SlideShare una empresa de Scribd logo
1 de 27
Descargar para leer sin conexión
1
EJERCICIOS DE SISTEMAS DE ECUACIONES
Ejercicio nº 1.-
a) Resuelve por sustitución:
b) Resuelve por reducción:
Ejercicio nº 2.-
a) Resuelve por igualación:
b) Resuelve por reducción:
Ejercicio nº 3.-
a Resuelve por sustitución:
b Resuelve por reducción:
Ejercicio nº 4.-
a) Resuelve por sustitución:
b) Resuelve por igualación:
Ejercicio nº 5.-
a Resuelve por igualación:
b Resuelve por reducción:



5 2 1
3 3 5
x y
x y
 
  



2 6
4 3 14
x y
x y
 
 



5 2 2
2 2
x y
x y
 
 



5 3
2 4 12
x y
x y
 
   



3 5 15
2 3 9
 
 
x y
x y



4 6 2
6 5 1
 
 
x y
x y



2 3 14
3 14
x y
x y
  
  



2 3 2
6 12 1
x y
x y
 
  



5 2 11
2 3 12
 
 
x y
x y



2 4 7
3 5 4
  
 
x y
x y
2
Ejercicio nº 6.-
Resuelve cada uno de los siguientes sistemas:
Ejercicio nº 7.-
Resuelve los siguientes sistemas:
Ejercicio nº 8.-
Resuelve los siguientes sistemas:
Ejercicio nº 9.-
Resuelve estos sistemas:
Ejercicio nº 10.-
Resuelve los siguientes sistemas:



a) 2 1
3 10
x y
x y
 
   



b) 2 4
2 4 3
x y
x y
  
 



a) 4 1
2 5
x y
x y
 
  



b) 3 4
6 2 1
x y
x y
 
  



a) 3 2 4
2 2
x y
x y
  
 



b) 4 5
3 12 15
x y
x y
 
 



a) 2 3 1
3 2 4
x y
x y
 
 



b) 4 3 5
8 6 10
x y
x y
 
  



a) 4 9
2 2 2
x y
x y
  
  
3
Ejercicio nº 11.-
Resuelve este sistema:
Ejercicio nº 12.-
Resuelve el siguiente sistema:
Ejercicio nº 13.-
Resuelve el siguiente sistema:
Ejercicio nº 14.-
Resuelve este sistema de ecuaciones:
Ejercicio nº 15.-
Resuelve el sistema:
Ejercicio nº 16.-
a Busca dos pares de valores que sean solución de la ecuación 5x  4y  1.
b Representa gráficamente la recta 5x  4y  1.



b) 5 4 3
10 8 6
x y
x y
 
   
 
 





2 4 9
3 2 2
1 4
2 3 2
3 3
x y
x y x

 
    





2 1 3 11
2 3 6
2 1 6
5 10 5
x y
x y
 
 

   
 





3 2 13
4
3 3
2 2 3 13
3 2 6
x y
y
y x x

 
 
  
 
 





2 1
3
3
3 5 3 12
x
y
x y x

  
   
 





7 9 2 4
15
2 2
5 1 25
x y x
x y
 
  
  
4
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Ejercicio nº 17.-
a Obtén dos puntos de la recta 3x  2y  1 y represéntala gráficamente.
b ¿Alguno de los dos puntos obtenidos en el apartado anterior es solución de la ecuación 3x  2y  1?
c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta?
Ejercicio nº 18.-
a Representa gráficamente la recta 5x  2y  3.
b ¿Cuántas soluciones tiene la ecuación 5x  2y  3? Obtén dos de sus soluciones.
c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta?
Ejercicio nº 19.-
A la vista de la siguiente gráfica:
a Obtén tres puntos de la recta ax  by  c.
b Halla tres soluciones de la ecuación ax  by  c.
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Ejercicio nº 20.-
a De los siguientes pares de valores:
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Ejercicio nº 21.-
Averigua cuántas soluciones tiene el siguiente sistema de ecuaciones, representando las dos rectas en los
mismos ejes:
        
     
     
3 2 1
0, 10 ; , 19 ; 1, 4 ; 0, ; , 7
2 5 2
  
1
¿cuáles son soluciones de la ecuación 3 5?
2
x y  
1
b) Representa gráficamente la recta 3 5.
2
x y  
5
Ejercicio nº 22.-
a Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan:
b ¿Cuántas soluciones tiene el sistema anterior?
Ejercicio nº 23.-
a Representa en los mismos ejes las rectas:
b ¿Qué dirías acerca de la solución del sistema anterior?
Ejercicio nº 24.-
a Representa en los mismos ejes las rectas:
b ¿En qué punto o puntos se cortan? ¿Cuántas soluciones tendrá el sistema?
Ejercicio nº 25.-
a Representa en los mismos ejes las rectas:
b ¿Cuántas soluciones tiene el sistema anterior? ¿Cuáles son?



5
2 2 2
  
  
x y
x y



2 2
1
 
 
x y
x y



2 1
2 2
  
 
x y
x y



1
2 2 2
x y
x y
  
  



2 0
2 4
 
  
x y
x y
6
PROBLEMAS DE SISTEMAS DE ECUACIONES
Problema nº 1.-
Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas
cifras, el número obtenido es 36 unidades mayor que el inicial.
Problema nº 2.-
En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres
ángulos?
Problema nº 3.-
La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90
km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad
constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el
momento del encuentro.
Problema nº 4.-
Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si
invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial.
Problema nº 5.-
La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es
de 24 cm2
. Calcula la longitud de sus dos bases.
Problema nº 6.-
La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada
una de ellas?
Problema nº 7.-
Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero
sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números.
Problema nº 8.-
El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2
cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo?
Problema nº 9.-
Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad.
¿Cuánto dinero lleva cada uno?
Problema nº 10.-
La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al
doble de la cifra de las centenas. Halla dicho número.
7
Problema nº 11.-
El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un
sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo.
Problema nº 12.-
Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de
0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase?
Problema nº 13.-
El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el
quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números.
Problema nº 14.-
Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en
4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo?
Problema nº 15.-
Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión
en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los
beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada
producto?
8
SOLUCIONES A LOS EJERCICIOS DE SISTEMAS DE
ECUACIONES
Ejercicio nº 1.-
a) Resuelve por sustitución:
b) Resuelve por reducción:
Solución:
2x  y  6  y  6  2x  6  4  2
Solución: x  2 ; y  2
Ejercicio nº 2.-
a) Resuelve por igualación:
b) Resuelve por reducción:
Solución:



5 2 1
3 3 5
x y
x y
 
  



2 6
4 3 14
x y
x y
 
 
1 5
a) 5 2 1
2
1 5 3 15
3 3 5 3 5 6 3 15 103 3 5
2 2
x
x y y
x x
x x x xx y

   


                      
7 1
21 7
21 3
x x      

5
1
1 5 8 43
2 2 6 3
x
y


   
1 4
: ;
3 3
Solución x y  
b) 2 6
4 3 14
x y
x y
  

  
 3
6 3 18
4 3 14
x y
x y
 
    
  
Sumando: 2 4 2x x    



5 2 2
2 2
x y
x y
 
 



5 3
2 4 12
x y
x y
 
   
a) 5 2 2
2 2
x y
x y
  

  
9
Solución: x  0 ; y  3
Ejercicio nº 3.-
a Resuelve por sustitución:
b Resuelve por reducción:
Solución:
Solución: x  0 ; y  3
2 2
2 2 8 2
2 2 2 2 10 10 12 85
5 12 3
2 2
y
x y
y y y y y
x y
 
  
           
   
2 4 2
2 2 2
3 3 3
2 2
: ;
3 3
x
Solución x y
 
      
 
 
b) 5 3
2 4 12
x y
x y
  

    
4
20 4 12
2 4 12
x y
x y

  
    
Sumando: 18 0 0x x  
       5 3 5 3 3x y x y y



3 5 15
2 3 9
 
 
x y
x y



4 6 2
6 5 1
 
 
x y
x y
15 5
3 5 15a)
3
15 5 30 10
2 3 9 3 9 30 10 9 272 3 9
3 3
y
x y x
y y
y y y yx y

   


                      
57
19 57 3
19
y y

      

15 5 15 5 3 0
0
3 3 3
y
x
  
   
b) 4 6 2
6 5 1
x y
x y
  

    
5
6
20 30 10
36 30 6
x y
x y

 
  
   
4 1
Sumando: 16 4
16 4
x x      
1 3 1
4 6 2 4 6 2 1 6 2 6 3
4 6 2
x y y y y y
 
                
 
