than maximum Crack control (Section 7.3) Maximum crack width; wk = 0.3 mm Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm Stress distribution coefficient; kc = 0.4 Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500 2 mm, 0.65), 1) = 0.86 Depth of tensile zone; hcr = h - x = 795 mm Area of concrete in the tensile zone; Act = hcr × b = 397344 mm Adjusted maximum bar diameter (exp.7.6N); φmod = φtop × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc × 2 2 hcr) = 7 mm Maximum adjusted bar diameter; φmax = 32 mm Tension bar spacing; sbar = (b - 2 × (cnom_s + φv) - φtop) / (Ntop - 1) = 128 mm Maximum tension bar spacing; smax = 300 mm Minimum allowable bar spacing; smin = max(φtop, hagg + 5 mm, 20 mm) + φtop = 50 mm Maximum stress permitted (Tables 7.2N & 7.3N); σs = 280 N/mm 2 Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm 2 PASS - Area of tension reinforcement provided exceeds minimum required for crack control PASS - Actual bar spacing exceeds minimum allowable
  • 8. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Dr.C.Sachpazis 23/04/2013 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Mid span 1 Rectangular section in flexure (Section 6.1) - Positive midspan moment Design bending moment; M = abs(Ms1_red) = 102 kNm Depth to tension reinforcement; d = h - cnom_b - φv - φbot / 2 = 843 mm Percentage redistribution; mrs1 = Ms1_red / Ms1_max - 1 = 0 % Redistribution ratio; δ = min(1 - mrs1, 1) = 1.000 2 K = M / (b × d × fck) = 0.007 2 K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196 K' > K - No compression reinforcement is required 0.5 Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) = 800 mm Depth of neutral axis; x = 2.5 × (d - z) = 105 mm Area of tension reinforcement required; As,req = M / (fyd × z) = 292 mm 2 Tension reinforcement provided; 4 × 25φ bars Area of tension reinforcement provided; As,prov = 1963 mm Minimum area of reinforcement (exp.9.1N); As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm Maximum area of reinforcement (cl.9.2.1.1(3)); 2 As,max = 0.04 × b × h = 18000 mm 2 2 PASS - Area of reinforcement provided is greater than area of reinforcement required Rectangular section in shear (Section 6.2) Shear reinforcement provided; 2 × 10φ legs at 300 c/c Area of shear reinforcement provided; Asv,prov = 524 mm /m Minimum area of shear reinforcement (exp.9.5N); Asv,min = 0.08 N/mm × b × (fck / 1 N/mm ) 2 2 2 0.5 2 / fyk = 506 mm /m PASS - Area of shear reinforcement provided exceeds minimum required Maximum longitudinal spacing (exp.9.6N); svl,max = 0.75 × d = 632 mm PASS - Longitudinal spacing of shear reinforcement provided is less than maximum Design shear resistance (assuming cot(θ) is 2.5); Vprov = 2.5 × Asv,prov × z × fyd = 455.5 kN Shear links provided valid between 0 mm and 8000 mm with tension reinforcement of 1963 mm 2
  • 9. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Date App'd by Date - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Crack control (Section 7.3) Maximum crack width; wk = 0.3 mm Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm Stress distribution coefficient; kc = 0.4 Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500 2 mm, 0.65), 1) = 0.86 Depth of tensile zone; hcr = h - x = 795 mm Area of concrete in the tensile zone; Act = hcr × b = 397344 mm 2 2 Adjusted maximum bar diameter (exp.7.6N); φmod = φbot × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc × hcr) = 7 mm Maximum