SlideShare una empresa de Scribd logo
1 de 32
La fotosíntesis  utiliza energía de la luz solar para sintetizar productos ricos en energía, glucosa y oxigeno, a partir de reactivos pobres en energía, bióxido de carbono y agua. Así, la fotosíntesis convierte la energía electromagnética de la energía solar en energía química almacenada en uniones de oxigeno y glucosa.
La hojas y los cloroplastos son adaptaciones para la fotosíntesis
Ultraestructura  Los cloroplastos son organelos formados por una doble membrana externa que rodean un medio semilíquido,  el estroma .  Dentro del estroma se encuentran unos sacos membranosos en forma de disco que reciben el nombre de  tilacoides .
 
 
Fases de la Fotosíntesis  Proceso anabólico que se produce en los cloroplastos y en el que la energía luminosa es transformada en energía química que posteriormente será empleada para la fabricación de sustancias orgánicas a partir de sustancias inorgánicas. A) FASE LUMINOSA Se realiza en la membrana de los tilacoides. Consiste en un transporte de electrones, desencadenado por fotones, con síntesis de ATP y de  ADPH+H + .
 
 
 
ESTRUCTURA DE LA MEMBRANA DE LOS TILACOIDES La membrana de los tilacoides tiene una estructura de doble capa o membrana unitaria.  Integradas en esta doble capa están determinadas sustancias muy importantes en el proceso de la fotosíntesis y en particular los  fotosistemas I y II , ATPasas y citocromos.  Cada fotosistema contiene carotenos, clorofilas y proteínas. Estas moléculas captan la energía luminosa y la ceden a las moléculas vecinas presentes en cada fotosistema hasta que llega a una molécula de clorofila-a denominada  molécula diana .  Los diferentes carotenos y clorofilas captan fotones de unas determinadas longitudes de onda. De esta manera, el conjunto de las moléculas del fotosistema captan gran parte de la energía luminosa incidente, sólo determinadas longitudes de onda son reflejadas y, por lo tanto, no utilizadas
 
En particular, son reflejadas las radiaciones correspondientes a las longitudes de onda del verde y el amarillo
 
 
[object Object],[object Object],[object Object],[object Object],[object Object]
 
[object Object],[object Object],[object Object],[object Object]
III)  Obtención de energía. Síntesis de ATP (Teoría quimiosmótica) El transporte de electrones a través de los fotosistemas produce un bombeo de protones desde el estroma hacia el interior del tilacoide, pues los fotosistemas actúan como transportadores activos de protones extrayendo la energía necesaria para ello del propio transporte de electrones.  La lisis del agua también genera protones (H+ ). Todos estos protones se acumulan en el espacio intratilacoide, pues la membrana es impermeable a estos iones y no pueden salir. El exceso de protones genera un aumento de acidez en el interior del tilacoide y, por lo tanto, un gradiente electroquímico -exceso protones y de cargas positivas. Los protones sólo pueden salir a través de unas moléculas de los tilacoides: las ATPasa.  Las ATPasas actúan como canal de protones y de esta manera cataliza la síntesis de ATP. Es la salida de protones (H+ ) a través de las ATPasas la que actúa como energía impulsora para la síntesis de ATP.
IV)  Balance de la fotofosforilación acíclica : Teniendo en cuenta únicamente los productos iniciales y finales, y podemos hacerlo porque el resto de las sustancias se recuperan en su estado inicial, en la fotofosforilación acíclica se obtienen 1 NADPH+H + y 1 ATP. A su vez, la fotolisis del agua va a generar también un  tomo de oxígeno.
 