1 1
: ;
4 2
Solución x y  
10
Ejercicio nº 4.-
a) Resuelve por sustitución:
b) Resuelve por igualación:
Solución:
Solución: x  4 ; y  2
Ejercicio nº 5.-
a Resuelve por igualación:
b Resuelve por reducción:
Solución:
Solución: x  3 ; y  2



2 3 14
3 14
x y
x y
  
  



2 3 2
6 12 1
x y
x y
 
  
 a) 2 3 14 2 3 3 14 14 2 9 42 14
3 14 3 14
x y x x x x
x y y x
             

     
28
7 28 4
7
x x       
 3 4 14 12 14 2y        
2 2b) 2 3 2
2 2 1 63
8 8 1 6
3 121 6
6 12 1
12
xx y y
x x
x x
x
yx y
         
       
      
7 1
14 7
14 2
x x

      

 2 2 1 22 2 1
3 3 3
x
y
 
  
1 1
: ;
2 3
Solución x y 



5 2 11
2 3 12
 
 
x y
x y



2 4 7
3 5 4
  
 
x y
x y
11 25 2 11a)
11 2 12 35
5 212 3
2 3 12
2
yx y x
y y
y
xx y
        
   
    
38
22 4 60 15 38 19 2
19
y y y y           
 11 2 211 2 15
3
5 5 5
y
x
  
   
11
Ejercicio nº 6.-
Resuelve cada uno de los siguientes sistemas:
Solución:
Solución: x  3 ; y  1
Ejercicio nº 7.-
Resuelve los siguientes sistemas:
Solución:
Solución: x  3 ; y  1
b) 2 4 7
3 5 4
x y
x y
   

  
3
2
6 12 21
6 10 8
x y
x y


   
  
29
Sumando: 2 29
2
y y  
29 51
2 4 7 2 4 7 2 58 7 2 51
2 2
x y x x x x
 
                  
 
51 29
: ;
2 2
Solución x y 



a) 2 1
3 10
x y
x y
 
   



b) 2 4
2 4 3
x y
x y
  
 
a) 2 1
3 10
x y
x y
  

      
1 2
3 1 2 10 3 6 10 7 7 1
x y
y y y y y y
  
                 
 1 2 1 2 1 1 2 3x y        
b) 2 4
2 4 3
x y
x y
   

    
2 4
2 2 4 4 3 4 8 4 3 0 11 No tiene solución.
y x
y y y y
  
          



a) 4 1
2 5
x y
x y
 
  



b) 3 4
6 2 1
x y
x y
 
  
a) 4 1
2 5
x y
x y
  

     
1 4
2 1 4 5 2 8 5 7 7 1
x y
y y y y y y
  
               
1 4 1 4 1 3x y      
b) 3 4
6 2 1
x y
x y
  

     
4 3
6 2 4 3 1 6 8 6 1 0 9 No tiene solución.
y x
x x x x
  
            
12
Ejercicio nº 8.-
Resuelve los siguientes sistemas:
Solución:
Solución: x  0 ; y  2
El sistema tiene infinitas soluciones.
Ejercicio nº 9.-
Resuelve estos sistemas:
Solución:
Solución: x  2 ; y  1
No tiene solución.



a) 3 2 4
2 2
x y
x y
  
 



b) 4 5
3 12 15
x y
x y
 
 
a) 3 2 4
2 2
x y
x y
   

  
 3 2 2 2 4 3 4 4 4 7 0 0
2 2
x x x x x x
y x
             
  
2 2 2 2 0 2y x     
b) 4 5
3 12 15
x y
x y
  

    
5 4
3 5 4 12 15 15 12 12 15 0 0
x y
y y y y
  
         



a) 2 3 1
3 2 4
x y
x y
 
 



b) 4 3 5
8 6 10
x y
x y
 
  
a) 2 3 1
3 2 4
x y
x y
  

    
2
3
4 6 2
9 6 12
x y
x y

 
  
   
Sumando: 5 10 2x x    
          2 3 1 4 3 1 3 3 1x y y y y
b) 4 3 5
8 6 10
x y
x y
  

   
2
8 6 10
8 6 10
x y
x y

  
   
Sumando: 0 20
13
Ejercicio nº 10.-
Resuelve los siguientes sistemas:
Solución:
Solución: x  2 ; y  1
El sistema tiene infinitas soluciones.
Ejercicio nº 11.-
Resuelve este sistema:
Solución:
Solución: x  2 ; y  1
Ejercicio nº 12.-
Resuelve el siguiente sistema:



a) 4 9
2 2 2
x y
x y
  
  



b) 5 4 3
10 8 6
x y
x y
 
   
a) 4 9
2 2 2
x y
x y
   

   
4 9
1
x y
x y
  

    4 9 1 5 10 2x x x x          
 4 9 4 2 9 8 9 1y x         
b) 5 4 3
10 8 6
x y
x y
  

    
2
10 8 6
10 8 6
x y
x y

  
    
Sumando: 0 0
 
 





2 4 9
3 2 2
1 4
2 3 2
3 3
x y
x y x

 
    
 
 
2 4 2 8 99
4 16 3 273 2 23 2 2
3 2 4 3 6 3 2 41 4
22 3 2
3 33 3
x x yy
x y
x x y x
x yx y x
  
         
    
              
 
4 3 11 4 3 11 4 8 2
6 6 1
x y x x x
y y
        
 
    





2 1 3 11
2 3 6
2 1 6
5 10 5
x y
x y
 
 

   
14
Solución:
Solución: x  3 ; y  1
Ejercicio nº 13.-
Resuelve el siguiente sistema:
Solución:
Solución: x  1 ; y  1
Ejercicio nº 14.-
Resuelve este sistema de ecuaciones:
Solución:
2 1 3 11
6 3 2 6 11 6 2 20 3 102 3 6
2 1 6 4 1 12 4 11 4 11
5 10 5
x y
x y x y x y
x y x y x y x y
  
             
     
                   

10 3
10 3 4 11 21 7 3
4 11
y x
x x x x
y x
   
       
   
10 3 10 3 3 10 9 1y x       
 





3 2 13
4
3 3
2 2 3 13
3 2 6
x y
y
y x x

 
 
  
 
3 2 13
4
3 3
2 2 3 13
3 2 6
x y
y
y x x
 
  

    

3 2 12 13
3 10 13
4 2 3 13
8 4 9 13
3 2 6
x y y
x y
y x x
y x x
   
  
    
       
3 10 13
5 8 13
x y
x y
  
 
    
5
3
15 50 65
15 24 39
x y
x y


 
   
Sumando: 26 26 1y y  
3 10 13 3 10 13 3 3 1x y x x x        
 
 





2 1
3
3
3 5 3 12
x
y
x y x

  
   
 
 
2 1
3
3
3 5 3 12
x
y
x y x

   

    
2 2
3
3
3 15 3 3 12
x
y
x y x
 
   
 
    
2 2 3 9
6 3 3
x y
x y
    
 
   
2 3 11
2 1
x y
x y
   
 
   
 1
2 3 11
2 1
x y
x y
 
  
  
Sumando: 2 10 5y y  
2 1 2 5 1 2 4 2x y x x x          
15
Solución: x  2 ; y  5
Ejercicio nº 15.-
Resuelve el sistema:
Solución:
Solución: x  2 ; y  4
Ejercicio nº 16.-
a Busca dos pares de valores que sean solución de la ecuación 5x  4y  1.
b Representa gráficamente la recta 5x  4y  1.
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Solución:
Le damos valores a x y obtenemos, por ejemplo, los puntos:
x  1  y  1  Punto 1, 1
x  3  y  4  Punto 3, 4
b Utilizamos los dos puntos obtenidos en el apartado anterior:
c Los puntos de la recta son las soluciones de la ecuación.
 





