Personal Information
Organización/Lugar de trabajo
San Francisco Bay Area, California United States
Sector
Technology / Software / Internet
Sitio web
databricks.com
Acerca de
Databricks provides a unified data analytics platform, powered by Apache Spark™, that accelerates innovation by unifying data science, engineering and business.
Etiquetas
apache spark
sparkaisummit
spark + ai summit
*
spark summit
ai
*
big data
*
machine learning
*
databricks
databricks *
2019
*
apache spark
*
spark + ai summit
* apache spark
*
machine learning
big data
spark
data science
mlflow
apache spark 2.0
spark sql
dataframes
structured streaming
spark streaming
tensorflow
model management
hadoop
deep learning pipelines
python
ai
deep learning
spark summit east 2017
delta lake
pyspark
databricks cloud
sparkr
strata san jose
apache spark
*
bay area apache spark meetup
keras
unified analytics platform
apache spark 2.3
machine learning pipelines
cloud
graphframes
mllib
tungsten
spark performance tuning
data pipeline
etl
spark summit east 2016
datasets
r
pandas
lakehouse
*
artificial neural networks
neural networks
ml model tracking
machine learning model management
databricks delta
kubernetes and spark
distributed data
advanced analytics
scale
catalyst
streaming
performance
jit-dw
r on spark
data warehousing
scala
data
mlflow model serving
spark + ai summit 2020
mlops
automate
koalas
linkedin
sparkasisummit
ml model management
ml model experimentaiton
pytorch
open source
apachespark
continuous applications
devops
apache spark 2.2
ml pipelines
hdfs
azure
sql
spark clusters
gpu acceleration
tensorframes
database
spark ml mllib
spark 2.0
rdds
aws
spark meetup
graph algorithms
vida ha
dataframe
free training
torchscript
torchserv
automl
pycaret
sql analytics
nvidia rapids
mlflow deployment
rapids
nvidia
model serving
model deployment
mlflow integration
redisai
schema management
autologging
project zen
pandas udf
sql join hints
dynamic partition prunning
adaptive query execution
data lake
bogota spark meetup
apache spark 3.0
2020
model registry
databricks unified analytics platform
microsoft azure
structures
nubank
democratization
customer experience
real time
meaning
maps
facebook
apps
acid orc
spark core
loss prevention
fastai
knowledge graph
cosmos db
workshop
ml stack
factory
building
scalable
forecast
dynamic partition pruning
deep anomaly detection
streaming analytics
model reasoning
kubeflow
rest
backend data quality
astronomical data processing
lsst scale
spark operator
vectorized
hyperparameter
data agility
data abstraction
dalispark views
apache hive
presto
data access
dalispark
cost based optimizer
microsoft
onnx
pydatamiami
datat science
ml end-to-end lifecycle
ml model experimentation
model tracking
rstudio
sparksaturday
distributed training
horovod
mpi
spark mllib
uber
distributed deep learning
databricks unified platform
spark+aisummit
security
salesforce
wibd
real-time model scoring
threat detection
cybersecurity
continuous streaming
databricks runtime 4.0
ci/cd
women in big data
women in apache spark
graph analytics
apach spark
jsonnet
basel
kubernetes
deployment models
spark summit 2017
kinesis firehose
data analytics
odsc
dapply
spark-sklearn
distributed computing
gpu
stanford
multicore
parallelization
weld
r packages
rlang
distributed
sparksql
etl pipeline
cloud data
womenintech
executive
leadership development
equality
women
spark production
production
streaming applications
advanced streaming analytics
cloud storage
storage
best practices
use case
model training
amplab
apache spark 2.0 structured streaming databricks
advanced analytics online analytics
predictionio
tensorframes tensorflow
sparkr r
r statistics
webinar
motif finding
graph queries
motif
cdc
schema on read
change data capture
quick start
scikit-learn
deploying spark
spark summit 2016
real-time
generalized linear model
matei zaharia
community edition
just-in-time data warehousing
apache spark 1.6
dataset
spark use cases
healthcare
data mining
sketch
sampling
strata new york
stratified sampling
count-min sketch
frequent items
bloom filter
hyperloglog
parviz deyhim
apache spark 1.5
patrick wendell
mlconf seattle
strata london
datab
data source api
data visualization
ml
jvm
debugging
testing
groupbykey
errors
holden karau
reducebykey
serialization
shuffling
sparkcamp
Ver más
Presentaciones
(1332)Documentos
(1)Recomendaciones
(2)Data Con LA 2018 - A Tale of DL Frameworks: TensorFlow, Keras, & Deep Learning by Jules Damji
Data Con LA
•
Hace 5 años
Introduction to MLflow
Databricks
•
Hace 5 años
Personal Information
Organización/Lugar de trabajo
San Francisco Bay Area, California United States
Sector
Technology / Software / Internet
Sitio web
databricks.com
Acerca de
Databricks provides a unified data analytics platform, powered by Apache Spark™, that accelerates innovation by unifying data science, engineering and business.
