SlideShare a Scribd company logo
Manufacture of sterile medicines –1
Aseptic Processing
Mrs Robyn Isaacson
Manufacture of sterile medicines –2
Aseptic Processing - Overview
• Certain pharmaceutical products must be
sterile
– injections, ophthalmic preparations, irrigations
solutions, haemodialysis solutions
• Two categories of sterile products
– those that can be sterilized in final container
(terminally sterilized)
– those that cannot be terminally sterilized and
must be aseptically prepared
Manufacture of sterile medicines –3
Aseptic Processing - Overview
Aseptic processing
• Objective is to maintain the sterility of a product,
assembled from sterile components
• Operating conditions so as to prevent microbial
contamination
Manufacture of sterile medicines –4
Aseptic Processing - Overview
Objective
• To review specific issues relating to the
manufacture of aseptically prepared products:
– Manufacturing environment
• Clean areas
• Personnel
– Preparation and filtration of solutions
– Pre-filtration bioburden
– Filter integrity/validation
– Equipment/container preparation and sterilization
– Filling Process
– Validation of aseptic processes
– Specific issues relating to Isolators, BFS and Bulk
Manufacture of sterile medicines –5
Manufacturing Environment
Classification of Clean Areas
– Comparison of classifications
WHO GMP US 209E US Customary ISO/TC (209)
ISO 14644
EEC GMP
Grade A M 3.5 Class 100 ISO 5 Grade A
Grade B M 3.5 Class 100 ISO 5 Grade B
Grade C M 5.5 Class 10 000 ISO 7 Grade C
Grade D M 6.5 Class 100 000 ISO 8 Grade D
Table 1
Manufacture of sterile medicines –6
Manufacturing Environment
Classification of Clean Areas
– Classified in terms of airborne particles (Table 2)
Grade At rest In operation
maximum permitted number of particles/m3
0.5 - 5.0 µm > 5 µm 0.5 - 5.0 µm > 5 µ
A 3 500 0 3 500 0
B 3 500 0 350 000 2 000
C 350 000 2 000 3 500 000 20 000
D 3 500 000 20 000 not defined not defined
“At rest” - production equipment installed and operating
“In operation” - Installed equipment functioning in defined
operating mode and specified number of personnel present
Manufacture of sterile medicines –7
Manufacturing Environment
Four grades of clean areas:
• Grade D (equivalent to Class 100,000, ISO 8):
– Clean area for carrying out less critical stages in
manufacture of aseptically prepared products eg.
handling of components after washing.
• Grade C (equivalent to Class 10,000, ISO 7):
– Clean area for carrying out less critical stages in
manufacture of aseptically prepared products eg.
preparation of solutions to be filtered.
• Grade B (equivalent to Class 100, ISO 5):
– Background environment for Grade A zone, eg.
cleanroom in which laminar flow workstation is housed.
Manufacture of sterile medicines –8
Manufacturing Environment
• Grade A (equivalent to Class 100 (US Federal
Standard 209E), ISO 5 (ISO 14644-1):
– Local zone for high risk operations eg. product filling,
stopper bowls, open vials, handling sterile materials,
aseptic connections, transfer of partially stoppered
containers to be lyophilized.
– Conditions usually provided by laminar air flow
workstation.
• Each grade of cleanroom has specifications for
viable and non-viable particles
– Non-viable particles are defined by the air classification
(See Table 2)
Manufacture of sterile medicines –9
Manufacturing Environment
• Limits for viable particles (microbiological
contamination)
Grade Air sample
(CFU/m3)
Settle plates (90mm
diameter)
(CFU/4hours)
Contact plates
(55mm
diameter)
(CFU/plate)
Glove print
(5 fingers)
(CFU/glove)
A < 3 < 3 < 3 < 3
B 10 5 5 5
C 100 50 25 -
D 200 100 50 -
Table 3
– These are average values
– Individual settle plates may be exposed for less than 4 hours
• Values are for guidance only - not intended to represent specifications
• Levels (limits) of detection of microbiological contamination should be
established for alert and action purposes and for monitoring trends of
air quality in the facility
Manufacture of sterile medicines –10
Manufacturing Environment
Environmental Monitoring
• Physical
– Particulate matter
– Differential pressures
– Air changes, airflow patterns
– Clean up time/recovery
– Temperature and relative humidity
– Airflow velocity
Manufacture of sterile medicines –11
Manufacturing Environment
Environmental Monitoring - Physical
• Particulate matter
– Particles significant because they can contaminate and
also carry organisms
– Critical environment should be measured not more than
30cm from worksite, within airflow and during
filling/closing operations
– Preferably a remote probe that monitors continuously
– Difficulties when process itself generates particles (e.g.
powder filling)
– Appropriate alert and action limits should be set and
corrective actions defined if limits exceeded
Manufacture of sterile medicines –12
Manufacturing Environment
Environmental Monitoring - Physical
• Differential pressures
– Positive pressure differential of 10-15 Pascals should be
maintained between adjacent rooms of different
classification (with door closed)
– Most critical area should have the highest pressure
– Pressures should be continuously monitored and
frequently recorded.
– Alarms should sound if pressures deviate
– Any deviations should be investigated and effect on
environmental quality determined
Manufacture of sterile medicines –13
Manufacturing Environment
Environmental Monitoring - Physical
• Air Changes/Airflow patterns
– Air flow over critical areas should be uni-directional
(laminar flow) at a velocity sufficient to sweep particles
away from filling/closing area
– for B, C and D rooms at least 20 changes per hour are
ususally required
• Clean up time/recovery
– Particulate levels for the Grade A “at rest” state should
be achieved after a short “clean-up” period of 20
minutes after completion of operations (guidance value)
– Particle counts for Grade A “in operation” state should
be maintained whenever product or open container is
exposed
Manufacture of sterile medicines –14
Manufacturing Environment
Environmental Monitoring - Physical
• Temperature and Relative Humidity
– Ambient temperature and humidity should not be
uncomfortably high (could cause operators to
generate particles) (18°C)
• Airflow velocity
– Laminar airflow workstation air speed of approx
0.45m/s ± 20% at working position (guidance value)
Manufacture of sterile medicines –15
Manufacturing Environment
Personnel
• Minimum number of personnel in clean areas
– especially during aseptic processing
• Inspections and controls from outside
• Training to all including cleaning and
maintenance staff
– initial and regular
– manufacturing, hygiene, microbiology
– should be formally validated and authorized to enter
aseptic area
• Special cases
– supervision in case of outside staff
– decontamination procedures (e.g. staff who worked
with animal tissue materials)
Manufacture of sterile medicines –16
Manufacturing Environment
Personnel (2)
• High standards of hygiene and cleanliness
– should not enter clean rooms if ill or with open
wounds
• Periodic health checks
• No shedding of particles, movement slow and
controlled
• No introduction of microbiological hazards
• No outdoor clothing brought into clean areas,
should be clad in factory clothing
• Changing and washing procedure
• No watches, jewellery and cosmetics
• Eye checks if involved in visual inspection
Manufacture of sterile medicines –17
Manufacturing Environment
Personnel (3)
• Clothing of appropriate quality:
– Grade D
• hair, beard, moustache covered
• protective clothing and shoes
– Grade C
• hair, beard, moustache covered
• single or 2-piece suit (covering wrists, high neck),
shoes/overshoes
• no fibres/particles to be shed
– Grade A and B
• headgear, beard and moustache covered, masks,
gloves
• not shedding fibres, and retain particles shed by
operators
