Ungdung tamthucbac2-giaitoan

D

Ungdung tamthucbac2-giaitoan. Xem thêm thông tin tuyển sinh vào 10 dưới đây http://vtc.vn/thong-tin-tuyen-sinh-dau-cap-o-ha-noi-nam-2015.538.538774.htm

PHƯƠNG PHÁP TAM THỨC BẬC 2 1
Phần I
TÓM TẮT VỀ PHƯƠNG TRÌNH BẬC HAI
VÀ TAM THỨC BẬC HAI
I. Định nghĩa và cách giải
Phương trình: ax2
+ bx + c = 0 (a ¹ 0) gọi là phương trình bậc 2
(PTBH).
Đa thức: f(x) = ax2
+ bx + c = 0 được gọi là tam thức bậc 2 (TTBH).
*. Nghiệm của PTBH (nếu có) cũng được gọi là nghiệm của TTBH.
*. Dạng chính tắc của TTBH:
ax2
+ bx + c = a[(x +
a
b
2
)2
- 2
2
4
4
a
acb -
] (1)
Từ dạng (1) ta đưa ra cách giải và công thức nghiệm như SGK đã trình bày.
II. Sự phân tích TTBH
Nếu D > 0 thì f(x) = ax2
+ bx + c = a(x - x1)(x - x2) với x1, x2 là các nghiệm.
III. Định lý Vi-ét
Nếu D > 0 thì phương trình f(x) = ax2
+ bx + c = 0 có 2 nghiệm phân biệt
và: S = x1 + x2 = -
a
b
P = x1x2 =
a
c
Ngược lại: Nếu x + y = S và x.y = P thì x, y là các nghiệm của phương trình
bậc hai: t2
- St + P = 0
IV. Đồ thị hàm số bậc 2:
a > 0
D > 0
a > 0
D < 0
a > 0
D = 0
a < 0
D > 0
a < 0
D < 0
a < 0
D = 0
4
2
-2
-4
5
4
2
5
4
2
6
4
2
-2
-5
PHƯƠNG PHÁP TAM THỨC BẬC 2 2
V. GTLN, GTNN:
Nếu a > 0 Þ f(x) ³
a
xfMin
a 4
)(
4
D
-=Þ
D
-
Nếu a < 0 Þ f(x) £
a
xfMax
a 4
)(
4
D
-=Þ
D
-
GTLN (GTNN) đạt được Û x= -b/2a
VI. Dấu tam thức bậc 2:
Cho f(x) = ax2
+ bx + c (a ¹ 0)
Nếu D < 0 thì af(x) > 0 " x ÎR.
Nếu D = 0 thì af(x)³ 0 " x Î R. Đẳng thức khi x = -b/2a
Nếu D > 0 thì af(x) < 0 " x Î(x1;x2).
af(x) ³ 0 " x Î (-¥; x1] U [x2; +¥)
Đảo lại:
1) Nếu $ a sao cho: af(a) < 0 thì f(x) có 2 nghiệm phân biệt và x1< a <x2
2) af(a) > 0 af(a) > 0
D > 0 D > 0
a<
2
S
a>
2
S
Hệ quả trực tiếp:
1') Cho a < b, f(x) = ax2
+ bx + c (a ¹ 0)
x1 < a < x2 < b
a < x1 < b < x2
2') a < x1 < x2 < b Û D > 0
af(a) > 0
af(b) > 0
ba <<
2
S
Trên đây là 6 nội dung cơ bản nhất về PTBH và TTBH mà SGK ĐS-10 đã
trình bày khá kỹ.
Sau đây là các ví dụ ứng dụng.
˜š›™
Û x1 < x2 < a; Û a < x1 < x2
[ Û f(a).f(b) < 0
PHƯƠNG PHÁP TAM THỨC BẬC 2 3
Phần II
CÁC BÀI TOÁN ỨNG DỤNG CƠ BẢN
1.GIẢI VÀ BIỆN LUẬN PHƯƠNG TRÌNH BẬC HAI
Phép giải phương trình bậc 2 với hệ số bằng số khá đơn giản. Ở đây ta chỉ
đề cập đến các phương trình chứa tham số. Một chú ý quan trọng ở đây là: Ta
thường quên mất không xét đến trường hợp hệ số a = 0.
VD1: Cho phương trình:
(m2
- 4)x2
+ 2(m + 2)x +1 = 0 (1)
a) Tìm m để phương trình (1) có nghiệm.
b) Tìm m để phương trình (1) có nghiệm duy nhất.
Giải: a) Thông thường HS hay mắc sai lầm là chỉ xét đến trường hợp: D ³ 0
mà bỏ quên trường hợp a = 0
* Nếu m2
- 4 = 0 Û m = ±2. Giá trị m = -2 không thoả mãn.
* Nếu m ¹ ±2:
pt(1) có nghiệm Û m ¹ ±2
D' ³ 0
Tóm lại pt(1) có nghiệm Û m > -2
b) pt(1) có nghiệm duy nhất trong 2 trường hợp:
*Trường hợp 1: a = 0
b ¹ 0
*Trường hợp 2: a ¹ 0 m ¹ ±2 (Trường hợp này không xảy ra)
D' = 0 m = -2
Vậy với m = 2 pt(1) có nghiệm duy nhất.
VD2: Biện luận theo m số nghiệm pt:
x3
+ m(x + 2) +8 = 0
(2)
Ta có: x3
+ 8 - m(x + 2) = (x + 2)(x2
- 2x + 4 - m) = 0
Đặt f(x) = x2
- 2x + 4 - m Þ số nghiệm pt (2) phụ thuộc số nghiệm của f(x).
D' = m - 3 , f(-2) = 12 - m
Do đó ta có:
1) D' < 0 Û m < 3 Þ f(x) VN Þ pt(2) có 1 nghiệm duy nhất x = -2
2) D' = 0 Û m = 3. Khi đó f(-2) = 12 - m ¹ 0 nên f(x) có 1 nghiệm khác -2
Þ pt(2) có nghiệm phân biệt (x1 = -2; x2 = 1)
Û -2 < m ¹ 2
Û m = 2
Û
PHƯƠNG PHÁP TAM THỨC BẬC 2 4
3) D' > 0 Û m > 3
*Nếu m > 3
m ¹ 12
* Nếu m =12 Þ pt(2) có 2 ngh 2 nghiệm: 1 nghiệm đơn và một nghiệm
kép.
VD3: Cho hàm số: y = (x - 2)(x2
+ mx + m2
- 3) (3) có đồ thị (C). Tìm m
để:
a) (C) cắt Ox tại 3 điểm phân biệt.
b) (C) tiếp xúc với Ox.
Giải tóm tắt: Đặt f(x) = x2
+ mx + m2
- 3
a) (C) cắt Ox tại 3 điểm phân biệt Û D > 0
f(2) ¹ 0
b) (C) tiếp xúc với Ox Û f(2) = 0
D = 0
VD4: Chứng minh rằng: Nếu a, b, c là độ dài 3 cạnh của một tam giác thì
phương trình a2
x2
+ (a2
+ b2
- c2
)x + b2
= 0 (4) vô nghiệm
Thật vậy: D = (a2
+ b2
- c2
)2
- 4a2
b2
= (a2
+ b2
- c2
- 2ab)( a2
+ b2
- c2
+ 2ab)
= [(a - b)2
- c2
][(a + b)2
- c2
]
= (a - b - c)(a - b + c)(a + b - c)(a + b + c) < 0
BÀI TẬP:
1.1. Giải phương trình:
(x + 1)(½x½ - 1) = -
2
1
1.2. Giả sử x1 và x2 là các nghiệm của phương trình: ax2
+ bx + c = 0. Hãy
thiết lập phương trình với các nghiệm là:
1
1
1
x
y = và
2
2
1
x
y =
1.3. Tìm tất cả các giá trị của k để phương trình:
)3(
1
322
-=
-
+-
xk
x
xx
có nghiệm kép không âm
1.4. Tìm tất cả các giá trị của p để parabol:
y = x2
+ 2px + 13
có đỉnh cách gốc toạ độ một khoảng bằng 5
Þ pt(2) có 3 nghiệm phân biệt.
[
PHƯƠNG PHÁP TAM THỨC BẬC 2 5
2. BIỂU THỨC ĐỐI XỨNG CỦA HAI NGHIỆM
HỆ THỨC GIỮA CÁC NGHIỆM PTBH
Đặt Sn = nn
xx 21 + , x1x2 = P
Ta có S1 = x1 + x2 = S
S2 = 2
2
2
1 xx + = (x1 + x2)2
- 2x1x2 = S2
- 2P
. . . . . . . . . . . . . . . . .
Sn được tính theo công thức truy hồi sau:
aSn + bSn-1 + cSn-2 = 0
(*)
Ta chứng minh (*) như sau: Gọi x1, x2 là nghiệm của phương trình:
ax2
+ bx + c = 0
Þ 01
2
1 =++ cbxax
(1)
02
2
2 =++ cbxax
(2)
Nhân hai vế của (1) và (2) lần lượt với 2
1
-n
x và 2
2
-n
x (nÎZ, n > 2) Ta có:
02
1
1
11 =++ -- nnn
cxbxax
(3)
02
2
1
22 =++ -- nnn
cxbxax
(4)
Cộng (3) và (4) vế với vế ta được
0)()()( 2
2
2
1
1
2
1
121 =+++++ ---- nnnnnn
xxcxxbxxa
Ta có điều PCM.
VD5: Cho .)31()31( 55
-++=A Chứng minh A Î Z
HS: A = S5 = 152
VD6: Cho f(x) = 2x2
+ 2(m+1)x + m2
+ 4m + 3
Gọi x1, x2 là nghiệm của f(x). Tìm Max A
A=| x1x2 - 2x1 - 2x2 |
Giải: Để $ x1, x2 thì D ³ 0 Û -5 £ m £ -1
(*)
Khi đó:
2
782
++
=
mm
A
Xét dấu của A ta có: m2
+ 8m + 7 £ 0 "x thoả mãn (*)
Þ A =
2
9
2
9
2
)4(9
2
78 22
=Þ£
+-
=
---
MaxA
mmm
VD7: Tìm điều kiện cần và đủ để phương trình ax2
+ bx + c = 0 (a ¹ 0)
có 2 nghiệm và nghiệm này gấp k lần nghiệm kia.
Giải: Xét: M = (x1 - kx2)(x2 - kx1) = . . . . . .
PHƯƠNG PHÁP TAM THỨC BẬC 2 6
= (k + 1)2