adjusted bar diameter; φmax = 32 mm Tension bar spacing; sbar = (b - 2 × (cnom_s + φv) - φbot) / (Nbot - 1) = 128 mm Maximum tension bar spacing; smax = 300 mm Minimum allowable bar spacing; smin = max(φbot, hagg + 5 mm, 20 mm) + φbot = 50 mm Maximum stress permitted (Tables 7.2N & 7.3N); σs = 280 N/mm 2 Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm 2 PASS - Area of tension reinforcement provided exceeds minimum required for crack control PASS - Actual bar spacing exceeds minimum allowable Deflection control (Section 7.4) 2 0.5 Reference reinforcement ratio; ρm0 = (fck / 1 N/mm ) Required tension reinforcement ratio; ρm = As,req / (b × d) = 0.001 / 1000 = 0.006 Required compression reinforcement ratio; ρ'm = As2,req / (b × d) = 0.000 Structural system factor (Table 7.4N); Kb = 1.3 Basic allowable span to depth ratio (7.16a); span_to_depthbasic = Kb × [11 + 1.5 × (fck / 1 2 0.5 N/mm ) 2 0.5 × ρm0 / ρm + 3.2 × (fck / 1 N/mm ) × (ρm0 1.5 / ρm - 1) ] = 735.018 2 Reinforcement factor (exp.7.17); Ks = As,prov × 500 N/mm / (As,req × fyk) = 6.718 Flange width factor; F1 = 1.000 Long span supporting brittle partition factor; F2 = 1.000 Allowable span to depth ratio; span_to_depthallow = span_to_depthbasic × Ks × F1 × F2 = 4937.972 Actual span to depth ratio; span_to_depthactual = Ls1 / d = 9.496 PASS - Actual span to depth ratio is within the allowable limit Support B
  • 10. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Dr.C.Sachpazis 23/04/2013 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Rectangular section in flexure (Section 6.1) Design bending moment; M = abs(MB_red) = 193 kNm Depth to tension reinforcement; d = h - cnom_t - φv - φtop / 2 = 843 mm Percentage redistribution; mrB = 0 % Redistribution ratio; δ = min(1 - mrB, 1) = 1.000 2 K = M / (b × d × fck) = 0.014 2 K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196 K' > K - No compression reinforcement is required 0.5 Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) = 800 mm Depth of neutral axis; x = 2.5 × (d - z) = 105 mm Area of tension reinforcement required; As,req = M / (fyd × z) = 555 mm 2 Tension reinforcement provided; 4 × 25φ bars Area of tension reinforcement provided; As,prov = 1963 mm Minimum area of reinforcement (exp.9.1N); As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm 2 2 Maximum area of reinforcement (cl.9.2.1.1(3)); As,max = 0.04 × b × h = 18000 mm 2 PASS - Area of reinforcement provided is greater than area of reinforcement required Rectangular section in shear (Section 6.2) Design shear force at support B; VEd,max = abs(max(VB_max, VB_red)) = 145 kN Maximum design shear force (exp.6.9); VRd,max = b × z × v1 × fcd / (cot(θ) + tan(θ)) = 1855 kN PASS - Design shear force at support is less than maximum design shear force Design shear force span 1 at 7158 mm; VEd = abs(min(VB_s1_max, VB_s1_red)) = 114 kN Design shear stress; vEd = VEd / (b × z) = 0.285 N/mm Strength reduction factor (cl.6.2.3(3)); v1 = 0.6 × [1 - fck / 250 N/mm ] = 0.504 2 2