Manufacture of sterile medicines –18
Manufacturing Environment
Personnel (4)
• Outdoor clothing not in change rooms leading to
Grade B and C rooms
• Change at every working session, or once a day (if
supportive data)
• Change gloves and masks at every working session
• Frequent disinfection of gloves during operations
• Washing of garments – separate laundry facility
– No damage, and according to validated procedures
(washing and sterilization)
• Regular microbiological monitoring of operators
Manufacture of sterile medicines –19
Aseptic Processing
• In aseptic processing, each component is
individually sterilised, or several components are
combined with the resulting mixture sterilized.
– Most common is preparation of a solution which is
filtered through a sterilizing filter then filled into sterile
containers (e.g active and excipients dissolved in Water
for Injection)
– May involve aseptic compounding of previously
sterilized components which is filled into sterile
containers
– May involve filling of previously sterilized powder
• sterilized by dry heat/irradiation
• produced from a sterile filtered solution which is then
aseptically crystallized and precipitated
– requires more handling and manipulation with higher
potential for contamination during processing
Manufacture of sterile medicines –20
Aseptic Processing
Preparation and Filtration of Solutions
• Solutions to be sterile filtered prepared in a Grade C
environment
• If not to be filtered, preparation should be prepared in
a Grade A environment with Grade B background (e.g.
ointments, creams, suspensions and emulsions)
• Prepared solutions filtered through a sterile 0.22μm
(or less) membrane filter into a previously sterilized
container
– filters remove bacteria and moulds
– do not remove all viruses or mycoplasmas
• filtration should be carried out under positive
pressure
Manufacture of sterile medicines –21
Aseptic Processing
Preparation and Filtration of Solutions (2)
• consideration should be given to complementing
filtration process with some form of heat treatment
• Double filter or second filter at point of fill advisable
• Fitlers should not shed particles, asbestos containing
filters should not be used
• Same filter should not be used for more than one day
unless validated
• If bulk product is stored in sealed vessels, pressure
release outlets should have hydrophobic microbial
retentive air filters
Manufacture of sterile medicines –22
Aseptic Processing
Preparation and Filtration of Solutions (3)
• Time limits should be established for each phase of
processing, e.g.
– maximum period between start of bulk product
compounding and sterilization (filtration)
– maximum permitted holding time of bulk if held after
filtration prior to filling
– product exposure on processing line
– storage of sterilized containers/components
– total time for product filtration to prevent organisms
from penetrating filter
– maximum time for upstream filters used for clarification
or particle removal (can support microbial attachment)
Manufacture of sterile medicines –23
Aseptic Processing
Preparation and Filtration of Solutions (4)
• Filling of solution may be followed by lyophilization
(freeze drying)
– stoppers partially seated, product transferred to
lyophilizer (Grade A/B conditions)
– Release of air/nitrogen into lyophilizer chamber at
completion of process should be through sterilizing
filter
Manufacture of sterile medicines –24
Aseptic Processing
Prefiltration Bioburden (natural microbial load)
• Limits should be stated and testing should be carried
out on each batch
• Frequency may be reduced after satisfactory history
is established
– and biobuden testing performed on components
• Should include action and alert limits (usually differ
by a factor of 10) and action taken if limits are
exceeded
• Limits should reasonably reflect bioburden routinely
achieved
Manufacture of sterile medicines –25
Aseptic Processing
Prefiltation Bioburden (2)
• No defined “maximum” limit but the limit should not
exceed the validated retention capability of the filter
• Bioburden controls should also be included in “in-
process” controls
– particularly when product supports microbial growth
and/or manufacturing process involves use of culture
media
• Excessive bioburden can have adverse effect on the
quality of the product and cause excessive levels of
endotoxins/pyrogens
Manufacture of sterile medicines –26
Aseptic Processing
Filter integrity
• Filters of 0.22μm or less should be used for filtration
of liquids and gasses (if applicable)
– filters for gasses that may be used for purging or
overlaying of filled containers or to release vacuum in
lyphilization chamber
• filter intergrity shoud be verified before filtration and
confirmed after filtration
– bubble point
– pressure hold
– forward flow
• methods are defined by filter manufacturers and limits
determined during filter validation
Manufacture of sterile medicines –27
Aseptic Processing
Filter Validaton
• Filter must be validated to demonstrate ability to
remove bacteria
– most common method is to show that filter can retain a
microbiological challenge of 107
CFU of Brevundimonas
diminuta per cm2
of the filter surface
– a bioburden isolate may be more appropriate for filter
retention studies than Brevundimonas diminuta
– Challenge concentration is intended to provide a margin
of safety well beyond what would be expected in
production
– preferably the microbial challenge is added to the fully
formulated product which is then passed through the
filter
Manufacture of sterile medicines –28
Aseptic Processing
Filter validation (2)
– if the product is bactericidal, product should be passed
through the filter first followed by modified product
containing the microbial challenge (after removing any
bactericidal activity remaining on the filter)
– filter validation should be carried out under worst case
conditions e.g. maximum allowed filtration time and
maximum pressure
– integrity testing specification for routine filtration
should correlate with that identified during filter
validation
Manufacture of sterile medicines –29
Aseptic Processing
Equipment/container preparation and
sterilization
• All equipment (including lyophilizers) and product
containers/closures should be sterilized using
validated cycles
– same requirements apply for equipment sterilization that
apply to terminally sterilized product
– particular attention to stoppers - should not be tightly
packed as may clump together and affect air removal
during vacuum stage of sterilization process
– equipment wrapped and loaded to facilitate air removal
– particular attention to filters, housings and tubing
Manufacture of sterile medicines –30
Aseptic Processing
Equipment/container preparation and
sterilization (2)
• CIP/SIP processes
– particular attention to deadlegs - different orientation
requirements for CIP and SIP
• heat tunnels often used for
sterilization/depyrogenation of glass vials/bottles
– usually high temperature for short period of time
– need to consider speed of conveyor
– validation of depyrogenation (3 logs endotoxin units)
• worst case locations
– tunnel supplied with HEPA filtered air
Manufacture of sterile medicines –31
Aseptic Processing
Equipment/container preparation and
sterilization (2)
• equipment should be designed to be easily assembled and
disassembled, cleaned, sanitised and/or sterilized
– equipment should be appropriately cleaned - O-rings and
gaskets should be removed to prevent build up of dirt or
residues
• rinse water should be WFI grade
• equipment should be left dry unless sterilized immediately
after cleaning (to prevent build up of pyrogens)
• washing of glass containers and rubber stoppers should be
validated for endotoxin removal
• should be defined storage period between sterilization and
use (period should be justified)