ac - kb2
Þ Điều kiện cần: Nếu x1 = kx2 hoặc x2 = kx1 Þ M = 0
Û (k + 1)2
ac = kb2
Điều kiện đủ: Nếu (k + 1)2
ac = kb2
Û M = 0 Û x1 = kx2
x2 = kx1
VD8: Biết a, b, c thoả mãn: a2
+ b2
+ c2
= 2 (1)
ab + bc + ca = 1 (2)
Chứng minh:
3
4
,,
3
4
££- cba (3)
Nhận xét: Từ (1) và (2) ta thấy vai trò của a, b, c bình đẳng nên ta chỉ
cần chứng minh 1 trong 3 số a, b, c thoả mãn (3).
Đặt: S = a + b
P = ab Từ (1) và (2) ta có:
S2
- 2P = 2 - c2
(4)
P + cS = 1 (5)
Từ (5) Þ P = 1 - cS thay vào (4) ta có
S2
- 2(1 - cS) = 2 - c2
Û S2
+ 2cS + c2
- 4 = 0
Û S = -c + 2
S = -c - 2
* Nếu S = -c +2 Þ P = c2
- 2c + 1 Þ a, b là nghiệm của phương trình:
t2
- (2 - c)t + c2
- 2c + 1 = 0 Phương trình này phải có nghiệm
Û D ³ 0 Û 0 £ c £ 4/3
* Nếu S = -c - 2 Tương tự ta có: -4/3 £ c £ 0
Tóm lại: Ta có
3
4
,,
3
4
££- cba
VD9: Tìm m để đồ thị hàm số y = x2
- 4x + m cắt Ox tại 2 điểm phân biệt
A, B sao cho: OA = 3 OB
HD: OA = | xA | ; OB = | xB | và xét 2 trường hợp:
xA= 3xB
và xA= - 3xB
BÀI TẬP:
2.1. Tìm tất cả các giá trị của m để tổng các bình phương các nghiệm của
phương trình: x2
- mx + m - 1 = 0 đạt giá trị nhỏ nhất.
2.2. Giả sử (x, y) là nghiệm của hệ phương trình:
x + y = 2a - 1
x2
+ y2
= a2
+ 2a - 3
Xác định a để tích xy nhỏ nhất
[
[
PHƯƠNG PHÁP TAM THỨC BẬC 2 7
3. QUAN HỆ GIỮA CÁC NGHIỆM CỦA HAI PTBH
1) Hai phương trình ax2
+ bx + c = 0 và a'x2
+ b'x + c = 0
có nghiệm chung Û Hệ ax2
+ bx + c = 0
a'x2
+ b'x + c = 0
Ta có thể giải hệ (1) bằng phương pháp thế. Tuy nhiên nếu ta giải theo
phương pháp sau đây thì đơn giản hơn nhiều:
Đặt x2
= y ta có: ay + bx = - c
a'y + b'x = - c'
Þ Hệ (1) có nghiệm Û Hệ (2) có nghiệm
y = x2
ï
î
ï
í
ì
=
¹
Û
ï
î
ï
í
ì
=
¹
Û
D
D
D
D
D
D
D
D
D
x
y
xy
2
2
2
00
VD10: Chứng minh rằng nếu 2 phương trình x2
+ p1x + q1 = 0
và x2
+ p2x + q2 = 0
có nghiệm chung thì: (q1 - q2)2
+ (p1 - p2)(q2p1 - q1p2) = 0
HD: Sử dụng phương pháp đã trình bày ở trên.
2) Hai phương trình bậc 2 tương đương.
Chú ý: HS hay bỏ sót trường hợp: Nếu 2 phương trình cùng vô nghiệm thì
tương đương (trên tập nào đó)
VD11: Tìm m để hai phương trình x2
-mx + 2m - 3 = 0
và x2
-(m2
+ m - 4)x +1 = 0
tương đương
*Trường hợp 1: D1 < 0
D2 < 0
*Trường hợp 2: Sử dụng Vi-ét
3) Hai phương trình có nghiệm xen kẽ nhau.
Chú ý rằng: Mọi phương trình ax2
+ bx + c = 0 (a ¹ 0) bao giờ cũng đưa
được về dạng: x2
+ px + q = 0
Do đó ta có bài toán: Với điều kiện nào của p, q, p', q' để 2 phương trình:
(1) có nghiệm
(2)
PHƯƠNG PHÁP TAM THỨC BẬC 2 8
x2
+ px + q = 0 và x2
+ p'x + q' = 0 có nghiệm xen kẽ nhau.
Ta xét 2 khả năng:
* Khả năng 1: Nếu p = p'
Khi đó: Nếu q = q' Þ 2 đồ thị trùng nhau (không thoả mãn)
Nếu q ¹ q' Þ Đồ thị này là tịnh tiến của đồ thị kia dọc theo đường thẳng
2
P
x -= nên cũng không thoả mãn.
* Khả năng 2: Nếu p ¹ p' Þ 2 parabol cắt nhau tại điểm có hoành độ
Þ+÷÷
ø
ö
çç
è
æ
-
-
+÷÷
ø
ö
çç
è
æ
-
-
=Þ
-
-
= q
pp
qq
p
pp
qq
y
pp
qq
x
'
'
'
'
'
'
2
00
Để 2 phương trình có nghiệm xen kẽ nhau thì y0 < 0
Û (q - q')2
+ p(q - q')(p' - p) + q(p' - p)2
< 0
VD12: Tìm m để 2 phương trình x2
+ 3x + 2m = 0 và x2
+ 6x + 5m = 0 có
nghiệm xen kẽ nhau.
ĐS: m Î (0 ; 1)
BÀI TẬP:
3.1. Cho hai phương trình:
x2
- 2x + m = 0 và x2
+ 2x - 3m = 0
a). Tìm m để 2 phương trình có nghiệm chung.
b). Tìm m để 2 phương trình tương đương.
c). Tìm m để 2 phương trình có các nghiệm xen kẽ nhau.
3.2. Tìm m để hai phương trình sau có nghiệm chung:
x2
- mx + 2m + 1 = 0 và mx2
- (2m + 1)x - 1 = 0
3.3. Tìm m và n để hai phương trình tương đương:
x2
- (2m + n)x - 3m = 0 và x2
- (m+3n)x - 6 = 0
3.4. Tìm m để phương trình sau có 4 nghiệm phân biệt:
(x2
- mx + 1)(x2
+ x +m) = 0
˜š›™
PHƯƠNG PHÁP TAM THỨC BẬC 2 9
4. SỰ TỒN TẠI NGHIỆM CỦA PTBH
1) Sử dụng: PT ax2
+ bx + c = 0 có nghiệm Û D ³ 0
VD13: Chứng minh rằng: Nếu a1.a2 ³ 2(b1 + b2) thì ít nhất 1 trong 2
phương trình x2
+ a1x + b1 = 0 (1)
x2
+ a2x + b2 = 0 (2) có nghiệm
Giải: D1 = 2
2
221
2
1 4;4 baba -=D-
Do đó: D1 + D2 = 02)(4 21
2
2
2
121
2
2
2
1 ³-+³+-+ aaaabbaa
DPCMÞê
ë
é
³D
³D
Þ
0
0
2
1
VD14: Chứng minh rằng: Trong 3 phương trình sau:
x2
+ 2ax+ bc = 0
x2
+ 2bx + ca = 0
x2
+ 2cx + ab = 0
Có ít nhất một phương trình có nghiệm
Giải: Ta có: D1 + D2 + D3 = [ ] 0)()()(
2
1 222
³-+-+- accbba
Þ có ít nhất 1 biểu thức không âm Þ ĐPCM
2) Sử dụng định lý về dấu tam thức bậc hai:
* Nếu af(a) < 0 Þ x1 < a < x2
* Nếu f(a)f(b) < 0 Þ x1 < a < x2 < b
a < x1 < b < x2
Điều quan trọng là việc chọn a, b sao cho hợp lý.
VD15: Chứng minh rằng: Phương trình:
f(x) = (x - a)(x - b) + (x - b)(x - c) + (x - c)(x- a) = 0
Với a < b < c luôn có 2 nghiệm phân biệt thoả mãn:
a < x1 < b < x2 < c
Giải: Rõ ràng f(x) là 1 TTBH có hệ số của x2
là 3 và:
f(b) = (b - c)( b - a) < 0 vì a < b < c
Þ f(x) có 2 nghiệm và x1 < b < x2
f(a) = (a - b)(a - c) > 0 vì a < b < c nên a nằm ngoài [x1 ; x2] mà a < b
Þ a < x1 < b < x2
[
PHƯƠNG PHÁP TAM THỨC BẬC 2 10
f(c) = (c - a)(c - b) > 0 nên c nằm ngoài [x1;x2] mà c > b nên a< x1< b <x2< c
VD16: Chứng minh: Nếu | a+c | < | b | thì pt: ax2
+ bx + c = 0 có nghiệm.
Giải: * Nếu a = 0 Þ | c | < | b | Þ b ¹ 0 Þ phương trình trở thành:
bx + c = 0 có nghiệm x = - c/b
* Nếu a ¹ 0 thì | a+c | < | b | Û (a + c)2
< b2
Û (a + c - b)(a + c + b) < 0 Û f(-1)f(1) < 0 Þ f(x) = ax2
+ bx + c luôn luôn
có nghiệm Î (0;1)
VD17: Biết: 2a + 3b + 6c = 0
Chứng minh: Phương trình ax2
+ bx + c = 0 có ít nhất một nghiệm Î (0;1)
Giải: * Nếu a = 0 Þ 3b + 6c = 0 Û b.
2
1
+ c = 0 Þ x = 1/2 là nghiệm của
phương trình ( và 1/c Î (0;1) )
* Nếu a ¹ 0 Þ 2a + 3b + 6c = f(1) + f(0) + 4f(1/2) = 0
Nhưng f(0), f(1), f(1/2) không thể đồng thời bằng 0 vì nếu như vậy thì
phương trình bậc 2 có 3 nghiệm phân biệt (!). Điều đó chứng tỏ: Trong 3 biểu
thức f(0), f(1), f(1/2) phải tồn tại 2 biểu thức trái dấu
Þ f(x) có ít nhất 1 nghiệm Î (0;1)
BÀI TẬP:
4.1. Cho a, b, c là 3 số khác nhau và khác 0. Chứng minh rằng: phương
trình sau luôn có nghiệm:
ab(x - a)(x - b) + bc(x - b)(x - c) + ca(x - c)(x - a) = 0
4.2. Cho m > 0 và a, b, c là 3 số thoả mãn:
0
12
=+
+
+
+ m
c
m
b
m
a
Chứng minh rằng: Phương trình ax2
+ bx + c = 0 có nghiệm trong (0;1)
4.3. Chứng minh rằng phương trình: ax2
+ bx + c = 0 có nghiệm nếu một
trong hai điều kiện sau được thoả mãn:
a(a + 2b + 4c) < 0
5a + 3b + 2c = 0
4.4. Biết rằng phương trình: x2
+ ax + b + c = 0 vô nghiệm. Chứng minh
rằng phương trình: x2
+ bx - a - c = 2 có nghiệm.
4.5. Chứng minh rằng phương trình: m
xx
=+
cos
1
sin
1
có nghiệm với mọi m.
PHƯƠNG PHÁP TAM THỨC BẬC 2 11
5. TAM THỨC BẬC HAI VÀ BẤT ĐẲNG THỨC
1) Dạng áp dụng trực tiếp dấu TTBH:
VD18: Cho D ABC chứng minh rằng:
RxCosCCosBxCosA
x
Î"++³+ )(
2
1
2
Xét f(x) =
2
2
x
- x(cosB + cosC) + 1 - cosA ³ 0 " x Î R
Dx = (cosB + cosC)2
- 2(1 - cosA) = 0
22
4 22
£
-
-
CB
Sin
A
Sin
Þ ĐPCM
Dấu đẳng thức xẩy ra Û A = B = C hay tam giác ABC đều.
Chú ý: Nếu x= 1 Þ cosA + cosB + cosC £
2
3
là 1 bất đẳng thức quen thuộc
2) Dạng áp dụng ngược lại:
Giả sử: Cần phải chứng minh dạng: D £ 0 ta chứng minh f(x) không đổi
dấu khi đó ta viết D £ 0 thành dạng: b2
- 4ac để xác định f(x).
VD19: Chứng minh bất đẳng thức Bunhiacopxky:
( ) nibaba iiii ,1)1(¸
222
=³å åå
Bất đẳng thức Û ( ) )2(0222
£- å åå iiii baba
*Nếu a1 = a2 = . . . . . = an = 0 Þ bất đẳng thức (1) hiển nhiên đúng.
Nếu 02
¹å ia Ta xét tam thức:
f(x) = ( ) ( ) ååå +- 222
2 iiii bxbaxa
Ta có f(x) = ( )å £DÞÎ"³- 0'0
2
Rxbxa ii chính là ĐPCM.
Dấu "=" Û x =
i
i
a
b
= l
VD20: Các số a, b, c, d, p, q thoả mãn:
p2
+ q2
- a2
- b2
- c2
- d2
> 0 (1)
Chứng minh: (p2
- a2
- b2
)(q2
- c2
- d2
) £ (pq - ac - bd)2
(2)
Giải: Vì (1) nên: (p2
- a2
- b2
) + (q2
- c2
- d2
) > 0
Þ $ 1 trong 2 số hạng khác 0 và dương. Không mất tính tổng
quát, giả sử: p2
- a2
- b2
> 0
Xét tam thức: f(x) = (p2
- a2
- b2
)x2
- 2 (pq - ac - bd)x + (q2
- c2
- d2
)
PHƯƠNG PHÁP TAM THỨC BẬC 2 12
Ta có f(x) = (px - q)2
- (ax - c)2
- (bx - d)2
Þ nếu x =
p
q
Þ f(
p
q
) = -(a 22
).(). d
p
q
bc
p
q
--- < 0
mà (p2
- a2
- b2
) > 0 nên: af( )
p
q
< 0 Þ f(x) có nghiệm Þ D' ³ 0 Þ ĐPCM
BÀI TẬP:
5.1. Cho a3
> 36 và abc = 1. Chứng minh rằng:
cabcabcb
a
++>++ 22
2
3
HD: a3
> 36 Þ a > 0 và abc = 1 Þ bc =
a
1
. Đưa bất đẳng thức về dạng:
(b + c)2
- a(b+c) - 0
3
3 2
>+
a
a
và xét tam thức bậc hai:
f(x) = x2
- ax -
3
3 2
a
a
+
5.2. Cho a, b, c là ba cạnh của một tam giác. Ba số x, y, z thoả mãn điều
kiện:
ax + by + cz = 0.
Chứng minh: xy + yz + zx £ 0
HD: Từ ax + by + cz = 0 và do c ¹ 0 (vì c >0) nên có z =
c
byax+
- . Ta viết
lại bất đẳng thức dưới dạng sau:
xy
c
byax+
- (x + y) £ 0. Biến đổi bđt này về dạng:
ax2
+ xy(a+ b - c) + by2
³ 0.
Xét tam thức bậc hai:
f(t) = at2
+ y(a+ b - c)t + by2
với a >0.
5.3. Cho a >0 và n là số nguyên dương. Chứng minh rằng:
2
141
...
++
<++++
a
aaaa
n dấu căn
HD: Đặt aaaa ++++ ... = Un .
Vì a > 0 nên Un > Un-1 . Mặt khác: Un
2
= a + Un-1 suy ra: Un
2
< a + Un hay
Un
2
- Un + a < 0. Xét tam thức bậc hai: f(x) = x2
- x - a
5.4. Cho c > b > a > 0.
Đặt d2
= a2
+ b2
+ c2
; P = 4(a + b + c) ; S = 2(ab + bc + ca)
PHƯƠNG PHÁP TAM THỨC BẬC 2 13
Chứng minh rằng:
cSdPSdPa <-+<--< )
2
1
4
1
(
3
1
)
2
1
4
1
(
3
1 22
HD: Xét tam thức bậc hai:
f(x) = x2
- )
2
1
16
(
9
1
6
1 2
2
Sd
P
Px +-+
6. TAM THỨC BẬC HAI VÀ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH
HỆ PHƯƠNG TRÌNH, HỆ BẤT PHƯƠNG TRÌNH
I. Hệ đối xứng kiểu I:
Là hệ phương trình mà nếu đổi vai trò x và y cho nhau thì mỗi phương trình
không thay đổi.
Phương pháp giải hệ đối xứng kiểu I là:
Đặt S = x + y, P = xy Þ S2
³ 4P
Giải hệ tìm S, P cuối cùng giải phương trình: X2
- SX + P = 0 tìm x, y.
VD21: Giải hệ:
ïî
ï
í
ì
=+
=+
35
30
yyxx
xyyx
Đặt 0,0 ³=³= vyux Hệ trở thành:
î
í
ì
=
=
Ú
î
í
ì
=
=
Þ
==Þ
î
í
ì
=-
=
Û
ïî
ï
í
ì
=+
=+
4
9
9
4
6,5
353
30
35
30
333
22
y
x
y
x
PS
PSS
PS
vu
uvvu
VD22: Biết (x,y) là nghiệm của hệ:
î
í
ì
+-=+
=+
6222
myx
myx
Tìm GTNN, GTLN của biểu thức:
M = xy + 2(x + y)
Giải: Hệ được viết thành:
î
í
ì
-=
=
32
mP
mS
Þ x, y là nghiệm của phương trình: t2
- mt + m2
- 3 = 0 (*)
Þ Để hệ có nghiệm thì phương trình (*) có nghiệm Û D ³ 0 Û | m | £ 2
Khi đó M = P + 2S = m2
+ 2m - 3
Bài toán trở thành: Tìm GTLN, GTNN của M trong [-2;2] (Đây là bài toán
cơ bản)
M(-2) = -3, M(2) = 5, M(-1) = 4
Þ MaxM = 5, MinM = -4
PHƯƠNG PHÁP TAM THỨC BẬC 2 14
Chú ý: HS rất dễ gặp sai lầm là xét M = m2
+ 2m - 3 trên R khi đó chỉ có
GTNN chứ không có GTLN.
VD23: Cho x, y thoả mãn x + y = 2. Tìm GTNN của
F = x3
+ y3
Giải: Bài toán quy về tìm tập giá trị của F Hay:
Tìm F để hệ
î
í
ì
=+
=+
Fyx
yx
33
2
có nghiệm.
Hệ trở thành:
ïî
ï
í
ì
-
=
=
Þ
î
í
ì
=-
=
6
8
2
3
2
3 F
P
S
FPSS
S
Þ x, y là nghiệm cỷa phương trình: t2
- 2t + 0
6
8
=
- F
(*)
Hệ có nghiệm Û phương trình (*) có nghiệm Û D' ³ 0 Û F ³ 2
Þ MinF = 2 ( khi x = y)
II. Tam thức bậc 2 với phương trình, bất phương trình
VD24: Tìm a sao cho bất đẳng thức:
25y2
+ )1(25
100
1 2
xyaxyx -+-³
được nghiệm đúng " cặp (x;y) thoả mãn | x | = | y |
Giải: Ta xét 2 trường hợp:
Trường hợp 1: x = y (1) Þ (a+50)x2
- 2x + 0
100
1
³
Û 50
0
050
³Û
î
í
ì
£D
>+
a
a
Trường hợp 2: x = -y (1) Þ (50 - a)x2
+ 0
100
1
³ Û a £ 50 (3)
Để (1) đúng với " (x;y) thì phải thoả mãn cả x = y và x = -y Þ a = 50
VD25: Tìm m để hệ
ïî
ï
í
ì
£-+
£+-
)2(04
)1(02
2
2
mxx
mxx
có nghiệm duy nhất.
Giải: Cộng 2 bất phương trình ta có: 2x2
+ 2x £ 0 Û -1£ x £ 0 (3)
Þ Nghiệm của hệ phải thoả mãn (3)
Xét các tam thức ở vế trái. Ta có: (1) và (2) có nghiệm Û
14
04
01
0
0
'
2
'
1
££-Û
î
í
ì
³+
³-
Û
ïî
ï
í
ì
³D
³D
m
m
m
PHƯƠNG PHÁP TAM THỨC BẬC 2 15
Ta có các khả năng sau:
a) Bpt (1) có nghiệm duy nhất và cũng là nghiệm của (2):
Bpt (1) có nghiệm duy nhất Û m = 1 Þ x = 1 không thoả mãn (3)