LA FOTOFOSFORILACIÓN CÍCLICA En esta vía la luz va a desencadenar un transporte de electrones a través de los tilacoides con producción sólo de ATP. Mecanismo:  El proceso parte de la excitación de la molécula diana del fotosistema I (clorofila-aI, P700) por la luz. Ahora bien, en este caso, los electones no irán al NADP+ sino que seguirán un proceso cíclico pasando por una serie de transportadores para volver a la clorofila aI.  En cada vuelta se sintetiza una molécula de  ATP  de la misma forma que en la fotofosforilación acíclica.
Balance de la fotofosforilación cíclica : En esta vía se produce una síntesis continua de ATP y no se requieren otros substratos que el ADP y el Pi y, naturalmente, luz (fotones). Es de destacar que no es necesaria la fotolisis del agua pues los electrones no son cedidos al NADP+ y que, por lo tanto, no se produce oxígeno.
REGULACIÓN DE AMBOS PROCESOS En el cloroplasto se emplean ambos procesos indistintamente en todo momento. El que se emplee uno más que otro va a depender de las necesidades de la célula o lo que en realidad es lo mismo, de la presencia o ausencia de los substratos y de los productos que se generan.  Así, si se consume mucho NADPH+H + en la síntesis de sustancias orgánicas, habrá mucho NADP+ , y será éste el que capte los electrones produciéndose la fotofosforilación acíclica. Si en el tilacoide hay mucho ADP y Pi y no hay NADP+ , entonces se dará la fotofosforilación cíclica. Será el consumo por la planta de ATP y de NADPH+H + , o, lo que es lo mismo, la existencia de los substratos ADP y NADP+ , la que determinará uno u otro proceso.
B) FASE OSCURA (CICLO DE CALVIN2) En el estroma de los cloroplastos, y como consecuencia de la fase luminosa, se van a obtener grandes cantidades de ATP y NADPH+H + , metabolitos que se van a utilizar en la síntesis de compuestos orgánicos.  Esta fase recibe el nombre de  Fase Oscura  porque en ella no se necesita directamente la luz, sino únicamente las sustancias que se producen en la fase luminosa. Durante la fase oscura se dan, fundamentalmente, dos procesos distintos:  -Síntesis de glucosa mediante la incorporación del CO2 a las cadenas carbonadas y su reducción, ciclo de Calvin propiamente dicho. - Reducción de los nitratos y de otras sustancias inorgánicas, base de la síntesis de los aminoácidos y de otros compuestos orgánicos.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
4) De cada 12 moléculas de  PGAL  obtenidas, 2 se unen dando una molécula de glucosa (C6H12O6) y el resto entra en un complejo proceso que tiene como objetivo la recuperación de las 6 moléculas de  RuP  (C5). Éstas, una vez recuperadas, entran de nuevo en el Ciclo de Calvin.  5) La glucosa así obtenida es polimerizada formándose almidón.
 
1ª) Incorporación del CO2 a la cadena carbonada de la RUBP. El CO2 reacciona con la ribulosa-1-5 difosfato (RUBP) para dar dos moléculas de ácido-3-fosfoglicérico (PGA). 2ª) Reducción del carbono del CO2 incorporado: Cada una de las moléculas de ácido-3- fosfoglicérico (PGA) es reducida por el NADPH a aldehído-3-fosfoglicérico (PGAL). El proceso es endergónico y precisa del ATP. 3ª) Si los procesos 1 y 2 anteriores se repiten 6 veces obtendremos 12 moléculas de aldehído-3-fosfoglicérico (PGAL). 4ª) Síntesis de glucosa: Dos de estas moléculas de aldehído-3-fosfoglicérico (PGAL) se condensan para dar una molécula de glucosa (GLU). Se obtienen, además, dos moléculas de fosfato inorgánico (P).
5ª) Recuperación de la ribulosa 1-5 difosfato: Las otras 10 moléculas de aldehído-3-fosfoglicérico (PGAL) reaccionan entre sí para dar 6 moléculas de ribulosa-5-fosfato (RUP). 6ª) Recuperación de la ribulosa 1-5 difosfato: Las 6 moléculas de ribulosa-5-fosfato (RUP) reaccionan con 6 de ATP para dar 6 de ribulosa-1-5 difosfato (RUBP), cerrándose el ciclo.
 
 

Más contenido relacionado

La actualidad más candente

Transporte de electrones y fosforilacion oxidativa (cap. viii)(1)
Transporte de electrones y fosforilacion oxidativa (cap. viii)(1)Transporte de electrones y fosforilacion oxidativa (cap. viii)(1)
Transporte de electrones y fosforilacion oxidativa (cap. viii)(1)
carloszoo
 
Tejidos Vegetales Adultos
Tejidos Vegetales AdultosTejidos Vegetales Adultos
Tejidos Vegetales Adultos
Cristian López
 
Phylum gastrotricha
Phylum gastrotrichaPhylum gastrotricha
Phylum gastrotricha
dreicash
 

La actualidad más candente (20)

musgos, hepáticas y helechos
 musgos, hepáticas y helechos  musgos, hepáticas y helechos
musgos, hepáticas y helechos
 