Manufacture of sterile medicines –32
Aseptic Processing
Process Validation
• Not possible to define a sterility assurance level
for aseptic processing
• Process is validated by simulating the
manufacturing process using microbiological
growth medium (media fill)
– Process simulation includes formulation
(compounding), filtration and filling with suitable media
using the same processes involved in manufacture of
the product
– modifications must be made for different dosage
formats e.g. lyophilized products, ointments, sterile
bulks, eye drops filled into semi-transparent/opaque
containers, biological products
Manufacture of sterile medicines –33
Aseptic Processing
Process Validation (2)
• Media fill program should include worst case
activities
– Factors associated with longest permitted run (e.g.
operator fatigue)
– Representative number, type, and complexity of
normal interventions, non-routine interventions
and events (e.g. maintenance, stoppages, etc)
– Lyophilisation
– Aseptic equipment assembly
Manufacture of sterile medicines –34
Aseptic Processing
Process Validation (3)
• Worst case activities (cont)
– No of personnel and their activities, shift changes,
breaks, gown changes
– Representative number of aseptic additions (e.g.
charging containers, closures, sterile ingredients)
or transfers
– Aseptic equipment connections/disconnections
– Aseptic sample collections
– Line speed and configuration
Manufacture of sterile medicines –35
Aseptic Processing
Process Validation (4)
• Worst case activities (cont)
– Weight checks
– Container closure systems
– Specific provisions in processing instructions
• Written batch record documenting conditions and
activities
• Should not be used to justify risky practices
Manufacture of sterile medicines –36
Aseptic Processing
Process Validation (5)
Duration
– Depends on type of operation
– BFS, Isolator processes - sufficient time to include
manipulations and interventions
– For conventional operations should include the total
filling time
Size
– 5000 - 10000 generally acceptable or batch size if <5000
– For manually intensive processes larger numbers
should be filled
– Lower numbers can be filled for isolators
Manufacture of sterile medicines –37
Aseptic Processing
Process Validation (6)
• Frequency and Number
– Three initial, consecutive per shift
– Subsequently semi-annual per shift and process
– All personnel should participate at least annually,
consistent with routine duties
– Changes should be assessed and revalidation
carried out as required
• Line Speed
– Speed depends on type of process
Manufacture of sterile medicines –38
Aseptic Processing
Process Validation (7)
• Environmental conditions
– Representative of actual production conditions (no. of
personnel, activity levels etc) - no special precautions (not
including adjustment of HVAC)
– if nitrogen used for overlaying/purging need to substitute with
air
• Media
– Anaerobic media should be considered under certain
circumstances
– Should be tested for growth promoting properties (including
factory isolates)
Manufacture of sterile medicines –39
Aseptic Processing
Process Validation (8)
• Incubation, Examination
– In the range 20-35ºC.
– If two temperatures are used, lower temperature first
– Inspection by qualified personnel.
– All integral units should be incubated. Should be
justification for any units not incubated.
– Units removed (and not incubated) should be
consistent with routine practices (although
incubation would give information regarding risk of
intervention)
– Batch reconciliation
Manufacture of sterile medicines –40
Aseptic Processing
Process Validation (9)
• Interpretation of Results
– When filling fewer than 5000 units:
• no contaminated units should be detected
• One (1) contaminated unit is considered cause for
revalidation, following an investigation
– When filling from 5000-10000 units
• One (1) contaminated unit should result in an
investigation, including consideration of a repeat media fill
• Two (2) contaminated units are considered cause for
revalidation, following investigation
– When filling more than 10000 units
• One (1) contaminated unit should result in an investigation
• Two (2) contaminated units are considered cause for
revalidation, following investigation
Manufacture of sterile medicines –41
Aseptic Processing
Process Validation (10)
• Interpretation of Results
– Media fills should be observed by QC and
contaminated units reconcilable with time and
activity being simulated (Video may help)
– Ideally - no contamination. Any contamination
should be investigated.
– Any organisms isolated should be identified to
species level (genotypic identification)
– Invalidation of a media fill run should be rare
Manufacture of sterile medicines –42
Aseptic Processing
Process Validation (11)
• Batch Record Review
– Process and environmental control activities
should be included in batch records and reviewed
as part of batch release
• In-process and laboratory control results
• Environmental and personnel monitoring data
• Output from support systems(HEPA/HVAC, WFI, steam
generator)
• Equipment function (batch alarm reports, filter integrity)
• Interventions, Deviations, Stoppages - duration and
associated time
• Written instructions regarding need for line clearances
• Disruptions to power supply
Manufacture of sterile medicines –43
Aseptic Processing
Additional issues specific to Isolator and
BFS Technologies
• Isolators
– Decontamination process requires a 4-6 log
reduction of appropriate Biological Indicator (BI)
– Minimum 6 log reduction of BI if surface is to be
free of viable organisms
– Significant focus on glove integrity - daily checks,
second pair of gloves inside isolator glove
– Traditional aseptic vigilance should be maintained
Manufacture of sterile medicines –44
Aseptic Processing
• Blow-Fill-Seal (BFS)
– Located in a Grade D environment
– Critial zone should meet Grade A (microbiological)
requirements (particle count requirements may be
difficult to meet in operation)
– Operators meet Grade C garment requirements
– Validation of extrusion process should
demonstrate destruction of endotoxin and spore
challenges in the polymeric material
– Final inspection should be capable of detecting
leakers
Manufacture of sterile medicines –45
Aseptic Processing
• Issues relating to Aseptic Bulk Processing
• Applies to products which can not be filtered at point of
fill and require aseptic processing throughout entire
manufacturing process.
• Entire aseptic process should be subject to process
simulation studies under worst case conditions
(maximum duration of "open" operations, maximum no
of operators)
• Process simulations should incorporate storage and
transport of bulk.
• Multiple uses of the same bulk with storage in between
should also be included in process simulations
• Assurance of bulk vessel integrity for specified holding
times.
Manufacture of sterile medicines –46
Aseptic Processing
• Bulk Processing (2)
• Process simulation for formulation stage should be
performed at least twice per year.
– Cellular therapies, cell derived products etc
• products released before results of sterility tests
known (also TPNs, radioactive preps, cytotoxics)
• should be manufactured in a closed system
• Additional testing
– sterility testing of intermediates
– microscopic examination (e.g. gram stain)
– endotoxin testing
Manufacture of sterile medicines –47
Useful Publications
• PIC/S Recommendation on the Validation of Aseptic
Processes
• FDA Guidance for Industry- Sterile Drug Products Produced
by Aseptic Processing - Current Good Manufacturing
Process
• ISO 13408 Aseptic Processing of Health Care Products
– Part 1: General Requirements
– Part 2: Filtration
– Part 3: Lyophilization
– Part 4: Clean-In-Place Technologies
– Part 5: Sterilization-In-Place
– Part 6: Isolator Systems

