CI/DC in MLOps by J.B. Hunt

Databricks
DatabricksDeveloper Marketing and Relations at MuleSoft en Databricks
CI/CD in MLOps
Wesly Clark and Cara Phillips
In partnership with
Implementing a Framework for Self-Service
Experimentation and Deployment at Scale
2
J.B. HUNT AT-A-GLANCE
400+
locations across
U.S., Canada,
Mexico, & Asia
17,000+
tractors
and ICs
133,000+
trailing units
30,000+
employees
$9B
trailing 12-
month
revenue
94,000+
carriers
59-year legacy as a leader in the transportation and logistics industry
WE HELP
Organizations understand how emerging digital technologies
can enable new business models and transform existing one
Intelligent Applications
AI & Machine Learning
Internet of Things
BI & Big Data
WE BRING
Deep expertise across the Microsoft data analytics,
application development and productivity platforms to enable
new ways of work
Recent Case Studies
WE DELIVER
Engagements to help organizations accomplish their
business goals
Projects Strategy Training
Quick
Starts
Design
Sprints
Managed
Services
WE BUILD
Solutions that help transform organizations through
improved insight and productivity
artisconsulting.com 972.702.9500 artis_info@artisconsulting.com
Business Intelligence
Big Data
AI & Machine Learning
Intelligent Applications
Power Apps
IoT
Founded in 2002, Artis Consulting is a professional services firm dedicated to delivering technology solutions that provide the right information, to the right person, at the right time.
PRESENTATION AGENDA
J.B. HUNT TRANSPORT
• Mission Statement
• MLOps Lifecycle
• Motivating Values/Concepts
• Architecture Diagrams
• Clusters and Libraries Tech Demo
• Job Deployment Tech Demo
• Recap
Creating the most efficient transportation network in North America
Mission Statement:
Augment
Analysis
Empower
Expertise
Remove
Redundancy
Automate
Action
Detect
Direction
Predict
Possibilities
MLOps High Level Lifecycle
ML Environment
Creation
Data Analysis
Feature/Model
Selection
Model
Registration
Experimentation/
Monitoring
Job Deployment/
(Re)Training
Model
Deployment/
Serving
Data Expectations/
Feature Store
Data Collection/
Ingestion
Continuously Develop/Iterate Models
Motivating Values/Concepts
Predictable Repeatable
Automated Clearly Defined
Environments
Secure/Self-Service Platform and
Cloud Agnostic
Framework Architecture Diagrams
PRESENTATION AGENDA
J.B. HUNT TRANSPORT
• Mission Statement
• MLOps Lifecycle
• Motivating Values/Concepts
• Architecture Diagrams
• Clusters and Libraries Tech Demo
• Job Deployment Tech Demo
• Recap
THANK YOU
1 de 10

Recomendados

MLOps and Data Quality: Deploying Reliable ML Models in Production por
MLOps and Data Quality: Deploying Reliable ML Models in ProductionMLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in ProductionProvectus
215 vistas32 diapositivas
MLOps by Sasha Rosenbaum por
MLOps by Sasha RosenbaumMLOps by Sasha Rosenbaum
MLOps by Sasha RosenbaumSasha Rosenbaum
2.6K vistas51 diapositivas
Databricks Overview for MLOps por
Databricks Overview for MLOpsDatabricks Overview for MLOps
Databricks Overview for MLOpsDatabricks
1.5K vistas30 diapositivas
Apply MLOps at Scale by H&M por
Apply MLOps at Scale by H&MApply MLOps at Scale by H&M
Apply MLOps at Scale by H&MDatabricks
1K vistas14 diapositivas
MLOps Virtual Event: Automating ML at Scale por
MLOps Virtual Event: Automating ML at ScaleMLOps Virtual Event: Automating ML at Scale
MLOps Virtual Event: Automating ML at ScaleDatabricks
686 vistas12 diapositivas
Ml ops intro session por
Ml ops   intro sessionMl ops   intro session
Ml ops intro sessionAvinash Patil
363 vistas18 diapositivas