b) Bpt (2) có nghiệm duy nhất và cũng là nghiệm của (1):
Bpt (2) có nghiệm duy nhất Û m = -4 Þ x = -2 không thoả mãn (3)
c) Bpt (1) Û x1 = 1 - mxxm -+=££- 111 2
Bpt (2) Û x3 = -2 - mxxm ++-=££- 424 4
Với - 4 < m < 1
BÀI TẬP:
6.1. Cho hệ phương trình:
ax2
+ bx + c = y
ay2
+ by + c = z
az2
+ bz + c = x
Trong đó: a ¹ 0 và (b - 1)2
- 4ac < 0. Chứng minh rằng hệ phương trình trên
vô nghiệm.
HD: Xét a > 0 (trường hợp a < 0 lý luận tương tự)
Phản chứng, giả sử hệ trên có ngiệm (x0, y0, z0). Khi đó:
ax2
+ bx + c = y0
ay2
+ by + c = z0
az2
+ bz + c = x0
Cộng từng vế ba phương trình trên ta có:
[ax0
2
+ (b-1)x0 + c] + [ay0
2
+ (b-1)y0 + c] + [az0
2
+ (b-1)z0 + c] = 0.
Xét tam thức: f(t) = at2
+ (b-1)t + c thì f(x0) + f(y0) + f(x0) = 0
mà D = (b - 1)2
- 4ac < 0 nên af(t) > 0 với mọi t thuộc R từ đó suy ra mâu
thuẫn.
6.2. Tìm m sao cho với mọi x cũng đều nghiệm đúng ít nhất một trong hai
bất phương trình:
x2
+ 5m2
+ 8m > 2(3mx + 2)
x2
+ 4m2
³ m(4x + 1)
HD: Đưa hai bpt trên về dạng tam thức bậc hai đối với x và xét các khả
năng có thể có của các biệt thức D1 và D2
6.3. Gọi L là chiều dài các đoạn nghiệm trên trục số của hệ bpt:
-2 £ x2
+ px + q £ 2
PHƯƠNG PHÁP TAM THỨC BẬC 2 16
Chứng minh rằng: L £ 4 với mọi p, q
HD: Xét các khả năng của D1 và D2
6.4. Giải và biện luận theo a bpt:
112 ->-- axax
HD: Đặt t = 1-x ³ 0, chuyển về một vế bpt trên và xét tam thức vế trái.
6.5. Cho hai phương trình:
x2
+ 3x + 2m = 0
x2
+ 6x + 5m = 0
Tìm m để mỗi phương trình có 2 nghiệm phân biệt và giữa hai nghiệm của
phương trình này có đúng một nghiệm của phương trình kia.
HD: Sử dụng định lý đảo.
6.6. Tìm m sao cho phương trình:
x4
+ mx3
+ x2
+ mx + 1 = 0
có không ít hơn 2 nghiệm âm khác nhau.
HD: Nhận xét rằng x = 0 không phải là nghiệm phương trình dù m nhận giá trị
nào. Đặt:
x
t
1
1 += và xét f(t) = t2
+ mt - 1 với ½t½ ³ 2.
6.7. Cho phương trình f(x) = ax2
+ bx + c = 0 (1)
1. Giả sử ½a½ > ½b½ + ½c½. Chứng minh rằng trong khoảng (-1;1)
phương trình (1) có hai nghiệm hoặc không có nghiệm nào.
2. Giả sử ½b½ > ½a½ + ½c½. Chứng minh rằng trong khoảng (-1;1)
phương trình (1) có đúng 1 nghiệm.
3. Giả sử ½c½ > ½a½ + ½b½. Chứng minh rằng trong khoảng (-1;1)
phương trình (1) vô nghiệm.
6.8. Tìm m để phương trình sau có nghiệm:
x4
+ mx3
+ 2mx2
+ m + 1
6.9. Tìm m để phương trình sau có nghiệm:
03105)4(22 2
=-++++- xmxmx
HD: Để căn thức riêng một vế và biến đổi tương đương.
6.10. Giải và biện luận theo m bpt:
mmxx 2>--
PHƯƠNG PHÁP TAM THỨC BẬC 2 17
7. TAM THỨC BẬC HAI VÀ TƯƠNG GIAO ĐỒ THỊ
Trong các bài toán về tương giao đồ thị có sử dụng các kiến thức về tam
thức bậc hai là thường các vấn đề sau:
1. Tìm giao điểm của hai đồ thị: Quy về giải hệ phương trình
2. Tìm tiếp tuyến: Điều kiện phương trình có nghiệm kép
3. Tìm quỹ tích: Sử dụng biểu thức giữa các nghiệm của phương trình
4. Chứng minh tính đối xứng (trục, tâm), tính vuông góc.
Tuy nhiên nếu sử dụng thêm các kiến thức về đạo hàm thì ta có các bài toán
phức tạp hơn và hay hơn nhiều.
Sau đây ta xét một số ví dụ:
VD26:
Chứng minh rằng đường thẳng: y = -x luôn cắt parabol:
y = x2
- 2(m + 2)x + m2
+ 3m
tại 2 điểm phân biệt và khoảng cách giữa 2 điểm đó không phụ thuộc vào m.
Giải: Hoành độ giao điểm là nghiệm phương trình:
x2
- 2(m + 2)x + m2
+ 3m = -x
Û x2
- (2m + 3)x + m2
+ 3m = 0 (*)
Ta có: D = (2m + 3)2
- 4(m2
+ 3m) = 9 > 0 nên phương trình (*) luôn có 2
nghiệm phân biệt với mọi m Þ đường thẳng luôn cắt parabol tại 2 điểm phân
biệt.
Giả sử 2 điểm đó là A(xA; yA) và B(xB; yB)
Trong đó: xA = m và xB = m + 3 (m và m + 3 là hai nghiệm của phương
trình (*).
Þ yA = - xA = -m; yB = - xB = -m - 3
Ta có: AB = 2318)()( 22
==-+- BABA yyxx không phụ thuộc m.
VD27:
Cho hàm số: y =
1
22
-
-
x
xx
có đồ thị (P).
a). Chứng minh rằng: Đường thẳng (d): y = - x + k luôn cắt đồ thị (P) tại hai
điểm phân biệt A, B.
b). Tìm k để OA ^ OB
PHƯƠNG PHÁP TAM THỨC BẬC 2 18
Giải:
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình:
1
22
-
-
x
xx
= - x + k Û 2x2
- (k + 3)x + k = 0 (*)
Dễ thấy x = 1 không phải là nghiệm của (*)
D = (k - 1)2
+ 8 > 0 với mọi k nên phương trình (*) luôn có 2 nghiệm phân biệt
với mọi k Þ a) được chứng minh.
Mặt khác: Hệ số góc của OA là: a =
A
A
A
A
x
kx
x
y +-
=
Hệ số góc của OB là: b =
B
B
B
B
x
kx
x
y +-
=
OA ^ OB Û a.b = -1 Û 1
.
)(.
.
2
-=
++-
=
+-+-
BA
BABA
B
B
A
A
xx
kxxkxx
x
kx
x
kx
(**)
Theo Vi-ét thì:
xA + xB =
2
3+k
; xA.xB =
2
k
. Thay vào (**) ta có: k = 1
Vậy: OA ^ OB Û k = 1
BÀI TẬP:
7.1. Chứng minh rằng: Đường thẳng y = x + 2 là trục đối xứng của đồ thị hàm
số:
1
1
+
-
=
x
x
y
HD: Đường thẳng y = x + 2 là trục đối xứng của đồ thị
1
1
+
-
=
x
x
y (P) Û các
đường thẳng vuông góc với đường thẳng y = x + 2 cắt (P) tại hai điểm phân
biệt A, B sao cho trung điểm I của AB nằm trên đường thẳng y = x + 2.
7.2. Cho hàm số:
1
2
-
=
x
x
y có đồ thị (P). Tìm 2 điểm A, B trên đồ thị (P) và
đối xứng nhau qua đường thẳng y = x - 1
HD: Tương tự bài 7.1
7.3. Tìm a để đồ thị hàm số:
2
1232
+
+++
=
x
aaxax
y tiếp xúc với đường thẳng:
y = a
PHƯƠNG PHÁP TAM THỨC BẬC 2 19
7.4. Chứng minh rằng đường thẳng y = -x + m luôn cắt đồ thị hàm số
2
12
+
+
=
x
x
y tại hai điểm phân biệt A, B. Tìm m để AB ngắn nhất.
7.5. Viết phương trình tiếp tuyến chung của hai parabol:
y = x2
- 5x và y = -x2
+ 3x - 10
7.6. Tìm các điểm trên trục tung từ đó có thể kẻ được 2 tiếp tuyến tới đồ thị
hàm số
x
xy
1
+= và 2 tiếp tuyến này vuông góc với nhau.
7.7. Tìm m để đường thẳng y = x + m cắt parabol y = x2
tại 2 điểm phân biệt
A, B sao cho OA ^OB
7.8. Cho hàm số:
1
4 2
-
-
=
x
xx
y có đồ thị (P)
a). Xác định tiếp tuyến đi qua điểm (1;-4)
b). Chứng minh rằng đường thẳng y = 3x + a luôn cắt đồ thị (P) tại 2 điểm
phân biệt A, B. Tìm giá trị nhỏ nhất của biểu thức d =½xA - xB½
š&›