More Related Content

What's hot

Cross contamination in Pharmaceuticals - by Jitendra J Jagtap
Cross contamination in Pharmaceuticals - by Jitendra J JagtapCross contamination in Pharmaceuticals - by Jitendra J Jagtap
Cross contamination in Pharmaceuticals - by Jitendra J Jagtapjitendrajagtap1986
 
Presentation on aseptic filling
Presentation on aseptic fillingPresentation on aseptic filling
Presentation on aseptic fillingSohani Ali
 
Layout for solid
Layout for solidLayout for solid
Layout for solidjigs2163
 
Sterile products manufacturing
Sterile products manufacturingSterile products manufacturing
Sterile products manufacturingDr. Samia
 
Aseptic Process Operation.pptx
Aseptic Process Operation.pptxAseptic Process Operation.pptx
Aseptic Process Operation.pptxObyDulla1
 
Media fill process and validation
Media fill process and validationMedia fill process and validation
Media fill process and validationpaideeksha
 
Qualification Of Autoclave
Qualification Of AutoclaveQualification Of Autoclave
Qualification Of Autoclave8669290285
 
Fda initiative on process analytical technology
Fda initiative on process analytical technologyFda initiative on process analytical technology
Fda initiative on process analytical technologyVaishaliMundhe1
 
Non sterile manufacturing process technology
Non sterile manufacturing process technologyNon sterile manufacturing process technology
Non sterile manufacturing process technologyPRANJAY PATIL
 
Aseptic processing
Aseptic processingAseptic processing
Aseptic processingShivaram
 
Purified Water System in Pharmaceuticals
Purified Water System in PharmaceuticalsPurified Water System in Pharmaceuticals
Purified Water System in PharmaceuticalsPharmaguideline
 
Current good manufacturing practice
Current good manufacturing practiceCurrent good manufacturing practice
Current good manufacturing practiceDr Subodh Satheesh
 
Manufacturing of Sterile Products Session 2 of 3-OA-13 May 2015
Manufacturing of Sterile Products Session 2 of 3-OA-13 May 2015Manufacturing of Sterile Products Session 2 of 3-OA-13 May 2015
Manufacturing of Sterile Products Session 2 of 3-OA-13 May 2015Obaid Ali / Roohi B. Obaid
 
Pharmaceutical water
Pharmaceutical waterPharmaceutical water
Pharmaceutical waterAhmed Adel
 

What's hot (20)

Cross contamination in Pharmaceuticals - by Jitendra J Jagtap
Cross contamination in Pharmaceuticals - by Jitendra J JagtapCross contamination in Pharmaceuticals - by Jitendra J Jagtap
Cross contamination in Pharmaceuticals - by Jitendra J Jagtap
 
Presentation on aseptic filling
Presentation on aseptic fillingPresentation on aseptic filling
Presentation on aseptic filling
 
Layout for solid
Layout for solidLayout for solid
Layout for solid
 
Form fill seal technology
Form fill seal technologyForm fill seal technology
Form fill seal technology
 
Pilot plant parenteal production
Pilot plant parenteal productionPilot plant parenteal production
Pilot plant parenteal production
 
Air circulation
Air circulationAir circulation
Air circulation
 
Sterile products manufacturing
Sterile products manufacturingSterile products manufacturing
Sterile products manufacturing
 
Aseptic Process Operation.pptx
Aseptic Process Operation.pptxAseptic Process Operation.pptx
Aseptic Process Operation.pptx
 
Aseptic Processing & Media Fill
Aseptic Processing & Media FillAseptic Processing & Media Fill
Aseptic Processing & Media Fill
 
Media fill process and validation
Media fill process and validationMedia fill process and validation
Media fill process and validation
 
Qualification Of Autoclave
Qualification Of AutoclaveQualification Of Autoclave
Qualification Of Autoclave
 
Fda initiative on process analytical technology
Fda initiative on process analytical technologyFda initiative on process analytical technology
Fda initiative on process analytical technology
 
Non sterile manufacturing process technology
Non sterile manufacturing process technologyNon sterile manufacturing process technology
Non sterile manufacturing process technology
 
Line clearance ppt
Line clearance pptLine clearance ppt
Line clearance ppt
 
Aseptic processing
Aseptic processingAseptic processing
Aseptic processing
 
Purified Water System in Pharmaceuticals
Purified Water System in PharmaceuticalsPurified Water System in Pharmaceuticals
Purified Water System in Pharmaceuticals
 
Current good manufacturing practice
Current good manufacturing practiceCurrent good manufacturing practice
Current good manufacturing practice
 
cGMP's for sterile products
cGMP's  for sterile productscGMP's  for sterile products
cGMP's for sterile products
 
Manufacturing of Sterile Products Session 2 of 3-OA-13 May 2015
Manufacturing of Sterile Products Session 2 of 3-OA-13 May 2015Manufacturing of Sterile Products Session 2 of 3-OA-13 May 2015
Manufacturing of Sterile Products Session 2 of 3-OA-13 May 2015
 
Pharmaceutical water
Pharmaceutical waterPharmaceutical water
Pharmaceutical water
 

Viewers also liked (9)

Pharmaceutical suspensions... a brief review
Pharmaceutical suspensions... a brief reviewPharmaceutical suspensions... a brief review
Pharmaceutical suspensions... a brief review
 
Cleanroom sop slides
Cleanroom sop slidesCleanroom sop slides
Cleanroom sop slides
 
Gowning
GowningGowning
Gowning
 
Tumors
TumorsTumors
Tumors
 
Sterile area
Sterile areaSterile area
Sterile area
 
Aseptic technique
Aseptic techniqueAseptic technique
Aseptic technique
 
Basic Cleanroom Protocol
Basic Cleanroom ProtocolBasic Cleanroom Protocol
Basic Cleanroom Protocol
 
Cleanroom, Classification, Design and
Cleanroom, Classification, Design and Cleanroom, Classification, Design and
Cleanroom, Classification, Design and
 
pharmaceutical clean room
pharmaceutical clean room pharmaceutical clean room
pharmaceutical clean room
 

Similar to Aseptic processing

Aseptic processing
Aseptic processingAseptic processing
Aseptic processingRiyaRYadav
 
2-1_2-2_AsepticProcessing.ppt
2-1_2-2_AsepticProcessing.ppt2-1_2-2_AsepticProcessing.ppt
2-1_2-2_AsepticProcessing.pptbinhamid2
 
Schedule M in pharmaceutical industries
Schedule M in pharmaceutical industries Schedule M in pharmaceutical industries
Schedule M in pharmaceutical industries rasika walunj
 
Sediaan steril [compatibility mode](1)
Sediaan steril [compatibility mode](1)Sediaan steril [compatibility mode](1)
Sediaan steril [compatibility mode](1)Eka Selvina
 
Aseptic Technique for sterile area .pptx
Aseptic Technique for sterile area .pptxAseptic Technique for sterile area .pptx
Aseptic Technique for sterile area .pptxNaeemSarwar37
 
STERILE PROCESS OF VALIDATION
STERILE PROCESS OF VALIDATIONSTERILE PROCESS OF VALIDATION
STERILE PROCESS OF VALIDATIONSagar Savale
 
Sterile process validation
Sterile process validationSterile process validation
Sterile process validationSagar Savale
 
Manufacturing Operations and Controls
Manufacturing Operations and ControlsManufacturing Operations and Controls
Manufacturing Operations and ControlsSayali Powar
 
GMP { Good manufacturing Practices }
GMP { Good manufacturing Practices }GMP { Good manufacturing Practices }
GMP { Good manufacturing Practices }Karthik Penamala
 