Más contenido relacionado

La actualidad más candente

Vertex AI: Pipelines for your MLOps workflows por
Vertex AI: Pipelines for your MLOps workflowsVertex AI: Pipelines for your MLOps workflows
Vertex AI: Pipelines for your MLOps workflowsMárton Kodok
792 vistas31 diapositivas
MLOps Bridging the gap between Data Scientists and Ops. por
MLOps Bridging the gap between Data Scientists and Ops.MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.Knoldus Inc.
441 vistas22 diapositivas
Google Vertex AI por
Google Vertex AIGoogle Vertex AI
Google Vertex AIVikasBisoi
1.7K vistas12 diapositivas
Fundamental MLOps por
Fundamental MLOpsFundamental MLOps
Fundamental MLOpsSaripudin Gon
163 vistas71 diapositivas
AI and ML Series - Introduction to Generative AI and LLMs - Session 1 por
AI and ML Series - Introduction to Generative AI and LLMs - Session 1AI and ML Series - Introduction to Generative AI and LLMs - Session 1
AI and ML Series - Introduction to Generative AI and LLMs - Session 1DianaGray10
1.3K vistas38 diapositivas
What is MLOps por
What is MLOpsWhat is MLOps
What is MLOpsHenrik Skogström
2.6K vistas16 diapositivas

La actualidad más candente(20)

Vertex AI: Pipelines for your MLOps workflows por Márton Kodok
Vertex AI: Pipelines for your MLOps workflowsVertex AI: Pipelines for your MLOps workflows
Vertex AI: Pipelines for your MLOps workflows
Márton Kodok792 vistas
MLOps Bridging the gap between Data Scientists and Ops. por Knoldus Inc.
MLOps Bridging the gap between Data Scientists and Ops.MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.
Knoldus Inc.441 vistas
Google Vertex AI por VikasBisoi
Google Vertex AIGoogle Vertex AI
Google Vertex AI
VikasBisoi1.7K vistas
AI and ML Series - Introduction to Generative AI and LLMs - Session 1 por DianaGray10
AI and ML Series - Introduction to Generative AI and LLMs - Session 1AI and ML Series - Introduction to Generative AI and LLMs - Session 1
AI and ML Series - Introduction to Generative AI and LLMs - Session 1
DianaGray101.3K vistas
Using MLOps to Bring ML to Production/The Promise of MLOps por Weaveworks
Using MLOps to Bring ML to Production/The Promise of MLOpsUsing MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOps
Weaveworks5.4K vistas
Apply MLOps at Scale por Databricks
Apply MLOps at ScaleApply MLOps at Scale
Apply MLOps at Scale
Databricks690 vistas
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud por Márton Kodok
Vertex AI - Unified ML Platform for the entire AI workflow on Google CloudVertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Márton Kodok1.2K vistas
AI in Finance: Moving forward! por Adrian Hornsby
AI in Finance: Moving forward!AI in Finance: Moving forward!
AI in Finance: Moving forward!
Adrian Hornsby980 vistas
Intro to Vertex AI, unified MLOps platform for Data Scientists & ML Engineers por Daniel Zivkovic
Intro to Vertex AI, unified MLOps platform for Data Scientists & ML EngineersIntro to Vertex AI, unified MLOps platform for Data Scientists & ML Engineers
Intro to Vertex AI, unified MLOps platform for Data Scientists & ML Engineers
Daniel Zivkovic681 vistas
Generative AI For Everyone on AWS.pdf por Manjunatha Sai
Generative AI For Everyone on AWS.pdfGenerative AI For Everyone on AWS.pdf
Generative AI For Everyone on AWS.pdf
Manjunatha Sai137 vistas
Unlocking the Power of Generative AI An Executive's Guide.pdf por PremNaraindas1
Unlocking the Power of Generative AI An Executive's Guide.pdfUnlocking the Power of Generative AI An Executive's Guide.pdf
Unlocking the Power of Generative AI An Executive's Guide.pdf
PremNaraindas12.2K vistas
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74) por Naoki (Neo) SATO
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
Naoki (Neo) SATO1.3K vistas
The A-Z of Data: Introduction to MLOps por DataPhoenix
The A-Z of Data: Introduction to MLOpsThe A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOps
DataPhoenix958 vistas
MLFlow: Platform for Complete Machine Learning Lifecycle por Databricks
MLFlow: Platform for Complete Machine Learning Lifecycle MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle
Databricks3.6K vistas
Introducing Databricks Delta por Databricks
Introducing Databricks DeltaIntroducing Databricks Delta
Introducing Databricks Delta
Databricks6K vistas