Cloroplasto
CloroplastoCloroplasto
Cloroplasto
 
Transporte de electrones y fosforilacion oxidativa (cap. viii)(1)
Transporte de electrones y fosforilacion oxidativa (cap. viii)(1)Transporte de electrones y fosforilacion oxidativa (cap. viii)(1)
Transporte de electrones y fosforilacion oxidativa (cap. viii)(1)
 
Fotosintesis
FotosintesisFotosintesis
Fotosintesis
 
Líquenes morfología, clasificación y ecología by Teodoro Chivatá Bogotá
Líquenes morfología, clasificación y ecología by Teodoro Chivatá BogotáLíquenes morfología, clasificación y ecología by Teodoro Chivatá Bogotá
Líquenes morfología, clasificación y ecología by Teodoro Chivatá Bogotá
 
Reproducción organismos del reino protista
Reproducción organismos del reino protistaReproducción organismos del reino protista
Reproducción organismos del reino protista
 
AMINOÁCIDOS Y PROTEÍNAS
AMINOÁCIDOS Y PROTEÍNASAMINOÁCIDOS Y PROTEÍNAS
AMINOÁCIDOS Y PROTEÍNAS
 
Tejidos Vegetales Adultos
Tejidos Vegetales AdultosTejidos Vegetales Adultos
Tejidos Vegetales Adultos
 
Zoología de los invertebrados 6ed (ruppert y barnes, 1996)
Zoología de los invertebrados   6ed (ruppert y barnes, 1996)Zoología de los invertebrados   6ed (ruppert y barnes, 1996)
Zoología de los invertebrados 6ed (ruppert y barnes, 1996)
 
Estudio briofitos
Estudio briofitosEstudio briofitos
Estudio briofitos
 
carbohidratos
carbohidratoscarbohidratos
carbohidratos
 
Ciclo de calvin
Ciclo  de calvinCiclo  de calvin
Ciclo de calvin
 
Transcripción de procariotas
Transcripción de procariotasTranscripción de procariotas
Transcripción de procariotas
 
Informe flores frutos - grupo 4
Informe flores frutos - grupo 4Informe flores frutos - grupo 4
Informe flores frutos - grupo 4
 
Proteínas
ProteínasProteínas
Proteínas
 
Cadena de transporte de electrones
Cadena de transporte de electronesCadena de transporte de electrones
Cadena de transporte de electrones
 
Estructuras de-fischer-y-haworth-1
Estructuras de-fischer-y-haworth-1Estructuras de-fischer-y-haworth-1
Estructuras de-fischer-y-haworth-1
 
Phylum gastrotricha
Phylum gastrotrichaPhylum gastrotricha
Phylum gastrotricha
 
BRIOFITAS
BRIOFITASBRIOFITAS
BRIOFITAS
 
liquenes
liquenesliquenes
liquenes
 

Destacado (10)

Fotosintesis
FotosintesisFotosintesis
Fotosintesis
 
La fotosíntesis
La  fotosíntesisLa  fotosíntesis
La fotosíntesis
 
Fotosíntesis sexto
Fotosíntesis sextoFotosíntesis sexto
Fotosíntesis sexto
 
Fase oscura de la fotosíntesis
Fase oscura de la fotosíntesisFase oscura de la fotosíntesis
Fase oscura de la fotosíntesis
 
La fotosíntesis y sus fases
La fotosíntesis y sus fasesLa fotosíntesis y sus fases
La fotosíntesis y sus fases
 
Fotosíntesis entretenida (animada)
Fotosíntesis entretenida (animada)Fotosíntesis entretenida (animada)
Fotosíntesis entretenida (animada)
 
FOTOSÍNTESIS
FOTOSÍNTESISFOTOSÍNTESIS
FOTOSÍNTESIS
 
Fase luminosa
Fase luminosaFase luminosa
Fase luminosa
 
Fotosintesis
FotosintesisFotosintesis
Fotosintesis
 
Metabolismo celular
Metabolismo celularMetabolismo celular
Metabolismo celular
 

Similar a Fotosintesis

Araújo l d díaz tabarez madruga
Araújo l d díaz tabarez madrugaAraújo l d díaz tabarez madruga
Araújo l d díaz tabarez madruga
PabloPereira
 