Manufacturing process of bio drugs pharma.ppt
Manufacturing process of bio drugs pharma.pptManufacturing process of bio drugs pharma.ppt
Manufacturing process of bio drugs pharma.pptBilyPutra1
 
cGMP of sterile area by faheem sb.pptx
cGMP of sterile area by faheem sb.pptxcGMP of sterile area by faheem sb.pptx
cGMP of sterile area by faheem sb.pptxzohaibmaqsoodneutrop
 
Sterilepharmaceuticalproduct
SterilepharmaceuticalproductSterilepharmaceuticalproduct
SterilepharmaceuticalproductMrs. Bhakti Mali
 
Sanitization & Hygiene in Pharmaceutical
Sanitization & Hygiene in PharmaceuticalSanitization & Hygiene in Pharmaceutical
Sanitization & Hygiene in PharmaceuticalIqra Shafeeq
 

Similar to Aseptic processing (20)

Aseptic processing
Aseptic processingAseptic processing
Aseptic processing
 
2-1_2-2_AsepticProcessing.ppt
2-1_2-2_AsepticProcessing.ppt2-1_2-2_AsepticProcessing.ppt
2-1_2-2_AsepticProcessing.ppt
 
Schedule M in pharmaceutical industries
Schedule M in pharmaceutical industries Schedule M in pharmaceutical industries
Schedule M in pharmaceutical industries
 
Sediaan steril [compatibility mode](1)
Sediaan steril [compatibility mode](1)Sediaan steril [compatibility mode](1)
Sediaan steril [compatibility mode](1)
 
Aseptic Technique for sterile area .pptx
Aseptic Technique for sterile area .pptxAseptic Technique for sterile area .pptx
Aseptic Technique for sterile area .pptx
 
STERILE PROCESS OF VALIDATION
STERILE PROCESS OF VALIDATIONSTERILE PROCESS OF VALIDATION
STERILE PROCESS OF VALIDATION
 
Sterile process validation
Sterile process validationSterile process validation
Sterile process validation
 
Manufacturing Operations and Controls
Manufacturing Operations and ControlsManufacturing Operations and Controls
Manufacturing Operations and Controls
 
GMP { Good manufacturing Practices }
GMP { Good manufacturing Practices }GMP { Good manufacturing Practices }
GMP { Good manufacturing Practices }
 
M03_A(1).ppt
M03_A(1).pptM03_A(1).ppt
M03_A(1).ppt
 
Gmp premicses
Gmp premicses Gmp premicses
Gmp premicses
 
Manufacturing process of bio drugs pharma.ppt
Manufacturing process of bio drugs pharma.pptManufacturing process of bio drugs pharma.ppt
Manufacturing process of bio drugs pharma.ppt
 
cGMP of sterile area by faheem sb.pptx
cGMP of sterile area by faheem sb.pptxcGMP of sterile area by faheem sb.pptx
cGMP of sterile area by faheem sb.pptx
 
Sterilepharmaceuticalproduct
SterilepharmaceuticalproductSterilepharmaceuticalproduct
Sterilepharmaceuticalproduct
 
Injectable
InjectableInjectable
Injectable
 
Scedule T.pptx
Scedule T.pptxScedule T.pptx
Scedule T.pptx
 
Sanitization & Hygiene in Pharmaceutical
Sanitization & Hygiene in PharmaceuticalSanitization & Hygiene in Pharmaceutical
Sanitization & Hygiene in Pharmaceutical
 
Parenteral products ii
Parenteral products   iiParenteral products   ii
Parenteral products ii
 
opthalmics.pptx
opthalmics.pptxopthalmics.pptx
opthalmics.pptx
 
Good practices in production
Good practices in productionGood practices in production
Good practices in production
 

More from deepakiitbhu

More from deepakiitbhu (19)

ug-pharmacy-sar-v0.pdf
ug-pharmacy-sar-v0.pdfug-pharmacy-sar-v0.pdf
ug-pharmacy-sar-v0.pdf
 
evaluation-guidelines-UG-Pharmacy.pdf
evaluation-guidelines-UG-Pharmacy.pdfevaluation-guidelines-UG-Pharmacy.pdf
evaluation-guidelines-UG-Pharmacy.pdf
 
pre-qualifiers-ug-pharmacy.pdf
pre-qualifiers-ug-pharmacy.pdfpre-qualifiers-ug-pharmacy.pdf
pre-qualifiers-ug-pharmacy.pdf
 
B Pharm Syllabus PU.pdf
B Pharm Syllabus PU.pdfB Pharm Syllabus PU.pdf
B Pharm Syllabus PU.pdf
 
Abraxane brochure
Abraxane brochureAbraxane brochure
Abraxane brochure
 
Approval labelling
Approval labellingApproval labelling
Approval labelling
 
Abrx7
Abrx7Abrx7
Abrx7
 
Abrx6
Abrx6Abrx6
Abrx6
 
Abrx5
Abrx5Abrx5
Abrx5
 
Abrx4
Abrx4Abrx4
Abrx4
 
Abrx3
Abrx3Abrx3
Abrx3
 
Abrx2
Abrx2Abrx2
Abrx2
 
Abrx1
Abrx1Abrx1
Abrx1
 
Cr ps awards_2019
Cr ps awards_2019Cr ps awards_2019
Cr ps awards_2019
 
Pfa p ka dtr
Pfa p ka dtrPfa p ka dtr
Pfa p ka dtr
 
Controlled release oral drugd elivery systems
Controlled release oral drugd elivery systemsControlled release oral drugd elivery systems
Controlled release oral drugd elivery systems
 
R d disc mngmt
R d disc mngmtR d disc mngmt
R d disc mngmt
 
Aseptic processing
Aseptic processingAseptic processing
Aseptic processing
 
A basic-theory-and-brief-history
A basic-theory-and-brief-historyA basic-theory-and-brief-history
A basic-theory-and-brief-history
 

Recently uploaded

Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...CzechDreamin
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoTAnalytics
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1DianaGray10
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...Product School
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomCzechDreamin
 
The architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfThe architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfalexjohnson7307
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaCzechDreamin
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationZilliz
 
UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2DianaGray10
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Julian Hyde
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Alison B. Lowndes
 
Agentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfAgentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfChristopherTHyatt
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaRTTS
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeCzechDreamin
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxDavid Michel
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backElena Simperl
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Product School
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...Product School
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor TurskyiFwdays
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutesconfluent
 

Recently uploaded (20)

Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
 
The architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfThe architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdf
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara Laskowska
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG Evaluation
 
UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Agentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfAgentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdf
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
 