Similar a CI/DC in MLOps by J.B. Hunt

Insight success the 10 most admired companies in cloud computing oct 2017 por
Insight success the 10 most admired companies in cloud computing oct 2017Insight success the 10 most admired companies in cloud computing oct 2017
Insight success the 10 most admired companies in cloud computing oct 2017Insights success media and technology pvt ltd
240 vistas44 diapositivas
Gillette Stadium Cloud Event por
Gillette Stadium Cloud EventGillette Stadium Cloud Event
Gillette Stadium Cloud EventMatt Axtell
375 vistas26 diapositivas
About Excella por
About ExcellaAbout Excella
About ExcellaRichard Cheng
336 vistas23 diapositivas
T-Byte Consulting & IT Services March 2021 por
T-Byte Consulting & IT Services March 2021T-Byte Consulting & IT Services March 2021
T-Byte Consulting & IT Services March 2021EGBG Services
35 vistas50 diapositivas
The 10 best enterprise collaboration solution providers dec 2017 por
The 10 best enterprise collaboration solution providers dec 2017The 10 best enterprise collaboration solution providers dec 2017
The 10 best enterprise collaboration solution providers dec 2017Merry D'souza
192 vistas44 diapositivas
Employment trends 2011 by zylog por
Employment trends 2011 by zylogEmployment trends 2011 by zylog
Employment trends 2011 by zylogZylog Systems Canada Ltd
402 vistas18 diapositivas

Similar a CI/DC in MLOps by J.B. Hunt(20)

Gillette Stadium Cloud Event por Matt Axtell
Gillette Stadium Cloud EventGillette Stadium Cloud Event
Gillette Stadium Cloud Event
Matt Axtell375 vistas
T-Byte Consulting & IT Services March 2021 por EGBG Services
T-Byte Consulting & IT Services March 2021T-Byte Consulting & IT Services March 2021
T-Byte Consulting & IT Services March 2021
EGBG Services 35 vistas
The 10 best enterprise collaboration solution providers dec 2017 por Merry D'souza
The 10 best enterprise collaboration solution providers dec 2017The 10 best enterprise collaboration solution providers dec 2017
The 10 best enterprise collaboration solution providers dec 2017
Merry D'souza192 vistas
Miracle Corporate profile por Tim Unti
Miracle Corporate profileMiracle Corporate profile
Miracle Corporate profile
Tim Unti177 vistas
Reimagine Your Business in a Digital-First World with Microsoft por Perficient, Inc.
Reimagine Your Business in a Digital-First World with MicrosoftReimagine Your Business in a Digital-First World with Microsoft
Reimagine Your Business in a Digital-First World with Microsoft
Perficient, Inc.1.5K vistas
T Bytes Consulting & IT Services por EGBG Services
T Bytes Consulting & IT ServicesT Bytes Consulting & IT Services
T Bytes Consulting & IT Services
EGBG Services 166 vistas
Valuebound Company Presentation por Neeraj Kumar
Valuebound Company PresentationValuebound Company Presentation
Valuebound Company Presentation
Neeraj Kumar614 vistas
Chordify Brochure Staffing por varunberry
Chordify Brochure StaffingChordify Brochure Staffing
Chordify Brochure Staffing
varunberry285 vistas
The 10 most prominent analytics companies to watch por Merry D'souza
The 10 most prominent analytics companies to watchThe 10 most prominent analytics companies to watch
The 10 most prominent analytics companies to watch
Merry D'souza44 vistas
Navigating the Future of the Cloud to Fuel Innovation por Perficient, Inc.
Navigating the Future of the Cloud to Fuel InnovationNavigating the Future of the Cloud to Fuel Innovation
Navigating the Future of the Cloud to Fuel Innovation
Perficient, Inc.543 vistas
The 10 most valuable aws solution providers dec 2017 por Merry D'souza
The 10 most valuable aws solution providers dec 2017The 10 most valuable aws solution providers dec 2017
The 10 most valuable aws solution providers dec 2017
Merry D'souza201 vistas
MPHASIS por vinay ch
MPHASISMPHASIS
MPHASIS
vinay ch1.6K vistas

Más de Databricks

DW Migration Webinar-March 2022.pptx por
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDatabricks
4.3K vistas25 diapositivas
Data Lakehouse Symposium | Day 1 | Part 1 por
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Databricks
1.5K vistas43 diapositivas
Data Lakehouse Symposium | Day 1 | Part 2 por
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Databricks
743 vistas16 diapositivas
Data Lakehouse Symposium | Day 4 por
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Databricks
1.8K vistas74 diapositivas
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop por
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of HadoopDatabricks
6.3K vistas64 diapositivas
Democratizing Data Quality Through a Centralized Platform por
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDatabricks
1.4K vistas36 diapositivas

Más de Databricks(20)