7 9 2 4
15
2 2
5 1 25
x y x
x y
 
  
  
 
7 9 2 4
15
2 2
5 1 25
x y x
x y
  
   

   
7 9 2 4 30
5 5 5 25
x y x
x y
     
 
   
5 9 26
5 5 30
x y
x y
   
 
  
( 1)
5 9 26
5 5 30
x y
x y 
  
   
56
Sumando: 14 56 4
14
y y

     

5 5 30 6 4 6 2x y x y x x         
5 1
a) 5 4 1 5 1 4
4
x
x y x y y

      
16
Ejercicio nº 17.-
a Obtén dos puntos de la recta 3x  2y  1 y represéntala gráficamente.
b ¿Alguno de los dos puntos obtenidos en el apartado anterior es solución de la ecuación 3x  2y  1?
c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta?
Solución:
Damos valores a x y obtenemos los puntos:
x  1  y  1  Punto 1, 1
x  1  y  2  Punto 1, 2
b Los dos puntos obtenidos son solución de la ecuación.
c Los puntos de la recta son las soluciones de la ecuación.
Ejercicio nº 18.-
a Representa gráficamente la recta 5x  2y  3.
b ¿Cuántas soluciones tiene la ecuación 5x  2y  3? Obtén dos de sus soluciones.
c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta?
Solución:
Le damos valores a x y obtenemos, por ejemplo, los puntos:
x  1  y  1  Punto 1, 1
x  1  y  4  Punto 1, 4
b Tiene infinitas soluciones. Dos de ellas son, por ejemplo, 1, 1 y 1, 4.
3 1
a) 3 2 1 3 1 2
2
x
x y x y y

      

   
3 5
a) 5 2 3
2
x
x y y
17
c Los puntos de la recta son las soluciones de la ecuación.
Ejercicio nº 19.-
A la vista de la siguiente gráfica:
a Obtén tres puntos de la recta ax  by  c.
b Halla tres soluciones de la ecuación ax  by  c.
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Solución:
a Por ejemplo: 0, 0; 2, 1; 4, 2.
b Por ejemplo: 0, 0; 2, 1; 4, 2.
c Los puntos de la recta son las soluciones de la ecuación.
Ejercicio nº 20.-
a De los siguientes pares de valores:
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Solución:
a Sustituimos cada uno de ellos en la ecuación:
        
     
     
3 2 1
0, 10 ; , 19 ; 1, 4 ; 0, ; , 7
2 5 2
  
1
¿cuáles son soluciones de la ecuación 3 5?
2
x y  
1
b) Representa gráficamente la recta 3 5.
2
x y  
   
       
1
0,10 3 0 10 5 0,10 es solución.
2
3 3 1 3
,19 3 19 5 ,19 es solución.
2 2 2 2
1
1, 4 3 1 4 1 1, 4 no es solución.
2
2 1 2 1 2
0, 3 0 0, no es solución.
5 2 5 5 5
1 1 1
, 7 3
2 2 2
      
   
         
   
            
   
         
   
   
        
   
1
7 5 , 7 es solución.
2
 
    
 
18
c Los puntos de la recta son las soluciones de la ecuación.
Ejercicio nº 21.-
Averigua cuántas soluciones tiene el siguiente sistema de ecuaciones, representando las dos rectas en los
mismos ejes:
Solución:
Representamos las dos rectas obteniendo dos puntos de cada una de ellas:
x  y  5  y  x  5 2x  2y  2  x  y  1  y  x  1
Son paralelas. El sistema no tiene solución.
   
 
 
1
b) Tomamos dos puntos de la recta, por ejemplo 0,10 y , 7 , y la representamos:
2



5
2 2 2
  
  
x y
x y
0 5 0 1
1 4 1 2
x y x y

19
Ejercicio nº 22.-
a Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan:
b ¿Cuántas soluciones tiene el sistema anterior?
Solución:
a Representamos las dos rectas obteniendo dos puntos de cada una de ellas:
b Hay una solución: 1, 0 es decir, x  1 , y  0.
Ejercicio nº 23.-
a Representa en los mismos ejes las rectas:
b ¿Qué dirías acerca de la solución del sistema anterior?
Solución:
a Obtenemos dos puntos de cada una de las rectas para representarlas:



2 2
1
 
 
x y
x y
         

2 2 2 2 1 1
0 2 0 1
1 0 1 0
x y y x x y y x
x y x y



2 1
2 2
  
 
x y
x y
2 1 2 1 2 2 2 2
0 1 0 2
1 3 1 0
x y y x x y x y
x y x y
          

20
Son paralelas.
b El sistema no tiene solución, es incompatible, ya que las rectas no se cortan.
Ejercicio nº 24.-
a Representa en los mismos ejes las rectas:
b ¿En qué punto o puntos se cortan? ¿Cuántas soluciones tendrá el sistema?
Solución:
a Representamos las rectas obteniendo dos puntos de cada una de ellas:
x  y  1  y  x  1 2x  2y  2  x  y  1  y  x  1
b Se cortan en todos sus puntos, puesto que se trata de la misma recta. El sistema tendrá infinitas soluciones: todos
los puntos de la recta.



1
2 2 2
x y
x y
  
  
0 1 Es la misma recta.
1 2
x y
21
Ejercicio nº 25.-
a Representa en los mismos ejes las rectas:
b ¿Cuántas soluciones tiene el sistema anterior? ¿Cuáles son?
Solución:
a Representamos las rectas obteniendo dos puntos de cada una de ellas:
b Tiene una solución: 2, 1 es decir, x  2, y  1.



2 0
2 4
 
  
x y
x y

               

4
2 0 2 2 4 2 4
2 2
0 0 0 2
2 1 2 3
x x
x y y x y x y y x y
x y x y
22
SOLUCIONES A LOS PROBLEMAS DE SISTEMAS
DE ECUACIONES
Problema nº 1.-
Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas
cifras, el número obtenido es 36 unidades mayor que el inicial.
Solución:
Llamamos x a la primera cifra del número la de las decenas e y a la segunda la de las unidades). Así, el número
será 10x  y. Tenemos que:
y  10  x  10  3  7
El número buscado es el 37.
Problema nº 2.-
En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres
ángulos?
Solución:
Llamamos x e y a los ángulos agudos del triángulo:
Tenemos que:
x  y  12  39  12  51
Los ángulos miden 39, 51 y 90.
Problema nº 3.-
La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90
km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad
constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el
momento del encuentro.
10 10 10
10 10 36 9 9 36 4
x y x y x y
y x x y x y x y
        
   
            
10
10 4 6 2 3
4
y x
x x x x
y x
   
       
   
12 12 78
12 90 2 78 39
90 90 2
x y x y
y y y y
x y x y
    
          
    
23
Solución:
Llamamos x a la distancia que recorre el coche que sale de A hasta encontrarse.
Sabemos que e  v · t, donde e representa el espacio recorrido, v la velocidad y t el tiempo. Por tanto:
x  90t  90 · 1,5  135 km  255  x  255  135  120 km
Tardan 1,5 horas una hora y media en encontrarse. El coche que salió de A llevaba recorridos 135 km; y el que salió
de B, llevaba 120 km.
Problema nº 4.-
Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si
invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial.
Solución:
Llamamos x a la primera cifra del número la de las decenas e y a la segunda cifra la de las unidades. Así, el
número será 10x  y. Tenemos que:
y  3x  3 ·3  9
El número buscado es el 39.
Problema nº 5.-
La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es
de 24 cm2
. Calcula la longitud de sus dos bases.
Solución:
Llamamos x a la base menor e y a la base mayor.
Tenemos que:
90
255
255 80 255 90 80 255 170 1,5 horas
170
x t
x t t t t t
 

         
3
3
54
10 10 54 30 10 3 54 18 54 3
18
y
x x y
y x x y x x x x x x

  

             

24
y  3x  3 · 3  9
La base menor mide 3 cm y la base mayor, 9 cm.
Problema nº 6.-
La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada
una de ellas?
Solución:
Llamamos x e y a las edades de cada uno. Tenemos que:
Tienen 30 y 45 años.
Problema nº 7.-
Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero
sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números.
Solución:
Hagamos una tabla para entender mejor la situación:
Tenemos que:
x  y  12  16  12  28
Los números son el 28 y el 16.
Problema nº 8.-
El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2
cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo?
Solución:
Llamamos x a la longitud de cada uno de los dos lados iguales e y a la del lado desigual.
 
3
3 3
4
2 2 24 12 3 12 4 12 324
2
y x
y x y x
x y
x y x y x x x x
 
  
     
            

 
2
3 2 3 2 15 3 2 30 30
3
15
x
x y x x x x x
y
y x

          

  
15 30 15 45y x    
SI RESTAMOS 4
PRIMER NÚMERO x x  4
SEGUNDO NÚMERO y y  4
 
12 12
4 2 4 12 4 2 8 16
x y x y
x y y y y
     

         
25
Tenemos que:
x  2y  2  2 · 3  2  6  2  8
Los lados iguales miden 8 cm cada uno; y el lado desigual mide 3 cm.
Problema nº 9.-
Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad.
¿Cuánto dinero lleva cada uno?
Solución:
Llamamos x a la cantidad de dinero que lleva Pablo e y a la que lleva Alicia. Tenemos que:
x  y  20  90  20  70
Pablo lleva 70 € y Alicia, 90 €.
Problema nº 10.-
La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al
doble de la cifra de las centenas. Halla dicho número.
Solución:
Llamamos x a la cifra de las centenas que coincide con la de las unidades, por ser el número capicúa e y a la de
las decenas. Así, tenemos que:
El número que buscamos es el 282.
Problema nº 11.-
El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un
sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo.
Solución:
Llamamos x a la base e y a la altura.
 