Aseptic processing

  • 1. Manufacture of sterile medicines –1 Aseptic Processing Mrs Robyn Isaacson
  • 2. Manufacture of sterile medicines –2 Aseptic Processing - Overview • Certain pharmaceutical products must be sterile – injections, ophthalmic preparations, irrigations solutions, haemodialysis solutions • Two categories of sterile products – those that can be sterilized in final container (terminally sterilized) – those that cannot be terminally sterilized and must be aseptically prepared
  • 3. Manufacture of sterile medicines –3 Aseptic Processing - Overview Aseptic processing • Objective is to maintain the sterility of a product, assembled from sterile components • Operating conditions so as to prevent microbial contamination
  • 4. Manufacture of sterile medicines –4 Aseptic Processing - Overview Objective • To review specific issues relating to the manufacture of aseptically prepared products: – Manufacturing environment • Clean areas • Personnel – Preparation and filtration of solutions – Pre-filtration bioburden – Filter integrity/validation – Equipment/container preparation and sterilization – Filling Process – Validation of aseptic processes – Specific issues relating to Isolators, BFS and Bulk
  • 5. Manufacture of sterile medicines –5 Manufacturing Environment Classification of Clean Areas – Comparison of classifications WHO GMP US 209E US Customary ISO/TC (209) ISO 14644 EEC GMP Grade A M 3.5 Class 100 ISO 5 Grade A Grade B M 3.5 Class 100 ISO 5 Grade B Grade C M 5.5 Class 10 000 ISO 7 Grade C Grade D M 6.5 Class 100 000 ISO 8 Grade D Table 1
  • 6. Manufacture of sterile medicines –6 Manufacturing Environment Classification of Clean Areas – Classified in terms of airborne particles (Table 2) Grade At rest In operation maximum permitted number of particles/m3 0.5 - 5.0 µm > 5 µm 0.5 - 5.0 µm > 5 µ A 3 500 0 3 500 0 B 3 500 0 350 000 2 000 C 350 000 2 000 3 500 000 20 000 D 3 500 000 20 000 not defined not defined “At rest” - production equipment installed and operating “In operation” - Installed equipment functioning in defined operating mode and specified number of personnel present
  • 7. Manufacture of sterile medicines –7 Manufacturing Environment Four grades of clean areas: • Grade D (equivalent to Class 100,000, ISO 8): – Clean area for carrying out less critical stages in manufacture of aseptically prepared products eg. handling of components after washing. • Grade C (equivalent to Class 10,000, ISO 7): – Clean area for carrying out less critical stages in manufacture of aseptically prepared products eg. preparation of solutions to be filtered. • Grade B (equivalent to Class 100, ISO 5): – Background environment for Grade A zone, eg. cleanroom in which laminar flow workstation is housed.
  • 8. Manufacture of sterile medicines –8 Manufacturing Environment • Grade A (equivalent to Class 100 (US Federal Standard 209E), ISO 5 (ISO 14644-1): – Local zone for high risk operations eg. product filling, stopper bowls, open vials, handling sterile materials, aseptic connections, transfer of partially stoppered containers to be lyophilized. – Conditions usually provided by laminar air flow workstation. • Each grade of cleanroom has specifications for viable and non-viable particles – Non-viable particles are defined by the air classification (See Table 2)
  • 9. Manufacture of sterile medicines –9 Manufacturing Environment • Limits for viable particles (microbiological contamination) Grade Air sample (CFU/m3) Settle plates (90mm diameter) (CFU/4hours) Contact plates (55mm diameter) (CFU/plate) Glove print (5 fingers) (CFU/glove) A < 3 < 3 < 3 < 3 B 10 5 5 5 C 100 50 25 - D 200 100 50 - Table 3 – These are average values – Individual settle plates may be exposed for less than 4 hours • Values are for guidance only - not intended to represent specifications • Levels (limits) of detection of microbiological contamination should be established for alert and action purposes and for monitoring trends of air quality in the facility
  • 10. Manufacture of sterile medicines –10 Manufacturing Environment Environmental Monitoring • Physical – Particulate matter – Differential pressures – Air changes, airflow patterns – Clean up time/recovery – Temperature and relative humidity – Airflow velocity
  • 11. Manufacture of sterile medicines –11 Manufacturing Environment Environmental Monitoring - Physical • Particulate matter – Particles significant because they can contaminate and also carry organisms – Critical environment should be measured not more than 30cm from worksite, within airflow and during filling/closing operations – Preferably a remote probe that monitors continuously – Difficulties when process itself generates particles (e.g. powder filling) – Appropriate alert and action limits should be set and corrective actions defined if limits exceeded
  • 12. Manufacture of sterile medicines –12 Manufacturing Environment Environmental Monitoring - Physical • Differential pressures – Positive pressure differential of 10-15 Pascals should be maintained between adjacent rooms of different classification (with door closed) – Most critical area should have the highest pressure – Pressures should be continuously monitored and frequently recorded. – Alarms should sound if pressures deviate – Any deviations should be investigated and effect on environmental quality determined
  • 13. Manufacture of sterile medicines –13 Manufacturing Environment Environmental Monitoring - Physical • Air Changes/Airflow patterns – Air flow over critical areas should be uni-directional (laminar flow) at a velocity sufficient to sweep particles away from filling/closing area – for B, C and D rooms at least 20 changes per hour are ususally required • Clean up time/recovery – Particulate levels for the Grade A “at rest” state should be achieved after a short “clean-up” period of 20 minutes after completion of operations (guidance value) – Particle counts for Grade A “in operation” state should be maintained whenever product or open container is exposed
  • 14. Manufacture of sterile medicines –14 Manufacturing Environment Environmental Monitoring - Physical • Temperature and Relative Humidity – Ambient temperature and humidity should not be uncomfortably high (could cause operators to generate particles) (18°C) • Airflow velocity – Laminar airflow workstation air speed of approx 0.45m/s ± 20% at working position (guidance value)
  • 15. Manufacture of sterile medicines –15 Manufacturing Environment Personnel • Minimum number of personnel in clean areas – especially during aseptic processing • Inspections and controls from outside • Training to all including cleaning and maintenance staff – initial and regular – manufacturing, hygiene, microbiology – should be formally validated and authorized to enter aseptic area • Special cases – supervision in case of outside staff – decontamination procedures (e.g. staff who worked with animal tissue materials)
  • 16. Manufacture of sterile medicines –16 Manufacturing Environment Personnel (2) • High standards of hygiene and cleanliness – should not enter clean rooms if ill or with open wounds • Periodic health checks • No shedding of particles, movement slow and controlled • No introduction of microbiological hazards • No outdoor clothing brought into clean areas, should be clad in factory clothing • Changing and washing procedure • No watches, jewellery and cosmetics • Eye checks if involved in visual inspection
  • 17. Manufacture of sterile medicines –17 Manufacturing Environment Personnel (3) • Clothing of appropriate quality: – Grade D • hair, beard, moustache covered • protective clothing and shoes – Grade C • hair, beard, moustache covered • single or 2-piece suit (covering wrists, high neck), shoes/overshoes • no fibres/particles to be shed – Grade A and B • headgear, beard and moustache covered, masks, gloves • not shedding fibres, and retain particles shed by operators
  • 18. Manufacture of sterile medicines –18 Manufacturing Environment Personnel (4) • Outdoor clothing not in change rooms leading to Grade B and C rooms • Change at every working session, or once a day (if supportive data) • Change gloves and masks at every working session • Frequent disinfection of gloves during operations • Washing of garments – separate laundry facility – No damage, and according to validated procedures (washing and sterilization) • Regular microbiological monitoring of operators
  • 19. Manufacture of sterile medicines –19 Aseptic Processing • In aseptic processing, each component is individually sterilised, or several components are combined with the resulting mixture sterilized. – Most common is preparation of a solution which is filtered through a sterilizing filter then filled into sterile containers (e.g active and excipients dissolved in Water for Injection) – May involve aseptic compounding of previously sterilized components which is filled into sterile containers – May involve filling of previously sterilized powder • sterilized by dry heat/irradiation • produced from a sterile filtered solution which is then aseptically crystallized and precipitated – requires more handling and manipulation with higher potential for contamination during processing
  • 20. Manufacture of sterile medicines –20 Aseptic Processing Preparation and Filtration of Solutions • Solutions to be sterile filtered prepared in a Grade C environment • If not to be filtered, preparation should be prepared in a Grade A environment with Grade B background (e.g. ointments, creams, suspensions and emulsions) • Prepared solutions filtered through a sterile 0.22μm (or less) membrane filter into a previously sterilized container – filters remove bacteria and moulds – do not remove all viruses or mycoplasmas • filtration should be carried out under positive pressure
  • 21. Manufacture of sterile medicines –21 Aseptic Processing Preparation and Filtration of Solutions (2) • consideration should be given to complementing filtration process with some form of heat treatment • Double filter or second filter at point of fill advisable • Fitlers should not shed particles, asbestos containing filters should not be used • Same filter should not be used for more than one day unless validated • If bulk product is stored in sealed vessels, pressure release outlets should have hydrophobic microbial retentive air filters
  • 22. Manufacture of sterile medicines –22 Aseptic Processing Preparation and Filtration of Solutions (3) • Time limits should be established for each phase of processing, e.g. – maximum period between start of bulk product compounding and sterilization (filtration) – maximum permitted holding time of bulk if held after filtration prior to filling – product exposure on processing line – storage of sterilized containers/components – total time for product filtration to prevent organisms from penetrating filter – maximum time for upstream filters used for clarification or particle removal (can support microbial attachment)
  • 23. Manufacture of sterile medicines –23 Aseptic Processing Preparation and Filtration of Solutions (4) • Filling of solution may be followed by lyophilization (freeze drying) – stoppers partially seated, product transferred to lyophilizer (Grade A/B conditions) – Release of air/nitrogen into lyophilizer chamber at completion of process should be through sterilizing filter
  • 24. Manufacture of sterile medicines –24 Aseptic Processing Prefiltration Bioburden (natural microbial load) • Limits should be stated and testing should be carried out on each batch • Frequency may be reduced after satisfactory history is established – and biobuden testing performed on components • Should include action and alert limits (usually differ by a factor of 10) and action taken if limits are exceeded • Limits should reasonably reflect bioburden routinely achieved