DW Migration Webinar-March 2022.pptx por Databricks
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks4.3K vistas
Data Lakehouse Symposium | Day 1 | Part 1 por Databricks
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks1.5K vistas
Data Lakehouse Symposium | Day 1 | Part 2 por Databricks
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks743 vistas
Data Lakehouse Symposium | Day 4 por Databricks
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks1.8K vistas
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop por Databricks
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks6.3K vistas
Democratizing Data Quality Through a Centralized Platform por Databricks
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks1.4K vistas
Learn to Use Databricks for Data Science por Databricks
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks1.6K vistas
Why APM Is Not the Same As ML Monitoring por Databricks
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks743 vistas
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix por Databricks
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks689 vistas
Stage Level Scheduling Improving Big Data and AI Integration por Databricks
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks850 vistas
Simplify Data Conversion from Spark to TensorFlow and PyTorch por Databricks
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks1.8K vistas
Scaling your Data Pipelines with Apache Spark on Kubernetes por Databricks
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks2.1K vistas
Scaling and Unifying SciKit Learn and Apache Spark Pipelines por Databricks
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks667 vistas
Sawtooth Windows for Feature Aggregations por Databricks
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks606 vistas
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink por Databricks
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks677 vistas
Re-imagine Data Monitoring with whylogs and Spark por Databricks
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks551 vistas
Raven: End-to-end Optimization of ML Prediction Queries por Databricks
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks450 vistas
Processing Large Datasets for ADAS Applications using Apache Spark por Databricks
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks514 vistas
Massive Data Processing in Adobe Using Delta Lake por Databricks
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks719 vistas
Machine Learning CI/CD for Email Attack Detection por Databricks
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks389 vistas

Último

GDG Community Day 2023 - Interpretable ML in production por
GDG Community Day 2023 - Interpretable ML in productionGDG Community Day 2023 - Interpretable ML in production
GDG Community Day 2023 - Interpretable ML in productionSARADINDU SENGUPTA
7 vistas19 diapositivas
Underfunded.pptx por
Underfunded.pptxUnderfunded.pptx
Underfunded.pptxvgarcia19
16 vistas7 diapositivas
Best Home Security Systems.pptx por
Best Home Security Systems.pptxBest Home Security Systems.pptx
Best Home Security Systems.pptxmogalang
11 vistas16 diapositivas
[DSC Europe 23] Ilija Duni - How Foursquare Builds Meaningful Bridges Between... por
[DSC Europe 23] Ilija Duni - How Foursquare Builds Meaningful Bridges Between...[DSC Europe 23] Ilija Duni - How Foursquare Builds Meaningful Bridges Between...
[DSC Europe 23] Ilija Duni - How Foursquare Builds Meaningful Bridges Between...DataScienceConferenc1
5 vistas9 diapositivas
Deep analytics via learning to reason por
Deep analytics via learning to reasonDeep analytics via learning to reason
Deep analytics via learning to reasonDeakin University
5 vistas57 diapositivas
Report on OSINT por
Report on OSINTReport on OSINT
Report on OSINTAyonDebnathCertified
6 vistas15 diapositivas

Último(20)