2 19
2 2 2 19 4 4 19 5 15 3
2 2
x y
y y y y y y
x y
  
           
  
160 20 160 2 180 90
10 10 20
x y y y y y
x y x y
         

     
2 12 12 2
2 4 2 4 12 2 2 4 8 4 2 8
x y y x
y x y x x x x x y
     
 
               
26
Tenemos que:
x  y  5  3  5  8
La base mide 8 cm y la altura, 3 cm.
Problema nº 12.-
Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de
0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase?
Solución:
Hacemos una tabla para organizar la información:
Tenemos que:
y  40  x  40  15  25
Hemos puesto 15 litros del primer tipo y 25 litros del segundo.
Problema nº 13.-
El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el
quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números.
Solución:
Llamamos x al primer número e y al segundo. Así, tenemos que:
y  14  4x  14  4 · 3  14  12  2
2 2 22 11 5 11 2 6 3
5 5
x y x y y y y y
x y x y
            
 
    
1er
TIPO 2º TIPO MEZCLA
N. LITROS x y 40
PRECIO/LITRO
(euros) 0,94 0,86 0,89
PRECIO TOTAL
(euros) 0,94x 0,86y 35,6
 
4040
0,94 0,86 40 35,60,94 0,86 35,6
y xx y
x xx y
    

      
1,2
0,94 34,4 0,86 35,6 0,08 1,2 15
0,08
x x x x        
 
14 44 142 7
2
7 5 14 47 5
7 5
y
y xx yx
x xx y
x y
      
 
        
63
7 70 20 21 63 3
21
x x x x        
27
Los números son el 3 y el 2.
Problema nº 14.-
Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en
4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo?
Solución:
Uno de los ángulos mide x; el otro, 122  x, y el tercero, y.
Tenemos que:
Los ángulos miden 54, 58 y 122°  54°  68.
Problema nº 15.-
Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión
en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los
beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada
producto?
Solución:
Hacemos una tabla:
Tenemos que:
y  10000  x  10000  8000  2000
Invirtió 8000 € en el primer producto y 2000 € en el segundo.
4 4
4 58 54
122 180 58
y x y x
x x
x y x y
    
      
     
4 54 4 58y x     
INVERSIÓN BENEFICIO
PRIMER
PRODUCTO x 0,05x
SEGUNDO
PRODUCTO y 0,035y
 
1000010000
0,05 0,035 10000 3300,05 0,035 330
y xx y
x xx y
    

      
680
0,05 350 0,035 330 0,085 680 8000
0,085
x x x x        

Más contenido relacionado

La actualidad más candente

División de Monomios y Polinomios
División de Monomios y PolinomiosDivisión de Monomios y Polinomios
División de Monomios y PolinomiosSuperate Kriete
 
Ejercicios de matematica1 ecuacion de la recta
Ejercicios de matematica1 ecuacion de la rectaEjercicios de matematica1 ecuacion de la recta
Ejercicios de matematica1 ecuacion de la rectaantoniojesus96
 
Ejercicios problemáticos sobre productos notables y factorización.
Ejercicios problemáticos sobre productos notables y factorización.Ejercicios problemáticos sobre productos notables y factorización.
Ejercicios problemáticos sobre productos notables y factorización.1LAlvarezGonzalez
 
Funciones cuadráticas teoria y actividades resueltas 3ºeso
Funciones cuadráticas   teoria y actividades resueltas 3ºesoFunciones cuadráticas   teoria y actividades resueltas 3ºeso
Funciones cuadráticas teoria y actividades resueltas 3ºesomgarmon965
 
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013Victor Alegre
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionestinardo
 
Ecuaciones de 1er y 2do grado
Ecuaciones de 1er y 2do gradoEcuaciones de 1er y 2do grado
Ecuaciones de 1er y 2do gradoMiguel Vasquez
 
Ejercicios ecuaciones-de-primer-grado
Ejercicios ecuaciones-de-primer-gradoEjercicios ecuaciones-de-primer-grado
Ejercicios ecuaciones-de-primer-gradolenner_santos
 
Paralelas y ángulos esconocidos
Paralelas y ángulos esconocidosParalelas y ángulos esconocidos
Paralelas y ángulos esconocidosracevedo5
 
Demostraciones de Identidades trigonométricas
Demostraciones de Identidades trigonométricasDemostraciones de Identidades trigonométricas
Demostraciones de Identidades trigonométricasElkin J. Navarro
 
Guia de Potencias.
Guia de Potencias.Guia de Potencias.
Guia de Potencias.LoqueSea .
 
20 ejercicios planteamientos
20 ejercicios planteamientos20 ejercicios planteamientos
20 ejercicios planteamientosMarcelo Calderón
 
Ejercicios De Ecuaciones De Primer Grado
Ejercicios De Ecuaciones De Primer GradoEjercicios De Ecuaciones De Primer Grado
Ejercicios De Ecuaciones De Primer Gradoanmenra
 

La actualidad más candente (20)

División de Monomios y Polinomios
División de Monomios y PolinomiosDivisión de Monomios y Polinomios
División de Monomios y Polinomios
 
Ejercicios de matematica1 ecuacion de la recta
Ejercicios de matematica1 ecuacion de la rectaEjercicios de matematica1 ecuacion de la recta
Ejercicios de matematica1 ecuacion de la recta
 
Ejercicios problemáticos sobre productos notables y factorización.
Ejercicios problemáticos sobre productos notables y factorización.Ejercicios problemáticos sobre productos notables y factorización.
Ejercicios problemáticos sobre productos notables y factorización.
 
Funciones cuadráticas teoria y actividades resueltas 3ºeso
Funciones cuadráticas   teoria y actividades resueltas 3ºesoFunciones cuadráticas   teoria y actividades resueltas 3ºeso
Funciones cuadráticas teoria y actividades resueltas 3ºeso
 
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Preguntas de Algebra
Preguntas de AlgebraPreguntas de Algebra
Preguntas de Algebra
 
Ejercicios ecuaciones-de-primer-grado
Ejercicios ecuaciones-de-primer-gradoEjercicios ecuaciones-de-primer-grado
Ejercicios ecuaciones-de-primer-grado
 
Ecuaciones de 1er y 2do grado
Ecuaciones de 1er y 2do gradoEcuaciones de 1er y 2do grado
Ecuaciones de 1er y 2do grado
 
Ejercicios ecuaciones-de-primer-grado
Ejercicios ecuaciones-de-primer-gradoEjercicios ecuaciones-de-primer-grado
Ejercicios ecuaciones-de-primer-grado
 
Paralelas y ángulos esconocidos
Paralelas y ángulos esconocidosParalelas y ángulos esconocidos
Paralelas y ángulos esconocidos
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Demostraciones de Identidades trigonométricas
Demostraciones de Identidades trigonométricasDemostraciones de Identidades trigonométricas
Demostraciones de Identidades trigonométricas
 
Guia de Potencias.
Guia de Potencias.Guia de Potencias.
Guia de Potencias.
 