  • 25. Manufacture of sterile medicines –25 Aseptic Processing Prefiltation Bioburden (2) • No defined “maximum” limit but the limit should not exceed the validated retention capability of the filter • Bioburden controls should also be included in “in- process” controls – particularly when product supports microbial growth and/or manufacturing process involves use of culture media • Excessive bioburden can have adverse effect on the quality of the product and cause excessive levels of endotoxins/pyrogens
  • 26. Manufacture of sterile medicines –26 Aseptic Processing Filter integrity • Filters of 0.22μm or less should be used for filtration of liquids and gasses (if applicable) – filters for gasses that may be used for purging or overlaying of filled containers or to release vacuum in lyphilization chamber • filter intergrity shoud be verified before filtration and confirmed after filtration – bubble point – pressure hold – forward flow • methods are defined by filter manufacturers and limits determined during filter validation
  • 27. Manufacture of sterile medicines –27 Aseptic Processing Filter Validaton • Filter must be validated to demonstrate ability to remove bacteria – most common method is to show that filter can retain a microbiological challenge of 107 CFU of Brevundimonas diminuta per cm2 of the filter surface – a bioburden isolate may be more appropriate for filter retention studies than Brevundimonas diminuta – Challenge concentration is intended to provide a margin of safety well beyond what would be expected in production – preferably the microbial challenge is added to the fully formulated product which is then passed through the filter
  • 28. Manufacture of sterile medicines –28 Aseptic Processing Filter validation (2) – if the product is bactericidal, product should be passed through the filter first followed by modified product containing the microbial challenge (after removing any bactericidal activity remaining on the filter) – filter validation should be carried out under worst case conditions e.g. maximum allowed filtration time and maximum pressure – integrity testing specification for routine filtration should correlate with that identified during filter validation
  • 29. Manufacture of sterile medicines –29 Aseptic Processing Equipment/container preparation and sterilization • All equipment (including lyophilizers) and product containers/closures should be sterilized using validated cycles – same requirements apply for equipment sterilization that apply to terminally sterilized product – particular attention to stoppers - should not be tightly packed as may clump together and affect air removal during vacuum stage of sterilization process – equipment wrapped and loaded to facilitate air removal – particular attention to filters, housings and tubing
  • 30. Manufacture of sterile medicines –30 Aseptic Processing Equipment/container preparation and sterilization (2) • CIP/SIP processes – particular attention to deadlegs - different orientation requirements for CIP and SIP • heat tunnels often used for sterilization/depyrogenation of glass vials/bottles – usually high temperature for short period of time – need to consider speed of conveyor – validation of depyrogenation (3 logs endotoxin units) • worst case locations – tunnel supplied with HEPA filtered air
  • 31. Manufacture of sterile medicines –31 Aseptic Processing Equipment/container preparation and sterilization (2) • equipment should be designed to be easily assembled and disassembled, cleaned, sanitised and/or sterilized – equipment should be appropriately cleaned - O-rings and gaskets should be removed to prevent build up of dirt or residues • rinse water should be WFI grade • equipment should be left dry unless sterilized immediately after cleaning (to prevent build up of pyrogens) • washing of glass containers and rubber stoppers should be validated for endotoxin removal • should be defined storage period between sterilization and use (period should be justified)
  • 32. Manufacture of sterile medicines –32 Aseptic Processing Process Validation • Not possible to define a sterility assurance level for aseptic processing • Process is validated by simulating the manufacturing process using microbiological growth medium (media fill) – Process simulation includes formulation (compounding), filtration and filling with suitable media using the same processes involved in manufacture of the product – modifications must be made for different dosage formats e.g. lyophilized products, ointments, sterile bulks, eye drops filled into semi-transparent/opaque containers, biological products
  • 33. Manufacture of sterile medicines –33 Aseptic Processing Process Validation (2) • Media fill program should include worst case activities – Factors associated with longest permitted run (e.g. operator fatigue) – Representative number, type, and complexity of normal interventions, non-routine interventions and events (e.g. maintenance, stoppages, etc) – Lyophilisation – Aseptic equipment assembly
  • 34. Manufacture of sterile medicines –34 Aseptic Processing Process Validation (3) • Worst case activities (cont) – No of personnel and their activities, shift changes, breaks, gown changes – Representative number of aseptic additions (e.g. charging containers, closures, sterile ingredients) or transfers – Aseptic equipment connections/disconnections – Aseptic sample collections – Line speed and configuration
  • 35. Manufacture of sterile medicines –35 Aseptic Processing Process Validation (4) • Worst case activities (cont) – Weight checks – Container closure systems – Specific provisions in processing instructions • Written batch record documenting conditions and activities • Should not be used to justify risky practices
  • 36. Manufacture of sterile medicines –36 Aseptic Processing Process Validation (5) Duration – Depends on type of operation – BFS, Isolator processes - sufficient time to include manipulations and interventions – For conventional operations should include the total filling time Size – 5000 - 10000 generally acceptable or batch size if <5000 – For manually intensive processes larger numbers should be filled – Lower numbers can be filled for isolators
  • 37. Manufacture of sterile medicines –37 Aseptic Processing Process Validation (6) • Frequency and Number – Three initial, consecutive per shift – Subsequently semi-annual per shift and process – All personnel should participate at least annually, consistent with routine duties – Changes should be assessed and revalidation carried out as required • Line Speed – Speed depends on type of process
  • 38. Manufacture of sterile medicines –38 Aseptic Processing Process Validation (7) • Environmental conditions – Representative of actual production conditions (no. of personnel, activity levels etc) - no special precautions (not including adjustment of HVAC) – if nitrogen used for overlaying/purging need to substitute with air • Media – Anaerobic media should be considered under certain circumstances – Should be tested for growth promoting properties (including factory isolates)
  • 39. Manufacture of sterile medicines –39 Aseptic Processing Process Validation (8) • Incubation, Examination – In the range 20-35ºC. – If two temperatures are used, lower temperature first – Inspection by qualified personnel. – All integral units should be incubated. Should be justification for any units not incubated. – Units removed (and not incubated) should be consistent with routine practices (although incubation would give information regarding risk of intervention) – Batch reconciliation
  • 40. Manufacture of sterile medicines –40 Aseptic Processing Process Validation (9) • Interpretation of Results – When filling fewer than 5000 units: • no contaminated units should be detected • One (1) contaminated unit is considered cause for revalidation, following an investigation – When filling from 5000-10000 units • One (1) contaminated unit should result in an investigation, including consideration of a repeat media fill • Two (2) contaminated units are considered cause for revalidation, following investigation – When filling more than 10000 units • One (1) contaminated unit should result in an investigation • Two (2) contaminated units are considered cause for revalidation, following investigation
  • 41. Manufacture of sterile medicines –41 Aseptic Processing Process Validation (10) • Interpretation of Results – Media fills should be observed by QC and contaminated units reconcilable with time and activity being simulated (Video may help) – Ideally - no contamination. Any contamination should be investigated. – Any organisms isolated should be identified to species level (genotypic identification) – Invalidation of a media fill run should be rare
  • 42. Manufacture of sterile medicines –42 Aseptic Processing Process Validation (11) • Batch Record Review – Process and environmental control activities should be included in batch records and reviewed as part of batch release • In-process and laboratory control results • Environmental and personnel monitoring data • Output from support systems(HEPA/HVAC, WFI, steam generator) • Equipment function (batch alarm reports, filter integrity) • Interventions, Deviations, Stoppages - duration and associated time • Written instructions regarding need for line clearances • Disruptions to power supply
  • 43. Manufacture of sterile medicines –43 Aseptic Processing Additional issues specific to Isolator and BFS Technologies • Isolators – Decontamination process requires a 4-6 log reduction of appropriate Biological Indicator (BI) – Minimum 6 log reduction of BI if surface is to be free of viable organisms – Significant focus on glove integrity - daily checks, second pair of gloves inside isolator glove – Traditional aseptic vigilance should be maintained
  • 44. Manufacture of sterile medicines –44 Aseptic Processing • Blow-Fill-Seal (BFS) – Located in a Grade D environment – Critial zone should meet Grade A (microbiological) requirements (particle count requirements may be difficult to meet in operation) – Operators meet Grade C garment requirements – Validation of extrusion process should demonstrate destruction of endotoxin and spore challenges in the polymeric material – Final inspection should be capable of detecting leakers
  • 45. Manufacture of sterile medicines –45 Aseptic Processing • Issues relating to Aseptic Bulk Processing • Applies to products which can not be filtered at point of fill and require aseptic processing throughout entire manufacturing process. • Entire aseptic process should be subject to process simulation studies under worst case conditions (maximum duration of "open" operations, maximum no of operators) • Process simulations should incorporate storage and transport of bulk. • Multiple uses of the same bulk with storage in between should also be included in process simulations • Assurance of bulk vessel integrity for specified holding times.
  • 46. Manufacture of sterile medicines –46 Aseptic Processing • Bulk Processing (2) • Process simulation for formulation stage should be performed at least twice per year. – Cellular therapies, cell derived products etc • products released before results of sterility tests known (also TPNs, radioactive preps, cytotoxics) • should be manufactured in a closed system • Additional testing – sterility testing of intermediates – microscopic examination (e.g. gram stain) – endotoxin testing
  • 47. Manufacture of sterile medicines –47 Useful Publications • PIC/S Recommendation on the Validation of Aseptic Processes • FDA Guidance for Industry- Sterile Drug Products Produced by Aseptic Processing - Current Good Manufacturing Process • ISO 13408 Aseptic Processing of Health Care Products – Part 1: General Requirements – Part 2: Filtration – Part 3: Lyophilization – Part 4: Clean-In-Place Technologies – Part 5: Sterilization-In-Place – Part 6: Isolator Systems