Recomendados

Tamthucbachai por
TamthucbachaiTamthucbachai
Tamthucbachaihonghoi
6.2K vistas19 diapositivas
Chuyên dề dấu tam thức bậc hai por
Chuyên dề dấu tam thức bậc haiChuyên dề dấu tam thức bậc hai
Chuyên dề dấu tam thức bậc haiNhập Vân Long
327.2K vistas4 diapositivas
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức por
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcỨng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcNhập Vân Long
6K vistas3 diapositivas
De thi va dap an thi hsg cum lg mon toan 11 nam 2013 por
De thi va dap an thi hsg cum lg mon toan 11 nam 2013De thi va dap an thi hsg cum lg mon toan 11 nam 2013
De thi va dap an thi hsg cum lg mon toan 11 nam 2013Phan Sanh
14.1K vistas6 diapositivas
Chuyen de hsg por
Chuyen de hsgChuyen de hsg
Chuyen de hsgphongmathbmt
1.3K vistas108 diapositivas
Tai lieu-on-thi-lop-10-mon-toan por
Tai lieu-on-thi-lop-10-mon-toanTai lieu-on-thi-lop-10-mon-toan
Tai lieu-on-thi-lop-10-mon-toanNguyễn Ngọc Tài
156.4K vistas39 diapositivas

Más contenido relacionado

La actualidad más candente

Ung dung v iet por
Ung dung v ietUng dung v iet
Ung dung v ietcongly2007
8K vistas16 diapositivas
Hệ phương trình hữu tỉ por
Hệ phương trình hữu tỉHệ phương trình hữu tỉ
Hệ phương trình hữu tỉNhập Vân Long
589 vistas3 diapositivas
19 phương phap chứng minh bất đẳng thức por
19 phương phap chứng minh bất đẳng thức19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thứcThế Giới Tinh Hoa
576.9K vistas37 diapositivas
Bài tập phương trình nghiệm nguyên por
Bài tập phương trình nghiệm nguyênBài tập phương trình nghiệm nguyên
Bài tập phương trình nghiệm nguyênDuong BUn
14.7K vistas11 diapositivas
Bdt thuần nhất por
Bdt thuần nhấtBdt thuần nhất
Bdt thuần nhấtThế Giới Tinh Hoa
8.5K vistas9 diapositivas
Bdt hình học por
Bdt hình họcBdt hình học
Bdt hình họcThế Giới Tinh Hoa
12K vistas56 diapositivas

La actualidad más candente(20)