Preguntas de oral - múltiple opción
Preguntas de oral  - múltiple opciónPreguntas de oral  - múltiple opción
Preguntas de oral - múltiple opción
 
20 ejercicios planteamientos
20 ejercicios planteamientos20 ejercicios planteamientos
20 ejercicios planteamientos
 
Ejercicios de paralelas y perpendiculares
Ejercicios de paralelas y perpendicularesEjercicios de paralelas y perpendiculares
Ejercicios de paralelas y perpendiculares
 
Unidad 2 . Seleccion sobre Polinomios
Unidad 2 . Seleccion sobre PolinomiosUnidad 2 . Seleccion sobre Polinomios
Unidad 2 . Seleccion sobre Polinomios
 
Ejercicios De Ecuaciones De Primer Grado
Ejercicios De Ecuaciones De Primer GradoEjercicios De Ecuaciones De Primer Grado
Ejercicios De Ecuaciones De Primer Grado
 
Guia de factorización de trinomios
Guia de factorización de trinomiosGuia de factorización de trinomios
Guia de factorización de trinomios
 

Similar a Ejercicios de sistemas de ecuaciones

Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacioneskomeloonpasto
 
Ejercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones.pdfEjercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones.pdfEducación
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesGabriela Caballero
 
Ejercicios de Funcion Lineal en matematicas
Ejercicios de Funcion Lineal en matematicasEjercicios de Funcion Lineal en matematicas
Ejercicios de Funcion Lineal en matematicasJony Tes
 
Ejercicios de Funcion Lineal.pdf
Ejercicios de Funcion Lineal.pdfEjercicios de Funcion Lineal.pdf
Ejercicios de Funcion Lineal.pdfEducación
 
Ejercicios de funcion lineal
Ejercicios de funcion linealEjercicios de funcion lineal
Ejercicios de funcion linealanitamariarengifo
 
19 igualdades-notables-ecuaciones-sistemas
19 igualdades-notables-ecuaciones-sistemas19 igualdades-notables-ecuaciones-sistemas
19 igualdades-notables-ecuaciones-sistemasalmuenglish
 
Ejercicios de funcion lineal 2
Ejercicios de funcion lineal 2Ejercicios de funcion lineal 2
Ejercicios de funcion lineal 2juan20132012
 
Ud4 ecuaciones y sistemas
Ud4 ecuaciones y sistemasUd4 ecuaciones y sistemas
Ud4 ecuaciones y sistemasFcoJavierMesa
 
Ejercicios de expresiones algebraicas.pdf
Ejercicios de expresiones algebraicas.pdfEjercicios de expresiones algebraicas.pdf
Ejercicios de expresiones algebraicas.pdfMaraCamilaOrtizPolan
 
3 ejercicios de expresiones algebraicas
3  ejercicios de expresiones algebraicas3  ejercicios de expresiones algebraicas
3 ejercicios de expresiones algebraicasmowglys
 
Semana 2 -_ecuaciones_lineales
Semana 2 -_ecuaciones_linealesSemana 2 -_ecuaciones_lineales
Semana 2 -_ecuaciones_linealesCarlos Vasquez
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer gradoMarlon Sanchez
 
Semana 330abril4mayo
Semana 330abril4mayoSemana 330abril4mayo
Semana 330abril4mayoJavi Ponce
 

Similar a Ejercicios de sistemas de ecuaciones (20)

Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones.pdfEjercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones.pdf
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de Funcion Lineal en matematicas
Ejercicios de Funcion Lineal en matematicasEjercicios de Funcion Lineal en matematicas
Ejercicios de Funcion Lineal en matematicas
 
Ejercicios de Funcion Lineal.pdf
Ejercicios de Funcion Lineal.pdfEjercicios de Funcion Lineal.pdf
Ejercicios de Funcion Lineal.pdf
 
Funcion lineal
Funcion linealFuncion lineal
Funcion lineal
 
Ejercicios de funcion lineal
Ejercicios de funcion linealEjercicios de funcion lineal
Ejercicios de funcion lineal
 
19 igualdades-notables-ecuaciones-sistemas
19 igualdades-notables-ecuaciones-sistemas19 igualdades-notables-ecuaciones-sistemas
19 igualdades-notables-ecuaciones-sistemas
 
Ejercicios de funcion lineal 2
Ejercicios de funcion lineal 2Ejercicios de funcion lineal 2
Ejercicios de funcion lineal 2
 
Ud4 ecuaciones y sistemas
Ud4 ecuaciones y sistemasUd4 ecuaciones y sistemas
Ud4 ecuaciones y sistemas
 
Ejercicios de expresiones algebraicas.pdf
Ejercicios de expresiones algebraicas.pdfEjercicios de expresiones algebraicas.pdf
Ejercicios de expresiones algebraicas.pdf
 
3 ejercicios de expresiones algebraicas
3  ejercicios de expresiones algebraicas3  ejercicios de expresiones algebraicas
3 ejercicios de expresiones algebraicas
 
Ejercicios de expresiones algebraicas
Ejercicios de expresiones algebraicasEjercicios de expresiones algebraicas
Ejercicios de expresiones algebraicas
 
Semana 2 -_ecuaciones_lineales
Semana 2 -_ecuaciones_linealesSemana 2 -_ecuaciones_lineales
Semana 2 -_ecuaciones_lineales
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
 
Ecuaciones1grado
Ecuaciones1gradoEcuaciones1grado
Ecuaciones1grado
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
 
Semana 330abril4mayo
Semana 330abril4mayoSemana 330abril4mayo
Semana 330abril4mayo
 
Examen bimestral 4 segundo solucion
Examen bimestral 4   segundo solucionExamen bimestral 4   segundo solucion
Examen bimestral 4 segundo solucion
 
Practica 19 ecuaciones y sistemas de ecuaciones de 1er grado y problemas solu...
Practica 19 ecuaciones y sistemas de ecuaciones de 1er grado y problemas solu...Practica 19 ecuaciones y sistemas de ecuaciones de 1er grado y problemas solu...
Practica 19 ecuaciones y sistemas de ecuaciones de 1er grado y problemas solu...
 

Más de Cristian Rodrigo Garcia Ardila

Imprimir realidad aumentada y virtual. tecnologia. martín educaplay
Imprimir realidad aumentada y virtual. tecnologia. martín   educaplayImprimir realidad aumentada y virtual. tecnologia. martín   educaplay
Imprimir realidad aumentada y virtual. tecnologia. martín educaplayCristian Rodrigo Garcia Ardila
 
Guia Pedagógica Ruta de Atención Integral Para Convivencia Escolar
Guia Pedagógica Ruta de Atención Integral Para Convivencia EscolarGuia Pedagógica Ruta de Atención Integral Para Convivencia Escolar
Guia Pedagógica Ruta de Atención Integral Para Convivencia EscolarCristian Rodrigo Garcia Ardila
 

Más de Cristian Rodrigo Garcia Ardila (20)

Word 2013
Word 2013Word 2013
Word 2013
 
Excel 2013
Excel 2013Excel 2013
Excel 2013
 
Ciencia y tecnologia
Ciencia y tecnologiaCiencia y tecnologia
Ciencia y tecnologia
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Fuerzas simultaneas
Fuerzas simultaneasFuerzas simultaneas
Fuerzas simultaneas
 
El triangulo
El trianguloEl triangulo
El triangulo
 
preguntas-saber-9-matematicas
preguntas-saber-9-matematicaspreguntas-saber-9-matematicas
preguntas-saber-9-matematicas
 
Plan anual tic 2018
Plan anual tic 2018Plan anual tic 2018
Plan anual tic 2018
 
Formato de informe del proyecto integrador
Formato de informe del proyecto integradorFormato de informe del proyecto integrador
Formato de informe del proyecto integrador
 
Imprimir realidad aumentada y virtual. tecnologia. martín educaplay
Imprimir realidad aumentada y virtual. tecnologia. martín   educaplayImprimir realidad aumentada y virtual. tecnologia. martín   educaplay
Imprimir realidad aumentada y virtual. tecnologia. martín educaplay
 
Ruta de atencion tipo iii
Ruta de atencion tipo iiiRuta de atencion tipo iii
Ruta de atencion tipo iii
 
Ruta de atencion tipo ii
Ruta de atencion tipo iiRuta de atencion tipo ii
Ruta de atencion tipo ii
 
Ruta de atencion tipo i
Ruta de atencion tipo iRuta de atencion tipo i
Ruta de atencion tipo i
 
Modulo v convvencia escolar
Modulo v convvencia escolarModulo v convvencia escolar
Modulo v convvencia escolar
 
Modulo iv proceso de mediacion escolar
Modulo iv proceso de mediacion escolarModulo iv proceso de mediacion escolar
Modulo iv proceso de mediacion escolar
 
Modulo III mediacion escolar.pptx
Modulo III mediacion escolar.pptxModulo III mediacion escolar.pptx
Modulo III mediacion escolar.pptx
 
Modulo II Los MASC.pptx
Modulo II Los MASC.pptxModulo II Los MASC.pptx
Modulo II Los MASC.pptx
 
Modulo I conflicto.pptx
Modulo I conflicto.pptxModulo I conflicto.pptx
Modulo I conflicto.pptx
 
Guia no. 49-Convivencia Escolar
Guia no. 49-Convivencia EscolarGuia no. 49-Convivencia Escolar
Guia no. 49-Convivencia Escolar
 
Guia Pedagógica Ruta de Atención Integral Para Convivencia Escolar
Guia Pedagógica Ruta de Atención Integral Para Convivencia EscolarGuia Pedagógica Ruta de Atención Integral Para Convivencia Escolar
Guia Pedagógica Ruta de Atención Integral Para Convivencia Escolar
 