  • 11. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Date App'd by Date - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Compression chord coefficient (cl.6.2.3(3)); αcw = 1.00 Angle of concrete compression strut (cl.6.2.3); θ = min(max(0.5 × Asin[min(2 × vEd / (αcw × fcd × v1),1)], 21.8 deg), 45deg) = 21.8 deg 2 Area of shear reinforcement required (exp.6.13); Asv,req = vEd × b / (fyd × cot(θ)) = 131 mm /m Shear reinforcement provided; 2 × 10φ legs at 300 c/c Area of shear reinforcement provided; Asv,prov = 524 mm /m Minimum area of shear reinforcement (exp.9.5N); Asv,min = 0.08 N/mm × b × (fck / 1 N/mm ) 2 2 2 0.5 / fyk = 2 506 mm /m PASS - Area of shear reinforcement provided exceeds minimum required Maximum longitudinal spacing (exp.9.6N); svl,max = 0.75 × d = 632 mm PASS - Longitudinal spacing of shear reinforcement provided is less than maximum Design shear force span 2 at 843 mm; VEd = max(VB_s2_max, VB_s2_red) = 114 kN Design shear stress; vEd = VEd / (b × z) = 0.285 N/mm Strength reduction factor (cl.6.2.3(3)); v1 = 0.6 × [1 - fck / 250 N/mm ] = 0.504 Compression chord coefficient (cl.6.2.3(3)); αcw = 1.00 2 2 Angle of concrete compression strut (cl.6.2.3); θ = min(max(0.5 × Asin[min(2 × vEd / (αcw × fcd × v1),1)], 21.8 deg), 45deg) = 21.8 deg 2 Area of shear reinforcement required (exp.6.13); Asv,req = vEd × b / (fyd × cot(θ)) = 131 mm /m Shear reinforcement provided; 2 × 10φ legs at 300 c/c Area of shear reinforcement provided; Asv,prov = 524 mm /m Minimum area of shear reinforcement (exp.9.5N); Asv,min = 0.08 N/mm × b × (fck / 1 N/mm ) 2 2 2 0.5 / fyk = 2 506 mm /m PASS - Area of shear reinforcement provided exceeds minimum required Maximum longitudinal spacing (exp.9.6N); svl,max = 0.75 × d = 632 mm PASS - Longitudinal spacing of shear reinforcement provided is less than maximum Crack control (Section 7.3) Maximum crack width; wk = 0.3 mm Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm Stress distribution coefficient; kc = 0.4 Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500 2 mm, 0.65), 1) = 0.86 Depth of tensile zone; hcr = h - x = 795 mm Area of concrete in the tensile zone; Act = hcr × b = 397344 mm Adjusted maximum bar diameter (exp.7.6N); φmod = φtop × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc × 2 2 hcr) = 7 mm Maximum adjusted bar diameter; φmax = 32 mm Tension bar spacing; sbar = (b - 2 × (cnom_s + φv) - φtop) / (Ntop - 1) = 128 mm Maximum tension bar spacing; smax = 300 mm Minimum allowable bar spacing; smin = max(φtop, hagg + 5 mm, 20 mm) + φtop = 50 mm Maximum stress permitted (Tables 7.2N & 7.3N); σs = 280 N/mm 2 Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm 2
  • 12. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Dr.C.Sachpazis 23/04/2013 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info PASS - Area of tension reinforcement provided exceeds minimum required for crack control PASS - Actual bar spacing exceeds minimum allowable Mid span 2 Rectangular section in flexure (Section 6.1) - Positive midspan moment Design bending moment; M = abs(Ms2_red) = 102 kNm Depth to tension reinforcement; d = h - cnom_b - φv - φbot / 2 = 843 mm Percentage redistribution; mrs2 = Ms2_red / Ms2_max - 1 = 0 % Redistribution ratio; δ = min(1 - mrs2, 1) = 1.000 2 K = M / (b × d × fck) = 0.007 2 K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196 K' > K - No compression reinforcement is required 0.5 Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) = 800 mm Depth of neutral axis; x = 2.5 × (d - z) = 105 mm Area of tension reinforcement required; As,req = M / (fyd × z) = 292 mm 2 Tension reinforcement provided; 4 × 25φ bars Area of tension reinforcement provided; As,prov = 1963 mm Minimum area of reinforcement (exp.9.1N); As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm Maximum area of reinforcement (cl.9.2.1.1(3)); As,max = 0.04 × b × h = 18000 mm 2 2 PASS - Area of reinforcement provided is greater than area of reinforcement required Rectangular section in shear (Section 6.2) Shear reinforcement provided; 2 × 10φ legs at 300 c/c Area of shear reinforcement provided; Asv,prov = 524 mm /m Minimum area of shear reinforcement (exp.9.5N); Asv,min = 0.08 N/mm × b × (fck / 1 N/mm ) 2 2 2 0.5 / fyk = 2 506 mm /m PASS - Area of shear reinforcement provided exceeds minimum required 2