Ung dung v iet por congly2007
Ung dung v ietUng dung v iet
Ung dung v iet
congly20078K vistas
19 phương phap chứng minh bất đẳng thức por Thế Giới Tinh Hoa
19 phương phap chứng minh bất đẳng thức19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức
Thế Giới Tinh Hoa576.9K vistas
Bài tập phương trình nghiệm nguyên por Duong BUn
Bài tập phương trình nghiệm nguyênBài tập phương trình nghiệm nguyên
Bài tập phương trình nghiệm nguyên
Duong BUn14.7K vistas
Hệ Phương Trình Bậc Nhất Hai Ẩn por Nhập Vân Long
Hệ Phương Trình Bậc Nhất Hai ẨnHệ Phương Trình Bậc Nhất Hai Ẩn
Hệ Phương Trình Bậc Nhất Hai Ẩn
Nhập Vân Long197K vistas
Đặt ẩn phụ giải phương trình chứa căn por tuituhoc
Đặt ẩn phụ giải phương trình chứa cănĐặt ẩn phụ giải phương trình chứa căn
Đặt ẩn phụ giải phương trình chứa căn
tuituhoc451.8K vistas
Bài tập đạo hàm có hướng dẫn por diemthic3
Bài tập đạo hàm có hướng dẫnBài tập đạo hàm có hướng dẫn
Bài tập đạo hàm có hướng dẫn
diemthic3182.4K vistas
CHUYÊN ĐỀ ĐẠI SỐ ÔN THI VÀO LỚP 10 CÁC TRƯỜNG CHUYÊN por BOIDUONGTOAN.COM
CHUYÊN ĐỀ ĐẠI SỐ ÔN THI VÀO LỚP 10 CÁC TRƯỜNG CHUYÊNCHUYÊN ĐỀ ĐẠI SỐ ÔN THI VÀO LỚP 10 CÁC TRƯỜNG CHUYÊN
CHUYÊN ĐỀ ĐẠI SỐ ÔN THI VÀO LỚP 10 CÁC TRƯỜNG CHUYÊN
BOIDUONGTOAN.COM42.3K vistas
Mot so phuong phap giai phuong trinh nghiem nguyen por Cảnh
Mot so phuong phap giai phuong trinh nghiem nguyenMot so phuong phap giai phuong trinh nghiem nguyen
Mot so phuong phap giai phuong trinh nghiem nguyen
Cảnh1.8K vistas
Bất đẳng thức suy luận và khám phá phạm văn thuận lê vĩ por Thế Giới Tinh Hoa
Bất đẳng thức suy luận và khám phá   phạm văn thuận lê vĩBất đẳng thức suy luận và khám phá   phạm văn thuận lê vĩ
Bất đẳng thức suy luận và khám phá phạm văn thuận lê vĩ
Phương trình và hệ phương trình por tuituhoc
Phương trình và hệ phương trìnhPhương trình và hệ phương trình
Phương trình và hệ phương trình
tuituhoc11.9K vistas
Đáp Án Các Đề Thi Thử Toán 11 HK2 por thithanh2727
Đáp Án Các Đề Thi Thử Toán 11 HK2Đáp Án Các Đề Thi Thử Toán 11 HK2
Đáp Án Các Đề Thi Thử Toán 11 HK2
thithanh27274.4K vistas
Tập 2 chuyên đề Toán học: Phương trình vô tỷ - Megabook.vn por Megabook
Tập 2 chuyên đề Toán học: Phương trình vô tỷ - Megabook.vnTập 2 chuyên đề Toán học: Phương trình vô tỷ - Megabook.vn
Tập 2 chuyên đề Toán học: Phương trình vô tỷ - Megabook.vn
Megabook16.9K vistas
500 bài tập và 10 đề ôn thi lớp 10 cơ bản por Thế Giới Tinh Hoa
500 bài tập và 10 đề ôn thi lớp 10 cơ bản500 bài tập và 10 đề ôn thi lớp 10 cơ bản
500 bài tập và 10 đề ôn thi lớp 10 cơ bản
Thế Giới Tinh Hoa4.2K vistas

Destacado

Ungdung tamthucbac2-giaitoan por
Ungdung tamthucbac2-giaitoanUngdung tamthucbac2-giaitoan
Ungdung tamthucbac2-giaitoanchanpn
6.5K vistas19 diapositivas
Chuyên đề 4 bất đẳng thức và bất phương trình por
Chuyên đề 4 bất đẳng thức và bất phương trìnhChuyên đề 4 bất đẳng thức và bất phương trình
Chuyên đề 4 bất đẳng thức và bất phương trìnhphamchidac
197.6K vistas50 diapositivas
Cực trị của hàm số, ôn thi đại học môn toán por
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toánhai tran
277.9K vistas22 diapositivas
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ por
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ Jackson Linh
597.6K vistas22 diapositivas
Cac dinh-ly-dong-quy copy por
Cac dinh-ly-dong-quy copyCac dinh-ly-dong-quy copy
Cac dinh-ly-dong-quy copyThai An Nguyen
3K vistas9 diapositivas
9 hinh nang cao hk 1 dap an por
9 hinh nang cao hk 1 dap an9 hinh nang cao hk 1 dap an
9 hinh nang cao hk 1 dap anHồng Quang
25.5K vistas35 diapositivas

Destacado(19)

Ungdung tamthucbac2-giaitoan por chanpn
Ungdung tamthucbac2-giaitoanUngdung tamthucbac2-giaitoan
Ungdung tamthucbac2-giaitoan
chanpn6.5K vistas
Chuyên đề 4 bất đẳng thức và bất phương trình por phamchidac
Chuyên đề 4 bất đẳng thức và bất phương trìnhChuyên đề 4 bất đẳng thức và bất phương trình
Chuyên đề 4 bất đẳng thức và bất phương trình
phamchidac197.6K vistas
Cực trị của hàm số, ôn thi đại học môn toán por hai tran
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toán
hai tran277.9K vistas
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ por Jackson Linh
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ
Jackson Linh 597.6K vistas
9 hinh nang cao hk 1 dap an por Hồng Quang
9 hinh nang cao hk 1 dap an9 hinh nang cao hk 1 dap an
9 hinh nang cao hk 1 dap an
Hồng Quang25.5K vistas
Cđ một số dạng toán 3 điểm thẳng hàng por Cảnh
Cđ một số dạng toán 3 điểm thẳng hàngCđ một số dạng toán 3 điểm thẳng hàng
Cđ một số dạng toán 3 điểm thẳng hàng
Cảnh106.5K vistas
Bài giảng sử dụng hàm số để chứng minh bất đẳng thức por lovemathforever
Bài giảng sử dụng hàm số để chứng minh bất đẳng thứcBài giảng sử dụng hàm số để chứng minh bất đẳng thức
Bài giảng sử dụng hàm số để chứng minh bất đẳng thức
lovemathforever5.8K vistas
Sự biến thiên của hàm số por diemthic3
Sự biến thiên của hàm sốSự biến thiên của hàm số
Sự biến thiên của hàm số
diemthic34.3K vistas
Khoảng cách trong hàm số - phần 2 por diemthic3
Khoảng cách trong hàm số - phần 2Khoảng cách trong hàm số - phần 2
Khoảng cách trong hàm số - phần 2
diemthic326.7K vistas
Bài 3, tập huấn sử dụng phần mềm Geogebra 5.0 por Bùi Việt Hà
Bài 3, tập huấn sử dụng phần mềm Geogebra 5.0Bài 3, tập huấn sử dụng phần mềm Geogebra 5.0
Bài 3, tập huấn sử dụng phần mềm Geogebra 5.0
Bùi Việt Hà2.8K vistas
Chuyen de giup hs nang cao kha nang du doan quy tich por honghoi
Chuyen de giup hs nang cao kha nang du doan quy tichChuyen de giup hs nang cao kha nang du doan quy tich
Chuyen de giup hs nang cao kha nang du doan quy tich
honghoi7.9K vistas
Giới thiệu phần mềm Geogebra 5.0 por Bùi Việt Hà
Giới thiệu phần mềm Geogebra 5.0Giới thiệu phần mềm Geogebra 5.0
Giới thiệu phần mềm Geogebra 5.0
Bùi Việt Hà4.8K vistas
Giới thiệu - Tập huấn iQB 8.0 por Bùi Việt Hà
Giới thiệu - Tập huấn iQB 8.0Giới thiệu - Tập huấn iQB 8.0
Giới thiệu - Tập huấn iQB 8.0
Bùi Việt Hà1.2K vistas
Bdt của tran si tung por Cam huynh
Bdt của tran si tungBdt của tran si tung
Bdt của tran si tung
Cam huynh8.5K vistas
Dang 2: Quan hệ giữa các góc trong hình học por Nhập Vân Long
Dang 2: Quan hệ giữa các góc trong hình họcDang 2: Quan hệ giữa các góc trong hình học
Dang 2: Quan hệ giữa các góc trong hình học
Nhập Vân Long1.5K vistas
CHUYÊN ĐỀ SỐ HỌC ÔN THI VÀO LỚP 10 CÁC TRƯỜNG CHUYÊN por BOIDUONGTOAN.COM
CHUYÊN ĐỀ SỐ HỌC ÔN THI VÀO LỚP 10 CÁC TRƯỜNG CHUYÊNCHUYÊN ĐỀ SỐ HỌC ÔN THI VÀO LỚP 10 CÁC TRƯỜNG CHUYÊN
CHUYÊN ĐỀ SỐ HỌC ÔN THI VÀO LỚP 10 CÁC TRƯỜNG CHUYÊN
BOIDUONGTOAN.COM51.2K vistas
Cđ một số ứng dụng định lí mê nê la uýt và xê va por Cảnh
Cđ một số ứng dụng định lí mê nê la uýt và xê vaCđ một số ứng dụng định lí mê nê la uýt và xê va
Cđ một số ứng dụng định lí mê nê la uýt và xê va
Cảnh49.6K vistas
Tổng hợp bồi dưỡng học sinh giỏi por Nhập Vân Long
Tổng hợp bồi dưỡng học sinh giỏiTổng hợp bồi dưỡng học sinh giỏi
Tổng hợp bồi dưỡng học sinh giỏi
Nhập Vân Long750 vistas