Último

DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORGonella
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsxJuanpm27
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...YobanaZevallosSantil1
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxLudy Ventocilla Napanga
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaLuis Minaya
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdfRAMON EUSTAQUIO CARO BAYONA
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxEribertoPerezRamirez
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 

Último (20)

Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIOR
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 

Ejercicios de sistemas de ecuaciones

  • 1. 1 EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: b) Resuelve por reducción: Ejercicio nº 2.- a) Resuelve por igualación: b) Resuelve por reducción: Ejercicio nº 3.- a Resuelve por sustitución: b Resuelve por reducción: Ejercicio nº 4.- a) Resuelve por sustitución: b) Resuelve por igualación: Ejercicio nº 5.- a Resuelve por igualación: b Resuelve por reducción:    5 2 1 3 3 5 x y x y         2 6 4 3 14 x y x y        5 2 2 2 2 x y x y        5 3 2 4 12 x y x y          3 5 15 2 3 9     x y x y    4 6 2 6 5 1     x y x y    2 3 14 3 14 x y x y          2 3 2 6 12 1 x y x y         5 2 11 2 3 12     x y x y    2 4 7 3 5 4      x y x y
  • 2. 2 Ejercicio nº 6.- Resuelve cada uno de los siguientes sistemas: Ejercicio nº 7.- Resuelve los siguientes sistemas: Ejercicio nº 8.- Resuelve los siguientes sistemas: Ejercicio nº 9.- Resuelve estos sistemas: Ejercicio nº 10.- Resuelve los siguientes sistemas:    a) 2 1 3 10 x y x y          b) 2 4 2 4 3 x y x y         a) 4 1 2 5 x y x y         b) 3 4 6 2 1 x y x y         a) 3 2 4 2 2 x y x y         b) 4 5 3 12 15 x y x y        a) 2 3 1 3 2 4 x y x y        b) 4 3 5 8 6 10 x y x y         a) 4 9 2 2 2 x y x y      
  • 3. 3 Ejercicio nº 11.- Resuelve este sistema: Ejercicio nº 12.- Resuelve el siguiente sistema: Ejercicio nº 13.- Resuelve el siguiente sistema: Ejercicio nº 14.- Resuelve este sistema de ecuaciones: Ejercicio nº 15.- Resuelve el sistema: Ejercicio nº 16.- a Busca dos pares de valores que sean solución de la ecuación 5x  4y  1. b Representa gráficamente la recta 5x  4y  1.    b) 5 4 3 10 8 6 x y x y                2 4 9 3 2 2 1 4 2 3 2 3 3 x y x y x              2 1 3 11 2 3 6 2 1 6 5 10 5 x y x y                 3 2 13 4 3 3 2 2 3 13 3 2 6 x y y y x x                  2 1 3 3 3 5 3 12 x y x y x                7 9 2 4 15 2 2 5 1 25 x y x x y        
  • 4. 4 c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Ejercicio nº 17.- a Obtén dos puntos de la recta 3x  2y  1 y represéntala gráficamente. b ¿Alguno de los dos puntos obtenidos en el apartado anterior es solución de la ecuación 3x  2y  1? c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta? Ejercicio nº 18.- a Representa gráficamente la recta 5x  2y  3. b ¿Cuántas soluciones tiene la ecuación 5x  2y  3? Obtén dos de sus soluciones. c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta? Ejercicio nº 19.- A la vista de la siguiente gráfica: a Obtén tres puntos de la recta ax  by  c. b Halla tres soluciones de la ecuación ax  by  c. c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Ejercicio nº 20.- a De los siguientes pares de valores: c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Ejercicio nº 21.- Averigua cuántas soluciones tiene el siguiente sistema de ecuaciones, representando las dos rectas en los mismos ejes:                      3 2 1 0, 10 ; , 19 ; 1, 4 ; 0, ; , 7 2 5 2    1 ¿cuáles son soluciones de la ecuación 3 5? 2 x y   1 b) Representa gráficamente la recta 3 5. 2 x y  
  • 5. 5 Ejercicio nº 22.- a Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan: b ¿Cuántas soluciones tiene el sistema anterior? Ejercicio nº 23.- a Representa en los mismos ejes las rectas: b ¿Qué dirías acerca de la solución del sistema anterior? Ejercicio nº 24.- a Representa en los mismos ejes las rectas: b ¿En qué punto o puntos se cortan? ¿Cuántas soluciones tendrá el sistema? Ejercicio nº 25.- a Representa en los mismos ejes las rectas: b ¿Cuántas soluciones tiene el sistema anterior? ¿Cuáles son?    5 2 2 2       x y x y    2 2 1     x y x y    2 1 2 2      x y x y    1 2 2 2 x y x y          2 0 2 4      x y x y
  • 6. 6 PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor que el inicial. Problema nº 2.- En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres ángulos? Problema nº 3.- La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90 km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el momento del encuentro. Problema nº 4.- Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial. Problema nº 5.- La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es de 24 cm2 . Calcula la longitud de sus dos bases. Problema nº 6.- La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada una de ellas? Problema nº 7.- Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números. Problema nº 8.- El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2 cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo? Problema nº 9.- Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad. ¿Cuánto dinero lleva cada uno? Problema nº 10.- La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al doble de la cifra de las centenas. Halla dicho número.
  • 7. 7 Problema nº 11.- El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo. Problema nº 12.- Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de 0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase? Problema nº 13.- El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números. Problema nº 14.- Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en 4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo? Problema nº 15.- Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada producto?
  • 8. 8 SOLUCIONES A LOS EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: b) Resuelve por reducción: Solución: 2x  y  6  y  6  2x  6  4  2 Solución: x  2 ; y  2 Ejercicio nº 2.- a) Resuelve por igualación: b) Resuelve por reducción: Solución:    5 2 1 3 3 5 x y x y         2 6 4 3 14 x y x y     1 5 a) 5 2 1 2 1 5 3 15 3 3 5 3 5 6 3 15 103 3 5 2 2 x x y y x x x x x xx y                               7 1 21 7 21 3 x x        5 1 1 5 8 43 2 2 6 3 x y       1 4 : ; 3 3 Solución x y   b) 2 6 4 3 14 x y x y         3 6 3 18 4 3 14 x y x y           Sumando: 2 4 2x x        5 2 2 2 2 x y x y        5 3 2 4 12 x y x y       a) 5 2 2 2 2 x y x y       
  • 9. 9 Solución: x  0 ; y  3 Ejercicio nº 3.- a Resuelve por sustitución: b Resuelve por reducción: Solución: Solución: x  0 ; y  3 2 2 2 2 8 2 2 2 2 2 10 10 12 85 5 12 3 2 2 y x y y y y y y x y                      2 4 2 2 2 2 3 3 3 2 2 : ; 3 3 x Solución x y              b) 5 3 2 4 12 x y x y          4 20 4 12 2 4 12 x y x y          Sumando: 18 0 0x x          5 3 5 3 3x y x y y    3 5 15 2 3 9     x y x y    4 6 2 6 5 1     x y x y 15 5 3 5 15a) 3 15 5 30 10 2 3 9 3 9 30 10 9 272 3 9 3 3 y x y x y y y y y yx y                               57 19 57 3 19 y y          15 5 15 5 3 0 0 3 3 3 y x        b) 4 6 2 6 5 1 x y x y          5 6 20 30 10 36 30 6 x y x y           4 1 Sumando: 16 4 16 4 x x       1 3 1 4 6 2 4 6 2 1 6 2 6 3 4 6 2 x y y y y y                      1 1 : ; 4 2 Solución x y  