  • 13. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Date App'd by Date - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Maximum longitudinal spacing (exp.9.6N); svl,max = 0.75 × d = 632 mm PASS - Longitudinal spacing of shear reinforcement provided is less than maximum Design shear resistance (assuming cot(θ) is 2.5); Vprov = 2.5 × Asv,prov × z × fyd = 455.5 kN Shear links provided valid between 0 mm and 8000 mm with tension reinforcement of 1963 mm 2 Crack control (Section 7.3) Maximum crack width; wk = 0.3 mm Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm Stress distribution coefficient; kc = 0.4 Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500 2 mm, 0.65), 1) = 0.86 Depth of tensile zone; hcr = h - x = 795 mm Area of concrete in the tensile zone; Act = hcr × b = 397344 mm Adjusted maximum bar diameter (exp.7.6N); φmod = φbot × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc × 2 2 hcr) = 7 mm Maximum adjusted bar diameter; φmax = 32 mm Tension bar spacing; sbar = (b - 2 × (cnom_s + φv) - φbot) / (Nbot - 1) = 128 mm Maximum tension bar spacing; smax = 300 mm Minimum allowable bar spacing; smin = max(φbot, hagg + 5 mm, 20 mm) + φbot = 50 mm Maximum stress permitted (Tables 7.2N & 7.3N); σs = 280 N/mm 2 Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm 2 PASS - Area of tension reinforcement provided exceeds minimum required for crack control PASS - Actual bar spacing exceeds minimum allowable Deflection control (Section 7.4) 2 0.5 Reference reinforcement ratio; ρm0 = (fck / 1 N/mm ) Required tension reinforcement ratio; ρm = As,req / (b × d) = 0.001 Required compression reinforcement ratio; ρ'm = As2,req / (b × d) = 0.000 / 1000 = 0.006 Structural system factor (Table 7.4N); Kb = 1.3 Basic allowable span to depth ratio (7.16a); span_to_depthbasic = Kb × [11 + 1.5 × (fck / 1 2 0.5 N/mm ) 2 0.5 × ρm0 / ρm + 3.2 × (fck / 1 N/mm ) × (ρm0 1.5 / ρm - 1) ] = 735.018 2 Reinforcement factor (exp.7.17); Ks = As,prov × 500 N/mm / (As,req × fyk) = 6.718 Flange width factor; F1 = 1.000 Long span supporting brittle partition factor; F2 = 1.000 Allowable span to depth ratio; span_to_depthallow = span_to_depthbasic × Ks × F1 × F2 = 4937.972 Actual span to depth ratio; span_to_depthactual = Ls2 / d = 9.496 PASS - Actual span to depth ratio is within the allowable limit Support C
  • 14. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Dr.C.Sachpazis 23/04/2013 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Rectangular section in flexure (Section 6.1) Minimum moment factor (cl.9.2.1.2(1)); β1 = 0.15 Design bending moment; M = max(abs(MC_red), β1 × abs(Ms2_red)) = 203 kNm Depth to tension reinforcement; d = h - cnom_t - φv - φtop / 2 = 843 mm Percentage redistribution; mrC = 0 % Redistribution ratio; δ = min(1 - mrC, 1) = 1.000 2 K = M / (b × d × fck) = 0.014 2 K' = 0.547 × δ - 0.137 × δ - 0.214 = 0.196 K' > K - No compression reinforcement is required 0.5 Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K) ], 0.95 × d) = 800 mm Depth