Etiquetas
apache spark
sparkaisummit
spark + ai summit
*
spark summit
ai
*
big data
*
machine learning
*
databricks
databricks *
2019
*
apache spark
*
spark + ai summit
* apache spark
*
machine learning
big data
spark
data science
mlflow
apache spark 2.0
spark sql
dataframes
structured streaming
spark streaming
tensorflow
model management
hadoop
deep learning pipelines
python
ai
deep learning
spark summit east 2017
delta lake
pyspark
databricks cloud
sparkr
strata san jose
apache spark
*
bay area apache spark meetup
keras
unified analytics platform
apache spark 2.3
machine learning pipelines
cloud
graphframes
mllib
tungsten
spark performance tuning
data pipeline
etl
spark summit east 2016
datasets
r
pandas
lakehouse
*
artificial neural networks
neural networks
ml model tracking
machine learning model management
databricks delta
kubernetes and spark
distributed data
advanced analytics
scale
catalyst
streaming
performance
jit-dw
r on spark
data warehousing
scala
data
mlflow model serving
spark + ai summit 2020
mlops
automate
koalas
linkedin
sparkasisummit
ml model management
ml model experimentaiton
pytorch
open source
apachespark
continuous applications
devops
apache spark 2.2
ml pipelines
hdfs
azure
sql
spark clusters
gpu acceleration
tensorframes
database
spark ml mllib
spark 2.0
rdds
aws
spark meetup
graph algorithms
vida ha
dataframe
free training
torchscript
torchserv
automl
pycaret
sql analytics
nvidia rapids
mlflow deployment
rapids
nvidia
model serving
model deployment
mlflow integration
redisai
schema management
autologging
project zen
pandas udf
sql join hints
dynamic partition prunning
adaptive query execution
data lake
bogota spark meetup
apache spark 3.0
2020
model registry
databricks unified analytics platform
microsoft azure
structures
nubank
democratization
customer experience
real time
meaning
maps
facebook
apps
acid orc
spark core
loss prevention
fastai
knowledge graph
cosmos db
workshop
ml stack
factory
building
scalable
forecast
dynamic partition pruning
deep anomaly detection
streaming analytics
model reasoning
kubeflow
rest
backend data quality
astronomical data processing
lsst scale
spark operator
vectorized
hyperparameter
data agility
data abstraction
dalispark views
apache hive
presto
data access
dalispark
cost based optimizer
microsoft
onnx
pydatamiami
datat science
ml end-to-end lifecycle
ml model experimentation
model tracking
rstudio
sparksaturday
distributed training
horovod
mpi
spark mllib
uber
distributed deep learning
databricks unified platform
spark+aisummit
security
salesforce
wibd
real-time model scoring
threat detection
cybersecurity
continuous streaming
databricks runtime 4.0
ci/cd
women in big data
women in apache spark
graph analytics
apach spark
jsonnet
basel
kubernetes
deployment models
spark summit 2017
kinesis firehose
data analytics
odsc
dapply
spark-sklearn
distributed computing
gpu
stanford
multicore
parallelization
weld
r packages
rlang
distributed
sparksql
etl pipeline
cloud data
womenintech
executive
leadership development
equality
women
spark production
production
streaming applications
advanced streaming analytics
cloud storage
storage
best practices
use case
model training
amplab
apache spark 2.0 structured streaming databricks
advanced analytics online analytics
predictionio
tensorframes tensorflow
sparkr r
r statistics
webinar
motif finding
graph queries
motif
cdc
schema on read
change data capture
quick start
scikit-learn
deploying spark
spark summit 2016
real-time
generalized linear model
matei zaharia
community edition
just-in-time data warehousing
apache spark 1.6
dataset
spark use cases
healthcare
data mining
sketch
sampling
strata new york
stratified sampling
count-min sketch
frequent items
bloom filter
hyperloglog
parviz deyhim
apache spark 1.5
patrick wendell
mlconf seattle
strata london
datab
data source api
data visualization
ml
jvm
debugging
testing
groupbykey
errors
holden karau
reducebykey
serialization
shuffling
sparkcamp
Ver más