Similar a Ungdung tamthucbac2-giaitoan

de va dap an thi thu toan a,a1 lan 1 truong thpt ly thai to nam hoc 2013 2014 por
de va dap an thi thu toan a,a1 lan 1 truong thpt ly thai to nam hoc 2013 2014de va dap an thi thu toan a,a1 lan 1 truong thpt ly thai to nam hoc 2013 2014
de va dap an thi thu toan a,a1 lan 1 truong thpt ly thai to nam hoc 2013 2014Oanh MJ
2.3K vistas5 diapositivas
De thi thu dai hoc so 88 por
De thi thu dai hoc so 88De thi thu dai hoc so 88
De thi thu dai hoc so 88Trần Văn Khoa Tieuphong
206 vistas6 diapositivas
Toan pt.de022.2012 por
Toan pt.de022.2012Toan pt.de022.2012
Toan pt.de022.2012BẢO Hí
230 vistas6 diapositivas
De thi thu dh thpt nam sach hai duong por
De thi thu dh thpt nam sach hai duongDe thi thu dh thpt nam sach hai duong
De thi thu dh thpt nam sach hai duongVui Lên Bạn Nhé
347 vistas7 diapositivas
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1 por
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Jo Calderone
5.8K vistas6 diapositivas
Các phương pháp hay giải Phuong trinh-vo-ty por
Các phương pháp hay giải Phuong trinh-vo-tyCác phương pháp hay giải Phuong trinh-vo-ty
Các phương pháp hay giải Phuong trinh-vo-tyroggerbob
28.2K vistas17 diapositivas

Similar a Ungdung tamthucbac2-giaitoan(20)

de va dap an thi thu toan a,a1 lan 1 truong thpt ly thai to nam hoc 2013 2014 por Oanh MJ
de va dap an thi thu toan a,a1 lan 1 truong thpt ly thai to nam hoc 2013 2014de va dap an thi thu toan a,a1 lan 1 truong thpt ly thai to nam hoc 2013 2014
de va dap an thi thu toan a,a1 lan 1 truong thpt ly thai to nam hoc 2013 2014
Oanh MJ2.3K vistas
Toan pt.de022.2012 por BẢO Hí
Toan pt.de022.2012Toan pt.de022.2012
Toan pt.de022.2012
BẢO Hí230 vistas
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1 por Jo Calderone
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Jo Calderone5.8K vistas
Các phương pháp hay giải Phuong trinh-vo-ty por roggerbob
Các phương pháp hay giải Phuong trinh-vo-tyCác phương pháp hay giải Phuong trinh-vo-ty
Các phương pháp hay giải Phuong trinh-vo-ty
roggerbob28.2K vistas
Chuyen de giao_diem_cua_ham_so_phan_thuc por baquatu407
Chuyen de giao_diem_cua_ham_so_phan_thucChuyen de giao_diem_cua_ham_so_phan_thuc
Chuyen de giao_diem_cua_ham_so_phan_thuc
baquatu407203.6K vistas
Phuong trinh vo ty por tututhoi1234
Phuong trinh vo tyPhuong trinh vo ty
Phuong trinh vo ty
tututhoi12347.4K vistas
De cuong lop 10 (17 18) ham so bac hai va pt por phu thuan Nguyen
De cuong lop 10 (17 18) ham so bac hai va ptDe cuong lop 10 (17 18) ham so bac hai va pt
De cuong lop 10 (17 18) ham so bac hai va pt
phu thuan Nguyen553 vistas
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1 por Jo Calderone
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1
Jo Calderone4.2K vistas
đề toán quốc học huế khối A por Oanh MJ
đề toán quốc học huế khối Ađề toán quốc học huế khối A
đề toán quốc học huế khối A
Oanh MJ423 vistas
đề ôN thi thptqg 2015guiso por baoanh79
đề ôN thi thptqg 2015guisođề ôN thi thptqg 2015guiso
đề ôN thi thptqg 2015guiso
baoanh79541 vistas
Toan pt.de080.2012 por BẢO Hí
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
BẢO Hí378 vistas
Toan d dh_2011 por Huynh ICT
Toan d dh_2011Toan d dh_2011
Toan d dh_2011
Huynh ICT289 vistas
Toan pt.de046.2012 por BẢO Hí
Toan pt.de046.2012Toan pt.de046.2012
Toan pt.de046.2012
BẢO Hí330 vistas
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com por Huynh ICT
Mathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.comMathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Huynh ICT4.6K vistas
Khao sat ham so 50 cau por Huynh ICT
Khao sat ham so 50 cauKhao sat ham so 50 cau
Khao sat ham so 50 cau
Huynh ICT7.2K vistas
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong por Linh Nguyễn
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duongDe thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
Linh Nguyễn6.7K vistas
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong por Linh Nguyễn
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duongDe thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
Linh Nguyễn12.7K vistas

Más de diemthic3

Thông tin tuyển ĐH- CĐ khu vực Hà Nội por
Thông tin tuyển ĐH- CĐ khu vực Hà NộiThông tin tuyển ĐH- CĐ khu vực Hà Nội
Thông tin tuyển ĐH- CĐ khu vực Hà Nộidiemthic3
1.1K vistas183 diapositivas
Nhi thuc niuton p5_bg por
Nhi thuc niuton p5_bgNhi thuc niuton p5_bg
Nhi thuc niuton p5_bgdiemthic3
1.6K vistas4 diapositivas
đề Thi tuyển sinh vào 10 năm 2013 cần thơ por
đề Thi tuyển sinh vào 10 năm 2013 cần thơđề Thi tuyển sinh vào 10 năm 2013 cần thơ
đề Thi tuyển sinh vào 10 năm 2013 cần thơdiemthic3
2.4K vistas3 diapositivas
đề Thi tuyển sinh vào 10 năm 2013 trường chuyên nguyễn trãi- Hải Dương por
đề Thi tuyển sinh vào 10 năm 2013  trường chuyên nguyễn trãi- Hải Dươngđề Thi tuyển sinh vào 10 năm 2013  trường chuyên nguyễn trãi- Hải Dương
đề Thi tuyển sinh vào 10 năm 2013 trường chuyên nguyễn trãi- Hải Dươngdiemthic3
1.5K vistas2 diapositivas
Đề Thi tuyển sinh vào 10 năm 2012 hải dương por
Đề Thi tuyển sinh vào 10 năm 2012 hải dươngĐề Thi tuyển sinh vào 10 năm 2012 hải dương
Đề Thi tuyển sinh vào 10 năm 2012 hải dươngdiemthic3
821 vistas2 diapositivas
đề Thi tuyển sinh lớp 10 thpt tỉnh hà nội năm 2013 por
đề Thi tuyển sinh lớp 10 thpt tỉnh hà nội năm 2013đề Thi tuyển sinh lớp 10 thpt tỉnh hà nội năm 2013
đề Thi tuyển sinh lớp 10 thpt tỉnh hà nội năm 2013diemthic3
6.6K vistas7 diapositivas

Más de diemthic3(20)