of neutral axis; x = 2.5 × (d - z) = 105 mm Area of tension reinforcement required; As,req = M / (fyd × z) = 583 mm Tension reinforcement provided; 4 × 25φ bars Area of tension reinforcement provided; As,prov = 1963 mm Minimum area of reinforcement (exp.9.1N); As,min = max(0.26 × fctm / fyk, 0.0013) × b × d = 769 mm Maximum area of reinforcement (cl.9.2.1.1(3)); As,max = 0.04 × b × h = 18000 mm 2 2 2 PASS - Area of reinforcement provided is greater than area of reinforcement required Minimum bottom reinforcement at supports Minimum reinforcement factor (cl.9.2.1.4(1)); β2 = 0.25 Area of reinforcement to adjacent span; As,span = 1963 mm Minimum bottom reinforcement to support; As2,min = β2 × As,span = 491 mm Bottom reinforcement provided; 2 × 20φ bars Area of bottom reinforcement provided; As2,prov = 628 mm 2 2 2 2
  • 15. Project Job Ref. RC Beam Analysis & Design Example (EN1992-1) Sheet no./rev. Section 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Chk'd by Date App'd by Date - Dr.C.Sachpazis 23/04/2013 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info PASS - Area of reinforcement provided is greater than minimum area of reinforcement required Rectangular section in shear (Section 6.2) Design shear force at support C; VEd,max = abs(max(VC_max, VC_red)) = 149 kN Maximum design shear force (exp.6.9); VRd,max = b × z × v1 × fcd / (cot(θ) + tan(θ)) = 1855 kN PASS - Design shear force at support is less than maximum design shear force Design shear force span 2 at 7158 mm; VEd = abs(min(VC_s2_max, VC_s2_red)) = 118 kN Design shear stress; vEd = VEd / (b × z) = 0.294 N/mm Strength reduction factor (cl.6.2.3(3)); v1 = 0.6 × [1 - fck / 250 N/mm ] = 0.504 Compression chord coefficient (cl.6.2.3(3)); αcw = 1.00 2 2 Angle of concrete compression strut (cl.6.2.3); θ = min(max(0.5 × Asin[min(2 × vEd / (αcw × fcd × v1),1)], 21.8 deg), 45deg) = 21.8 deg 2 Area of shear reinforcement required (exp.6.13); Asv,req = vEd × b / (fyd × cot(θ)) = 135 mm /m Shear reinforcement provided; 2 × 10φ legs at 300 c/c Area of shear reinforcement provided; Asv,prov = 524 mm /m Minimum area of shear reinforcement (exp.9.5N); Asv,min = 0.08 N/mm × b × (fck / 1 N/mm ) 2 2 2 0.5 / fyk = 2 506 mm /m PASS - Area of shear reinforcement provided exceeds minimum required Maximum longitudinal spacing (exp.9.6N); svl,max = 0.75 × d = 632 mm PASS - Longitudinal spacing of shear reinforcement provided is less than maximum Crack control (Section 7.3) Maximum crack width; wk = 0.3 mm Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm Stress distribution coefficient; kc = 0.4 Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500 2 mm, 0.65), 1) = 0.86 Depth of tensile zone; hcr = h - x = 795 mm Area of concrete in the tensile zone; Act = hcr × b = 397344 mm Adjusted maximum bar diameter (exp.7.6N); φmod = φtop × (2.9 N/mm / fct,eff) × 2 × (h - d) / (kc × 2 2 hcr) = 7 mm Maximum adjusted bar diameter; φmax = 32 mm Tension bar spacing; sbar = (b - 2 × (cnom_s + φv) - φtop) / (Ntop - 1) = 128 mm Maximum tension bar spacing; smax = 300 mm Minimum allowable bar spacing; smin = max(φtop, hagg + 5 mm, 20 mm) + φtop = 50 mm Maximum stress permitted (Tables 7.2N & 7.3N); σs = 280 N/mm 2 Minimum area of reinforcement required (exp.7.1); Asc,min = kc × k × fct,eff × Act / σs = 1713 mm 2 PASS - Area of tension reinforcement provided exceeds minimum required for crack control PASS - Actual bar spacing exceeds minimum allowable