  • 10. 10 Ejercicio nº 4.- a) Resuelve por sustitución: b) Resuelve por igualación: Solución: Solución: x  4 ; y  2 Ejercicio nº 5.- a Resuelve por igualación: b Resuelve por reducción: Solución: Solución: x  3 ; y  2    2 3 14 3 14 x y x y          2 3 2 6 12 1 x y x y       a) 2 3 14 2 3 3 14 14 2 9 42 14 3 14 3 14 x y x x x x x y y x                      28 7 28 4 7 x x         3 4 14 12 14 2y         2 2b) 2 3 2 2 2 1 63 8 8 1 6 3 121 6 6 12 1 12 xx y y x x x x x yx y                          7 1 14 7 14 2 x x           2 2 1 22 2 1 3 3 3 x y      1 1 : ; 2 3 Solución x y     5 2 11 2 3 12     x y x y    2 4 7 3 5 4      x y x y 11 25 2 11a) 11 2 12 35 5 212 3 2 3 12 2 yx y x y y y xx y                   38 22 4 60 15 38 19 2 19 y y y y             11 2 211 2 15 3 5 5 5 y x       
  • 11. 11 Ejercicio nº 6.- Resuelve cada uno de los siguientes sistemas: Solución: Solución: x  3 ; y  1 Ejercicio nº 7.- Resuelve los siguientes sistemas: Solución: Solución: x  3 ; y  1 b) 2 4 7 3 5 4 x y x y         3 2 6 12 21 6 10 8 x y x y          29 Sumando: 2 29 2 y y   29 51 2 4 7 2 4 7 2 58 7 2 51 2 2 x y x x x x                        51 29 : ; 2 2 Solución x y     a) 2 1 3 10 x y x y          b) 2 4 2 4 3 x y x y      a) 2 1 3 10 x y x y            1 2 3 1 2 10 3 6 10 7 7 1 x y y y y y y y                       1 2 1 2 1 1 2 3x y         b) 2 4 2 4 3 x y x y           2 4 2 2 4 4 3 4 8 4 3 0 11 No tiene solución. y x y y y y                  a) 4 1 2 5 x y x y         b) 3 4 6 2 1 x y x y      a) 4 1 2 5 x y x y           1 4 2 1 4 5 2 8 5 7 7 1 x y y y y y y y                    1 4 1 4 1 3x y       b) 3 4 6 2 1 x y x y           4 3 6 2 4 3 1 6 8 6 1 0 9 No tiene solución. y x x x x x                
  • 12. 12 Ejercicio nº 8.- Resuelve los siguientes sistemas: Solución: Solución: x  0 ; y  2 El sistema tiene infinitas soluciones. Ejercicio nº 9.- Resuelve estos sistemas: Solución: Solución: x  2 ; y  1 No tiene solución.    a) 3 2 4 2 2 x y x y         b) 4 5 3 12 15 x y x y     a) 3 2 4 2 2 x y x y          3 2 2 2 4 3 4 4 4 7 0 0 2 2 x x x x x x y x                  2 2 2 2 0 2y x      b) 4 5 3 12 15 x y x y          5 4 3 5 4 12 15 15 12 12 15 0 0 x y y y y y                 a) 2 3 1 3 2 4 x y x y        b) 4 3 5 8 6 10 x y x y      a) 2 3 1 3 2 4 x y x y          2 3 4 6 2 9 6 12 x y x y           Sumando: 5 10 2x x               2 3 1 4 3 1 3 3 1x y y y y b) 4 3 5 8 6 10 x y x y         2 8 6 10 8 6 10 x y x y         Sumando: 0 20
  • 13. 13 Ejercicio nº 10.- Resuelve los siguientes sistemas: Solución: Solución: x  2 ; y  1 El sistema tiene infinitas soluciones. Ejercicio nº 11.- Resuelve este sistema: Solución: Solución: x  2 ; y  1 Ejercicio nº 12.- Resuelve el siguiente sistema:    a) 4 9 2 2 2 x y x y          b) 5 4 3 10 8 6 x y x y       a) 4 9 2 2 2 x y x y          4 9 1 x y x y         4 9 1 5 10 2x x x x            4 9 4 2 9 8 9 1y x          b) 5 4 3 10 8 6 x y x y          2 10 8 6 10 8 6 x y x y          Sumando: 0 0          2 4 9 3 2 2 1 4 2 3 2 3 3 x y x y x             2 4 2 8 99 4 16 3 273 2 23 2 2 3 2 4 3 6 3 2 41 4 22 3 2 3 33 3 x x yy x y x x y x x yx y x                                    4 3 11 4 3 11 4 8 2 6 6 1 x y x x x y y                      2 1 3 11 2 3 6 2 1 6 5 10 5 x y x y         
  • 14. 14 Solución: Solución: x  3 ; y  1 Ejercicio nº 13.- Resuelve el siguiente sistema: Solución: Solución: x  1 ; y  1 Ejercicio nº 14.- Resuelve este sistema de ecuaciones: Solución: 2 1 3 11 6 3 2 6 11 6 2 20 3 102 3 6 2 1 6 4 1 12 4 11 4 11 5 10 5 x y x y x y x y x y x y x y x y                                             10 3 10 3 4 11 21 7 3 4 11 y x x x x x y x                 10 3 10 3 3 10 9 1y x               3 2 13 4 3 3 2 2 3 13 3 2 6 x y y y x x           3 2 13 4 3 3 2 2 3 13 3 2 6 x y y y x x             3 2 12 13 3 10 13 4 2 3 13 8 4 9 13 3 2 6 x y y x y y x x y x x                     3 10 13 5 8 13 x y x y           5 3 15 50 65 15 24 39 x y x y         Sumando: 26 26 1y y   3 10 13 3 10 13 3 3 1x y x x x                  2 1 3 3 3 5 3 12 x y x y x             2 1 3 3 3 5 3 12 x y x y x            2 2 3 3 3 15 3 3 12 x y x y x              2 2 3 9 6 3 3 x y x y            2 3 11 2 1 x y x y            1 2 3 11 2 1 x y x y         Sumando: 2 10 5y y   2 1 2 5 1 2 4 2x y x x x          
  • 15. 15 Solución: x  2 ; y  5 Ejercicio nº 15.- Resuelve el sistema: Solución: Solución: x  2 ; y  4 Ejercicio nº 16.- a Busca dos pares de valores que sean solución de la ecuación 5x  4y  1. b Representa gráficamente la recta 5x  4y  1. c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Solución: Le damos valores a x y obtenemos, por ejemplo, los puntos: x  1  y  1  Punto 1, 1 x  3  y  4  Punto 3, 4 b Utilizamos los dos puntos obtenidos en el apartado anterior: c Los puntos de la recta son las soluciones de la ecuación.        7 9 2 4 15 2 2 5 1 25 x y x x y           7 9 2 4 15 2 2 5 1 25 x y x x y             7 9 2 4 30 5 5 5 25 x y x x y             5 9 26 5 5 30 x y x y          ( 1) 5 9 26 5 5 30 x y x y         56 Sumando: 14 56 4 14 y y         5 5 30 6 4 6 2x y x y x x          5 1 a) 5 4 1 5 1 4 4 x x y x y y        
  • 16. 16 Ejercicio nº 17.- a Obtén dos puntos de la recta 3x  2y  1 y represéntala gráficamente. b ¿Alguno de los dos puntos obtenidos en el apartado anterior es solución de la ecuación 3x  2y  1? c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta? Solución: Damos valores a x y obtenemos los puntos: x  1  y  1  Punto 1, 1 x  1  y  2  Punto 1, 2 b Los dos puntos obtenidos son solución de la ecuación. c Los puntos de la recta son las soluciones de la ecuación. Ejercicio nº 18.- a Representa gráficamente la recta 5x  2y  3. b ¿Cuántas soluciones tiene la ecuación 5x  2y  3? Obtén dos de sus soluciones. c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta? Solución: Le damos valores a x y obtenemos, por ejemplo, los puntos: x  1  y  1  Punto 1, 1 x  1  y  4  Punto 1, 4 b Tiene infinitas soluciones. Dos de ellas son, por ejemplo, 1, 1 y 1, 4. 3 1 a) 3 2 1 3 1 2 2 x x y x y y              3 5 a) 5 2 3 2 x x y y
  • 17. 17 c Los puntos de la recta son las soluciones de la ecuación. Ejercicio nº 19.- A la vista de la siguiente gráfica: a Obtén tres puntos de la recta ax  by  c. b Halla tres soluciones de la ecuación ax  by  c. c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Solución: a Por ejemplo: 0, 0; 2, 1; 4, 2. b Por ejemplo: 0, 0; 2, 1; 4, 2. c Los puntos de la recta son las soluciones de la ecuación. Ejercicio nº 20.- a De los siguientes pares de valores: c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Solución: a Sustituimos cada uno de ellos en la ecuación:                      3 2 1 0, 10 ; , 19 ; 1, 4 ; 0, ; , 7 2 5 2    1 ¿cuáles son soluciones de la ecuación 3 5? 2 x y   1 b) Representa gráficamente la recta 3 5. 2 x y               1 0,10 3 0 10 5 0,10 es solución. 2 3 3 1 3 ,19 3 19 5 ,19 es solución. 2 2 2 2 1 1, 4 3 1 4 1 1, 4 no es solución. 2 2 1 2 1 2 0, 3 0 0, no es solución. 5 2 5 5 5 1 1 1 , 7 3 2 2 2                                                                          1 7 5 , 7 es solución. 2         
  • 18. 18 c Los puntos de la recta son las soluciones de la ecuación. Ejercicio nº 21.- Averigua cuántas soluciones tiene el siguiente sistema de ecuaciones, representando las dos rectas en los mismos ejes: Solución: Representamos las dos rectas obteniendo dos puntos de cada una de ellas: x  y  5  y  x  5 2x  2y  2  x  y  1  y  x  1 Son paralelas. El sistema no tiene solución.         1 b) Tomamos dos puntos de la recta, por ejemplo 0,10 y , 7 , y la representamos: 2    5 2 2 2       x y x y 0 5 0 1 1 4 1 2 x y x y 