Fotosintesis
FotosintesisFotosintesis
Fotosintesis
Jw Gl
 
F O T O SÍ N T E S I S (97 2003)
F O T O SÍ N T E S I S (97  2003)F O T O SÍ N T E S I S (97  2003)
F O T O SÍ N T E S I S (97 2003)
jaival
 

Similar a Fotosintesis (20)

Fotosintesis
FotosintesisFotosintesis
Fotosintesis
 
Fotosintesis
FotosintesisFotosintesis
Fotosintesis
 
Araújo l d díaz tabarez madruga
Araújo l d díaz tabarez madrugaAraújo l d díaz tabarez madruga
Araújo l d díaz tabarez madruga
 
Fotosintesis
FotosintesisFotosintesis
Fotosintesis
 
Metabolismo 2015
Metabolismo 2015 Metabolismo 2015
Metabolismo 2015
 
Metabolismo 2016
Metabolismo 2016 Metabolismo 2016
Metabolismo 2016
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
FOTOSÍNTESIS.pptx
FOTOSÍNTESIS.pptxFOTOSÍNTESIS.pptx
FOTOSÍNTESIS.pptx
 
La fotosintesis
La fotosintesisLa fotosintesis
La fotosintesis
 
Fotosíntesis
FotosíntesisFotosíntesis
Fotosíntesis
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
fotosintesis
 fotosintesis fotosintesis
fotosintesis
 
Agro fotosintesis
Agro fotosintesisAgro fotosintesis
Agro fotosintesis
 
Botánica de la raíz
Botánica  de la  raízBotánica  de la  raíz
Botánica de la raíz
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
El anabolismo
El anabolismoEl anabolismo
El anabolismo
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
Resúmen de fisiología vegetal.PDF
Resúmen de fisiología vegetal.PDFResúmen de fisiología vegetal.PDF
Resúmen de fisiología vegetal.PDF
 
F O T O SÍ N T E S I S (97 2003)
F O T O SÍ N T E S I S (97  2003)F O T O SÍ N T E S I S (97  2003)
F O T O SÍ N T E S I S (97 2003)
 

Más de csoria

Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
csoria
 
M Icroscopio Optico
M Icroscopio OpticoM Icroscopio Optico
M Icroscopio Optico
csoria
 
Estructurayfuncionmembrana
EstructurayfuncionmembranaEstructurayfuncionmembrana
Estructurayfuncionmembrana
csoria
 
La Evolución Química Del Universo(Expo Alumnos)
La Evolución Química Del Universo(Expo Alumnos)La Evolución Química Del Universo(Expo Alumnos)
La Evolución Química Del Universo(Expo Alumnos)
csoria
 
Aminoácidos Y Proteínas
Aminoácidos Y ProteínasAminoácidos Y Proteínas
Aminoácidos Y Proteínas
csoria
 
Primera Unidad
Primera UnidadPrimera Unidad
Primera Unidad
csoria
 
Enzimas
EnzimasEnzimas
Enzimas
csoria
 
Colección De Axones
Colección De AxonesColección De Axones
Colección De Axones
csoria
 
Ontogenia y Filogenia
Ontogenia y FilogeniaOntogenia y Filogenia
Ontogenia y Filogenia
csoria
 
Presentacion Del Curso Bbap
Presentacion Del Curso BbapPresentacion Del Curso Bbap
Presentacion Del Curso Bbap
csoria
 
Panorama General del SN
Panorama General del SNPanorama General del SN
Panorama General del SN
csoria
 

Más de csoria (12)

Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
 
M Icroscopio Optico
M Icroscopio OpticoM Icroscopio Optico
M Icroscopio Optico
 
Estructurayfuncionmembrana
EstructurayfuncionmembranaEstructurayfuncionmembrana
Estructurayfuncionmembrana
 
Tecnicas De Purificacion Y Caracterizacion De Proteinas
Tecnicas De Purificacion Y Caracterizacion De ProteinasTecnicas De Purificacion Y Caracterizacion De Proteinas
Tecnicas De Purificacion Y Caracterizacion De Proteinas
 
La Evolución Química Del Universo(Expo Alumnos)
La Evolución Química Del Universo(Expo Alumnos)La Evolución Química Del Universo(Expo Alumnos)
La Evolución Química Del Universo(Expo Alumnos)
 
Aminoácidos Y Proteínas
Aminoácidos Y ProteínasAminoácidos Y Proteínas
Aminoácidos Y Proteínas
 