Editor's Notes

  1. &amp;lt;number&amp;gt; Aseptic processing and sterilization by filtration Aseptic processing We have already discussed the fact that terminal sterilization of a product is preferable as it reduces the risk of and provides more assurance of sterility. However, for some types of products, this is not possible. Another method to prepare a sterile products then is to maintain the sterility of a product, assembled from sterile components. All operating conditions should be such to prevent microbial contamination. What do you think are the aspects that require careful attention?
  2. &amp;lt;number&amp;gt; Personnel play an important part in ensuring the quality of manufacture. It is also relevant (perhaps in particular) in the manufacture of sterile products. Only a minimum number of personnel should work in clean areas, especially during aseptic processing. As far as possible, all inspections and controls should be done from outside the production rooms. Training should be given to all including cleaning and maintenance staff, and should include initial and regular training on manufacturing, hygiene, and microbiology. Look at the procedure for training, training program, training material and assessment of the personnel. In special cases, when outside staff have to enter the clean areas, they should be supervised. Remember also the previous discussion on decontamination procedures (e.g. staff who worked with animal tissue materials).
  3. &amp;lt;number&amp;gt; Personnel working in clean areas should maintain high standards of hygiene and cleanliness. They should undergo periodic health checks, wear clothing that do not shed particles, and should take care not to introduce microbiological contaminants in the areas. No outdoor clothing should be brought into clean change rooms. Personnel should follow changing and washing procedures, wear no watches, jewellery and cosmetics
  4. &amp;lt;number&amp;gt; The WHO GMP text specifies the type of clothing that is appropriate for the different grades of rooms.
  5. &amp;lt;number&amp;gt; Garments should be changed at every working session, or once a day (if supportive data exist through validation studies). Gloves and masks should be changes at every working session Personnel should disinfect their gloves frequently during operations to prevent possible introduction of contaminants (micro) into the areas where they work or touch. Arrangements must be in place for the laundering and sterilization of clean-room clothing. This should be carried out in a controlled environment. If fibres are damaged due to inappropriate cleaning or sterilization, an increased risk for contamination may develop as clothing could shed particles. The use of contract laundries for this purpose, requires an audit by the company to ensure that appropriate procedures are in place.