GDG Community Day 2023 - Interpretable ML in production por SARADINDU SENGUPTA
GDG Community Day 2023 - Interpretable ML in productionGDG Community Day 2023 - Interpretable ML in production
GDG Community Day 2023 - Interpretable ML in production
Underfunded.pptx por vgarcia19
Underfunded.pptxUnderfunded.pptx
Underfunded.pptx
vgarcia1916 vistas
Best Home Security Systems.pptx por mogalang
Best Home Security Systems.pptxBest Home Security Systems.pptx
Best Home Security Systems.pptx
mogalang11 vistas
[DSC Europe 23] Ilija Duni - How Foursquare Builds Meaningful Bridges Between... por DataScienceConferenc1
[DSC Europe 23] Ilija Duni - How Foursquare Builds Meaningful Bridges Between...[DSC Europe 23] Ilija Duni - How Foursquare Builds Meaningful Bridges Between...
[DSC Europe 23] Ilija Duni - How Foursquare Builds Meaningful Bridges Between...
Games, Queries, and Argumentation Frameworks: Time for a Family Reunion por Bertram Ludäscher
Games, Queries, and Argumentation Frameworks: Time for a Family ReunionGames, Queries, and Argumentation Frameworks: Time for a Family Reunion
Games, Queries, and Argumentation Frameworks: Time for a Family Reunion
Bertram Ludäscher11 vistas
Pydata Global 2023 - How can a learnt model unlearn something por SARADINDU SENGUPTA
Pydata Global 2023 - How can a learnt model unlearn somethingPydata Global 2023 - How can a learnt model unlearn something
Pydata Global 2023 - How can a learnt model unlearn something
SARADINDU SENGUPTA11 vistas
GDG Cloud Community Day 2022 - Managing data quality in Machine Learning por SARADINDU SENGUPTA
GDG Cloud Community Day 2022 -  Managing data quality in Machine LearningGDG Cloud Community Day 2022 -  Managing data quality in Machine Learning
GDG Cloud Community Day 2022 - Managing data quality in Machine Learning
[DSC Europe 23] Irena Cerovic - AI in International Development.pdf por DataScienceConferenc1
[DSC Europe 23] Irena Cerovic - AI in International Development.pdf[DSC Europe 23] Irena Cerovic - AI in International Development.pdf
[DSC Europe 23] Irena Cerovic - AI in International Development.pdf
Product Research sample.pdf por AllenSingson
Product Research sample.pdfProduct Research sample.pdf
Product Research sample.pdf
AllenSingson35 vistas
Listed Instruments Survey 2022.pptx por secretariat4
Listed Instruments Survey  2022.pptxListed Instruments Survey  2022.pptx
Listed Instruments Survey 2022.pptx
secretariat4148 vistas
DGST Methodology Presentation.pdf por maddierlegum
DGST Methodology Presentation.pdfDGST Methodology Presentation.pdf
DGST Methodology Presentation.pdf
maddierlegum8 vistas
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf por Oppotus
OPPOTUS - Malaysians on Malaysia 3Q2023.pdfOPPOTUS - Malaysians on Malaysia 3Q2023.pdf
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf
Oppotus36 vistas
Business administration Project File.pdf por KiranPrajapati91
Business administration Project File.pdfBusiness administration Project File.pdf
Business administration Project File.pdf
KiranPrajapati9111 vistas
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf por 10urkyr34
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf
10urkyr348 vistas

CI/DC in MLOps by J.B. Hunt

  • 1. CI/CD in MLOps Wesly Clark and Cara Phillips In partnership with Implementing a Framework for Self-Service Experimentation and Deployment at Scale
  • 2. 2 J.B. HUNT AT-A-GLANCE 400+ locations across U.S., Canada, Mexico, & Asia 17,000+ tractors and ICs 133,000+ trailing units 30,000+ employees $9B trailing 12- month revenue 94,000+ carriers 59-year legacy as a leader in the transportation and logistics industry
  • 3. WE HELP Organizations understand how emerging digital technologies can enable new business models and transform existing one Intelligent Applications AI & Machine Learning Internet of Things BI & Big Data WE BRING Deep expertise across the Microsoft data analytics, application development and productivity platforms to enable new ways of work Recent Case Studies WE DELIVER Engagements to help organizations accomplish their business goals Projects Strategy Training Quick Starts Design Sprints Managed Services WE BUILD Solutions that help transform organizations through improved insight and productivity artisconsulting.com 972.702.9500 artis_info@artisconsulting.com Business Intelligence Big Data AI & Machine Learning Intelligent Applications Power Apps IoT Founded in 2002, Artis Consulting is a professional services firm dedicated to delivering technology solutions that provide the right information, to the right person, at the right time.
  • 4. PRESENTATION AGENDA J.B. HUNT TRANSPORT • Mission Statement • MLOps Lifecycle • Motivating Values/Concepts • Architecture Diagrams • Clusters and Libraries Tech Demo • Job Deployment Tech Demo • Recap
  • 5. Creating the most efficient transportation network in North America Mission Statement: Augment Analysis Empower Expertise Remove Redundancy Automate Action Detect Direction Predict Possibilities
  • 6. MLOps High Level Lifecycle ML Environment Creation Data Analysis Feature/Model Selection Model Registration Experimentation/ Monitoring Job Deployment/ (Re)Training Model Deployment/ Serving Data Expectations/ Feature Store Data Collection/ Ingestion Continuously Develop/Iterate Models
  • 7. Motivating Values/Concepts Predictable Repeatable Automated Clearly Defined Environments Secure/Self-Service Platform and Cloud Agnostic
  • 9. PRESENTATION AGENDA J.B. HUNT TRANSPORT • Mission Statement • MLOps Lifecycle • Motivating Values/Concepts • Architecture Diagrams • Clusters and Libraries Tech Demo • Job Deployment Tech Demo • Recap