Primera Unidad
Primera UnidadPrimera Unidad
Primera Unidad
 
Enzimas
EnzimasEnzimas
Enzimas
 
Colección De Axones
Colección De AxonesColección De Axones
Colección De Axones
 
Ontogenia y Filogenia
Ontogenia y FilogeniaOntogenia y Filogenia
Ontogenia y Filogenia
 
Presentacion Del Curso Bbap
Presentacion Del Curso BbapPresentacion Del Curso Bbap
Presentacion Del Curso Bbap
 
Panorama General del SN
Panorama General del SNPanorama General del SN
Panorama General del SN
 

Fotosintesis

  • 1. La fotosíntesis utiliza energía de la luz solar para sintetizar productos ricos en energía, glucosa y oxigeno, a partir de reactivos pobres en energía, bióxido de carbono y agua. Así, la fotosíntesis convierte la energía electromagnética de la energía solar en energía química almacenada en uniones de oxigeno y glucosa.
  • 2. La hojas y los cloroplastos son adaptaciones para la fotosíntesis
  • 3. Ultraestructura Los cloroplastos son organelos formados por una doble membrana externa que rodean un medio semilíquido, el estroma . Dentro del estroma se encuentran unos sacos membranosos en forma de disco que reciben el nombre de tilacoides .
  • 4.  
  • 5.  
  • 6. Fases de la Fotosíntesis Proceso anabólico que se produce en los cloroplastos y en el que la energía luminosa es transformada en energía química que posteriormente será empleada para la fabricación de sustancias orgánicas a partir de sustancias inorgánicas. A) FASE LUMINOSA Se realiza en la membrana de los tilacoides. Consiste en un transporte de electrones, desencadenado por fotones, con síntesis de ATP y de ADPH+H + .
  • 7.  
  • 8.  
  • 9.  
  • 10. ESTRUCTURA DE LA MEMBRANA DE LOS TILACOIDES La membrana de los tilacoides tiene una estructura de doble capa o membrana unitaria. Integradas en esta doble capa están determinadas sustancias muy importantes en el proceso de la fotosíntesis y en particular los fotosistemas I y II , ATPasas y citocromos. Cada fotosistema contiene carotenos, clorofilas y proteínas. Estas moléculas captan la energía luminosa y la ceden a las moléculas vecinas presentes en cada fotosistema hasta que llega a una molécula de clorofila-a denominada molécula diana . Los diferentes carotenos y clorofilas captan fotones de unas determinadas longitudes de onda. De esta manera, el conjunto de las moléculas del fotosistema captan gran parte de la energía luminosa incidente, sólo determinadas longitudes de onda son reflejadas y, por lo tanto, no utilizadas
  • 11.  
  • 12. En particular, son reflejadas las radiaciones correspondientes a las longitudes de onda del verde y el amarillo
  • 13.  
  • 14.  
  • 15.
  • 16.  
  • 17.
  • 18. III) Obtención de energía. Síntesis de ATP (Teoría quimiosmótica) El transporte de electrones a través de los fotosistemas produce un bombeo de protones desde el estroma hacia el interior del tilacoide, pues los fotosistemas actúan como transportadores activos de protones extrayendo la energía necesaria para ello del propio transporte de electrones. La lisis del agua también genera protones (H+ ). Todos estos protones se acumulan en el espacio intratilacoide, pues la membrana es impermeable a estos iones y no pueden salir. El exceso de protones genera un aumento de acidez en el interior del tilacoide y, por lo tanto, un gradiente electroquímico -exceso protones y de cargas positivas. Los protones sólo pueden salir a través de unas moléculas de los tilacoides: las ATPasa. Las ATPasas actúan como canal de protones y de esta manera cataliza la síntesis de ATP. Es la salida de protones (H+ ) a través de las ATPasas la que actúa como energía impulsora para la síntesis de ATP.
  • 19. IV) Balance de la fotofosforilación acíclica : Teniendo en cuenta únicamente los productos iniciales y finales, y podemos hacerlo porque el resto de las sustancias se recuperan en su estado inicial, en la fotofosforilación acíclica se obtienen 1 NADPH+H + y 1 ATP. A su vez, la fotolisis del agua va a generar también un tomo de oxígeno.