  • 19. 19 Ejercicio nº 22.- a Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan: b ¿Cuántas soluciones tiene el sistema anterior? Solución: a Representamos las dos rectas obteniendo dos puntos de cada una de ellas: b Hay una solución: 1, 0 es decir, x  1 , y  0. Ejercicio nº 23.- a Representa en los mismos ejes las rectas: b ¿Qué dirías acerca de la solución del sistema anterior? Solución: a Obtenemos dos puntos de cada una de las rectas para representarlas:    2 2 1     x y x y            2 2 2 2 1 1 0 2 0 1 1 0 1 0 x y y x x y y x x y x y    2 1 2 2      x y x y 2 1 2 1 2 2 2 2 0 1 0 2 1 3 1 0 x y y x x y x y x y x y            
  • 20. 20 Son paralelas. b El sistema no tiene solución, es incompatible, ya que las rectas no se cortan. Ejercicio nº 24.- a Representa en los mismos ejes las rectas: b ¿En qué punto o puntos se cortan? ¿Cuántas soluciones tendrá el sistema? Solución: a Representamos las rectas obteniendo dos puntos de cada una de ellas: x  y  1  y  x  1 2x  2y  2  x  y  1  y  x  1 b Se cortan en todos sus puntos, puesto que se trata de la misma recta. El sistema tendrá infinitas soluciones: todos los puntos de la recta.    1 2 2 2 x y x y       0 1 Es la misma recta. 1 2 x y
  • 21. 21 Ejercicio nº 25.- a Representa en los mismos ejes las rectas: b ¿Cuántas soluciones tiene el sistema anterior? ¿Cuáles son? Solución: a Representamos las rectas obteniendo dos puntos de cada una de ellas: b Tiene una solución: 2, 1 es decir, x  2, y  1.    2 0 2 4      x y x y                   4 2 0 2 2 4 2 4 2 2 0 0 0 2 2 1 2 3 x x x y y x y x y y x y x y x y
  • 22. 22 SOLUCIONES A LOS PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor que el inicial. Solución: Llamamos x a la primera cifra del número la de las decenas e y a la segunda la de las unidades). Así, el número será 10x  y. Tenemos que: y  10  x  10  3  7 El número buscado es el 37. Problema nº 2.- En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres ángulos? Solución: Llamamos x e y a los ángulos agudos del triángulo: Tenemos que: x  y  12  39  12  51 Los ángulos miden 39, 51 y 90. Problema nº 3.- La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90 km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el momento del encuentro. 10 10 10 10 10 36 9 9 36 4 x y x y x y y x x y x y x y                           10 10 4 6 2 3 4 y x x x x x y x                 12 12 78 12 90 2 78 39 90 90 2 x y x y y y y y x y x y                     
  • 23. 23 Solución: Llamamos x a la distancia que recorre el coche que sale de A hasta encontrarse. Sabemos que e  v · t, donde e representa el espacio recorrido, v la velocidad y t el tiempo. Por tanto: x  90t  90 · 1,5  135 km  255  x  255  135  120 km Tardan 1,5 horas una hora y media en encontrarse. El coche que salió de A llevaba recorridos 135 km; y el que salió de B, llevaba 120 km. Problema nº 4.- Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial. Solución: Llamamos x a la primera cifra del número la de las decenas e y a la segunda cifra la de las unidades. Así, el número será 10x  y. Tenemos que: y  3x  3 ·3  9 El número buscado es el 39. Problema nº 5.- La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es de 24 cm2 . Calcula la longitud de sus dos bases. Solución: Llamamos x a la base menor e y a la base mayor. Tenemos que: 90 255 255 80 255 90 80 255 170 1,5 horas 170 x t x t t t t t              3 3 54 10 10 54 30 10 3 54 18 54 3 18 y x x y y x x y x x x x x x                    
  • 24. 24 y  3x  3 · 3  9 La base menor mide 3 cm y la base mayor, 9 cm. Problema nº 6.- La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada una de ellas? Solución: Llamamos x e y a las edades de cada uno. Tenemos que: Tienen 30 y 45 años. Problema nº 7.- Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números. Solución: Hagamos una tabla para entender mejor la situación: Tenemos que: x  y  12  16  12  28 Los números son el 28 y el 16. Problema nº 8.- El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2 cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo? Solución: Llamamos x a la longitud de cada uno de los dos lados iguales e y a la del lado desigual.   3 3 3 4 2 2 24 12 3 12 4 12 324 2 y x y x y x x y x y x y x x x x                            2 3 2 3 2 15 3 2 30 30 3 15 x x y x x x x x y y x                 15 30 15 45y x     SI RESTAMOS 4 PRIMER NÚMERO x x  4 SEGUNDO NÚMERO y y  4   12 12 4 2 4 12 4 2 8 16 x y x y x y y y y                 
  • 25. 25 Tenemos que: x  2y  2  2 · 3  2  6  2  8 Los lados iguales miden 8 cm cada uno; y el lado desigual mide 3 cm. Problema nº 9.- Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad. ¿Cuánto dinero lleva cada uno? Solución: Llamamos x a la cantidad de dinero que lleva Pablo e y a la que lleva Alicia. Tenemos que: x  y  20  90  20  70 Pablo lleva 70 € y Alicia, 90 €. Problema nº 10.- La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al doble de la cifra de las centenas. Halla dicho número. Solución: Llamamos x a la cifra de las centenas que coincide con la de las unidades, por ser el número capicúa e y a la de las decenas. Así, tenemos que: El número que buscamos es el 282. Problema nº 11.- El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo. Solución: Llamamos x a la base e y a la altura.   2 19 2 2 2 19 4 4 19 5 15 3 2 2 x y y y y y y y x y                   160 20 160 2 180 90 10 10 20 x y y y y y x y x y                  2 12 12 2 2 4 2 4 12 2 2 4 8 4 2 8 x y y x y x y x x x x x y                        
  • 26. 26 Tenemos que: x  y  5  3  5  8 La base mide 8 cm y la altura, 3 cm. Problema nº 12.- Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de 0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase? Solución: Hacemos una tabla para organizar la información: Tenemos que: y  40  x  40  15  25 Hemos puesto 15 litros del primer tipo y 25 litros del segundo. Problema nº 13.- El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números. Solución: Llamamos x al primer número e y al segundo. Así, tenemos que: y  14  4x  14  4 · 3  14  12  2 2 2 22 11 5 11 2 6 3 5 5 x y x y y y y y x y x y                     1er TIPO 2º TIPO MEZCLA N. LITROS x y 40 PRECIO/LITRO (euros) 0,94 0,86 0,89 PRECIO TOTAL (euros) 0,94x 0,86y 35,6   4040 0,94 0,86 40 35,60,94 0,86 35,6 y xx y x xx y              1,2 0,94 34,4 0,86 35,6 0,08 1,2 15 0,08 x x x x           14 44 142 7 2 7 5 14 47 5 7 5 y y xx yx x xx y x y                   63 7 70 20 21 63 3 21 x x x x        
  • 27. 27 Los números son el 3 y el 2. Problema nº 14.- Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en 4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo? Solución: Uno de los ángulos mide x; el otro, 122  x, y el tercero, y. Tenemos que: Los ángulos miden 54, 58 y 122°  54°  68. Problema nº 15.- Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada producto? Solución: Hacemos una tabla: Tenemos que: y  10000  x  10000  8000  2000 Invirtió 8000 € en el primer producto y 2000 € en el segundo. 4 4 4 58 54 122 180 58 y x y x x x x y x y                   4 54 4 58y x      INVERSIÓN BENEFICIO PRIMER PRODUCTO x 0,05x SEGUNDO PRODUCTO y 0,035y   1000010000 0,05 0,035 10000 3300,05 0,035 330 y xx y x xx y              680 0,05 350 0,035 330 0,085 680 8000 0,085 x x x x        