  • 20.  
  • 21. LA FOTOFOSFORILACIÓN CÍCLICA En esta vía la luz va a desencadenar un transporte de electrones a través de los tilacoides con producción sólo de ATP. Mecanismo: El proceso parte de la excitación de la molécula diana del fotosistema I (clorofila-aI, P700) por la luz. Ahora bien, en este caso, los electones no irán al NADP+ sino que seguirán un proceso cíclico pasando por una serie de transportadores para volver a la clorofila aI. En cada vuelta se sintetiza una molécula de ATP de la misma forma que en la fotofosforilación acíclica.
  • 22. Balance de la fotofosforilación cíclica : En esta vía se produce una síntesis continua de ATP y no se requieren otros substratos que el ADP y el Pi y, naturalmente, luz (fotones). Es de destacar que no es necesaria la fotolisis del agua pues los electrones no son cedidos al NADP+ y que, por lo tanto, no se produce oxígeno.
  • 23. REGULACIÓN DE AMBOS PROCESOS En el cloroplasto se emplean ambos procesos indistintamente en todo momento. El que se emplee uno más que otro va a depender de las necesidades de la célula o lo que en realidad es lo mismo, de la presencia o ausencia de los substratos y de los productos que se generan. Así, si se consume mucho NADPH+H + en la síntesis de sustancias orgánicas, habrá mucho NADP+ , y será éste el que capte los electrones produciéndose la fotofosforilación acíclica. Si en el tilacoide hay mucho ADP y Pi y no hay NADP+ , entonces se dará la fotofosforilación cíclica. Será el consumo por la planta de ATP y de NADPH+H + , o, lo que es lo mismo, la existencia de los substratos ADP y NADP+ , la que determinará uno u otro proceso.
  • 24. B) FASE OSCURA (CICLO DE CALVIN2) En el estroma de los cloroplastos, y como consecuencia de la fase luminosa, se van a obtener grandes cantidades de ATP y NADPH+H + , metabolitos que se van a utilizar en la síntesis de compuestos orgánicos. Esta fase recibe el nombre de Fase Oscura porque en ella no se necesita directamente la luz, sino únicamente las sustancias que se producen en la fase luminosa. Durante la fase oscura se dan, fundamentalmente, dos procesos distintos: -Síntesis de glucosa mediante la incorporación del CO2 a las cadenas carbonadas y su reducción, ciclo de Calvin propiamente dicho. - Reducción de los nitratos y de otras sustancias inorgánicas, base de la síntesis de los aminoácidos y de otros compuestos orgánicos.
  • 25.
  • 26.  
  • 27. 4) De cada 12 moléculas de PGAL obtenidas, 2 se unen dando una molécula de glucosa (C6H12O6) y el resto entra en un complejo proceso que tiene como objetivo la recuperación de las 6 moléculas de RuP (C5). Éstas, una vez recuperadas, entran de nuevo en el Ciclo de Calvin. 5) La glucosa así obtenida es polimerizada formándose almidón.
  • 28.  
  • 29. 1ª) Incorporación del CO2 a la cadena carbonada de la RUBP. El CO2 reacciona con la ribulosa-1-5 difosfato (RUBP) para dar dos moléculas de ácido-3-fosfoglicérico (PGA). 2ª) Reducción del carbono del CO2 incorporado: Cada una de las moléculas de ácido-3- fosfoglicérico (PGA) es reducida por el NADPH a aldehído-3-fosfoglicérico (PGAL). El proceso es endergónico y precisa del ATP. 3ª) Si los procesos 1 y 2 anteriores se repiten 6 veces obtendremos 12 moléculas de aldehído-3-fosfoglicérico (PGAL). 4ª) Síntesis de glucosa: Dos de estas moléculas de aldehído-3-fosfoglicérico (PGAL) se condensan para dar una molécula de glucosa (GLU). Se obtienen, además, dos moléculas de fosfato inorgánico (P).
  • 30. 5ª) Recuperación de la ribulosa 1-5 difosfato: Las otras 10 moléculas de aldehído-3-fosfoglicérico (PGAL) reaccionan entre sí para dar 6 moléculas de ribulosa-5-fosfato (RUP). 6ª) Recuperación de la ribulosa 1-5 difosfato: Las 6 moléculas de ribulosa-5-fosfato (RUP) reaccionan con 6 de ATP para dar 6 de ribulosa-1-5 difosfato (RUBP), cerrándose el ciclo.
  • 31.  
  • 32.