Thông tin tuyển ĐH- CĐ khu vực Hà Nội por diemthic3
Thông tin tuyển ĐH- CĐ khu vực Hà NộiThông tin tuyển ĐH- CĐ khu vực Hà Nội
Thông tin tuyển ĐH- CĐ khu vực Hà Nội
diemthic31.1K vistas
Nhi thuc niuton p5_bg por diemthic3
Nhi thuc niuton p5_bgNhi thuc niuton p5_bg
Nhi thuc niuton p5_bg
diemthic31.6K vistas
đề Thi tuyển sinh vào 10 năm 2013 cần thơ por diemthic3
đề Thi tuyển sinh vào 10 năm 2013 cần thơđề Thi tuyển sinh vào 10 năm 2013 cần thơ
đề Thi tuyển sinh vào 10 năm 2013 cần thơ
diemthic32.4K vistas
đề Thi tuyển sinh vào 10 năm 2013 trường chuyên nguyễn trãi- Hải Dương por diemthic3
đề Thi tuyển sinh vào 10 năm 2013  trường chuyên nguyễn trãi- Hải Dươngđề Thi tuyển sinh vào 10 năm 2013  trường chuyên nguyễn trãi- Hải Dương
đề Thi tuyển sinh vào 10 năm 2013 trường chuyên nguyễn trãi- Hải Dương
diemthic31.5K vistas
Đề Thi tuyển sinh vào 10 năm 2012 hải dương por diemthic3
Đề Thi tuyển sinh vào 10 năm 2012 hải dươngĐề Thi tuyển sinh vào 10 năm 2012 hải dương
Đề Thi tuyển sinh vào 10 năm 2012 hải dương
diemthic3821 vistas
đề Thi tuyển sinh lớp 10 thpt tỉnh hà nội năm 2013 por diemthic3
đề Thi tuyển sinh lớp 10 thpt tỉnh hà nội năm 2013đề Thi tuyển sinh lớp 10 thpt tỉnh hà nội năm 2013
đề Thi tuyển sinh lớp 10 thpt tỉnh hà nội năm 2013
diemthic36.6K vistas
Khoảng cách trong hàm số- phần 1 por diemthic3
Khoảng cách trong hàm số- phần 1Khoảng cách trong hàm số- phần 1
Khoảng cách trong hàm số- phần 1
diemthic3132.4K vistas
Vẽ đồ thị hàm số por diemthic3
Vẽ đồ thị hàm sốVẽ đồ thị hàm số
Vẽ đồ thị hàm số
diemthic3470 vistas
Ve do thi ham so por diemthic3
Ve do thi ham soVe do thi ham so
Ve do thi ham so
diemthic3295 vistas
Ve do thi ham so bg por diemthic3
Ve do thi ham so bgVe do thi ham so bg
Ve do thi ham so bg
diemthic3305 vistas
01 khao sat va ve do thi ham so p1 por diemthic3
01 khao sat va ve do thi ham so p101 khao sat va ve do thi ham so p1
01 khao sat va ve do thi ham so p1
diemthic3335 vistas
Bai tap co loi giai dao hamieng_va_vi_phan por diemthic3
Bai tap co loi giai dao hamieng_va_vi_phanBai tap co loi giai dao hamieng_va_vi_phan
Bai tap co loi giai dao hamieng_va_vi_phan
diemthic3127K vistas
Được cộng tối đa 4 điểm ưu thi trong kì thi tốt nghiệp năm 2015 por diemthic3
Được  cộng tối đa 4 điểm ưu thi trong kì thi tốt nghiệp năm 2015Được  cộng tối đa 4 điểm ưu thi trong kì thi tốt nghiệp năm 2015
Được cộng tối đa 4 điểm ưu thi trong kì thi tốt nghiệp năm 2015
diemthic3214 vistas
Lợi thế xét tuyển đh 2015 por diemthic3
Lợi thế xét tuyển đh 2015Lợi thế xét tuyển đh 2015
Lợi thế xét tuyển đh 2015
diemthic3200 vistas
Tích phân của các hàm hữu tỷ por diemthic3
Tích phân của các hàm hữu tỷTích phân của các hàm hữu tỷ
Tích phân của các hàm hữu tỷ
diemthic314.4K vistas
Phương trình số phức - phần 1 por diemthic3
Phương trình số phức - phần 1Phương trình số phức - phần 1
Phương trình số phức - phần 1
diemthic344.6K vistas
Lịch thi thpt quốc gia 2015 por diemthic3
Lịch thi thpt quốc gia 2015Lịch thi thpt quốc gia 2015
Lịch thi thpt quốc gia 2015
diemthic3188 vistas
Đáp án đề thi Toán đại học - 2012 por diemthic3
Đáp án đề thi Toán đại học - 2012Đáp án đề thi Toán đại học - 2012
Đáp án đề thi Toán đại học - 2012
diemthic3263 vistas
Hàm số mũ por diemthic3
Hàm số mũHàm số mũ
Hàm số mũ
diemthic3384 vistas

Último

Luận Văn Học Viện Văn Hóa Nghệ Thuật Dân Tộc Việt Bắc.doc por
Luận Văn Học Viện Văn Hóa Nghệ Thuật Dân Tộc Việt Bắc.docLuận Văn Học Viện Văn Hóa Nghệ Thuật Dân Tộc Việt Bắc.doc
Luận Văn Học Viện Văn Hóa Nghệ Thuật Dân Tộc Việt Bắc.docDịch vụ viết đề tài trọn gói 0934.573.149
6 vistas30 diapositivas
BÀI TẬP DẠY THÊM TOÁN 11 - KẾT NỐI TRI THỨC - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, BÀ... por
BÀI TẬP DẠY THÊM TOÁN 11 - KẾT NỐI TRI THỨC - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, BÀ...BÀI TẬP DẠY THÊM TOÁN 11 - KẾT NỐI TRI THỨC - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, BÀ...
BÀI TẬP DẠY THÊM TOÁN 11 - KẾT NỐI TRI THỨC - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, BÀ...Nguyen Thanh Tu Collection
9 vistas931 diapositivas
Luận Văn Khai Thác Tiềm Năng Phát Triển Du Lịch Ven Biển Tiền Hải - Thái Binh... por
Luận Văn Khai Thác Tiềm Năng Phát Triển Du Lịch Ven Biển Tiền Hải - Thái Binh...Luận Văn Khai Thác Tiềm Năng Phát Triển Du Lịch Ven Biển Tiền Hải - Thái Binh...
Luận Văn Khai Thác Tiềm Năng Phát Triển Du Lịch Ven Biển Tiền Hải - Thái Binh...Dịch vụ viết đề tài trọn gói 0934.573.149
5 vistas136 diapositivas
3. Phân tích định tính.pdf por
3. Phân tích định tính.pdf3. Phân tích định tính.pdf
3. Phân tích định tính.pdfFred Hub
7 vistas8 diapositivas
TỔNG HỢP HƠN 60 ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024 MÔN HÓA H... por
TỔNG HỢP HƠN 60 ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024 MÔN HÓA H...TỔNG HỢP HƠN 60 ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024 MÔN HÓA H...
TỔNG HỢP HƠN 60 ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024 MÔN HÓA H...Nguyen Thanh Tu Collection
29 vistas129 diapositivas
4. Khảo sát và phỏng vấn.pdf por
4. Khảo sát và phỏng vấn.pdf4. Khảo sát và phỏng vấn.pdf
4. Khảo sát và phỏng vấn.pdfFred Hub
7 vistas12 diapositivas

Último(20)

BÀI TẬP DẠY THÊM TOÁN 11 - KẾT NỐI TRI THỨC - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, BÀ... por Nguyen Thanh Tu Collection
BÀI TẬP DẠY THÊM TOÁN 11 - KẾT NỐI TRI THỨC - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, BÀ...BÀI TẬP DẠY THÊM TOÁN 11 - KẾT NỐI TRI THỨC - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, BÀ...
BÀI TẬP DẠY THÊM TOÁN 11 - KẾT NỐI TRI THỨC - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, BÀ...
3. Phân tích định tính.pdf por Fred Hub
3. Phân tích định tính.pdf3. Phân tích định tính.pdf
3. Phân tích định tính.pdf
Fred Hub7 vistas
TỔNG HỢP HƠN 60 ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024 MÔN HÓA H... por Nguyen Thanh Tu Collection
TỔNG HỢP HƠN 60 ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024 MÔN HÓA H...TỔNG HỢP HƠN 60 ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024 MÔN HÓA H...
TỔNG HỢP HƠN 60 ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024 MÔN HÓA H...
4. Khảo sát và phỏng vấn.pdf por Fred Hub
4. Khảo sát và phỏng vấn.pdf4. Khảo sát và phỏng vấn.pdf
4. Khảo sát và phỏng vấn.pdf
Fred Hub7 vistas
TỔNG HỢP HƠN 80 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, TR... por Nguyen Thanh Tu Collection
TỔNG HỢP HƠN 80 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, TR...TỔNG HỢP HƠN 80 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, TR...
TỔNG HỢP HƠN 80 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, TR...
2. Phương pháp tiếp cận nghiên cứu.pdf por Fred Hub
2. Phương pháp tiếp cận nghiên cứu.pdf2. Phương pháp tiếp cận nghiên cứu.pdf
2. Phương pháp tiếp cận nghiên cứu.pdf
Fred Hub6 vistas
CÁC BÀI TOÁN BẤT ĐẲNG THỨC TRONG ĐỀ CHUYÊN VÀO LỚP 10 MÔN TOÁN GIAI ĐOẠN 2009... por Nguyen Thanh Tu Collection
CÁC BÀI TOÁN BẤT ĐẲNG THỨC TRONG ĐỀ CHUYÊN VÀO LỚP 10 MÔN TOÁN GIAI ĐOẠN 2009...CÁC BÀI TOÁN BẤT ĐẲNG THỨC TRONG ĐỀ CHUYÊN VÀO LỚP 10 MÔN TOÁN GIAI ĐOẠN 2009...
CÁC BÀI TOÁN BẤT ĐẲNG THỨC TRONG ĐỀ CHUYÊN VÀO LỚP 10 MÔN TOÁN GIAI ĐOẠN 2009...
BÀI TẬP DẠY THÊM TOÁN 11 - CHÂN TRỜI SÁNG TẠO - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, ... por Nguyen Thanh Tu Collection
BÀI TẬP DẠY THÊM TOÁN 11 - CHÂN TRỜI SÁNG TẠO - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, ...BÀI TẬP DẠY THÊM TOÁN 11 - CHÂN TRỜI SÁNG TẠO - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, ...
BÀI TẬP DẠY THÊM TOÁN 11 - CHÂN TRỜI SÁNG TẠO - CẢ NĂM (9 CHƯƠNG, LÝ THUYẾT, ...
1. Thế giới quan và mô thức nghiên cứu.pdf por Fred Hub
1. Thế giới quan và mô thức nghiên cứu.pdf1. Thế giới quan và mô thức nghiên cứu.pdf
1. Thế giới quan và mô thức nghiên cứu.pdf
Fred Hub8 vistas
TÀI LIỆU DẠY THÊM TOÁN 8 CẢ NĂM - DÙNG CHUNG 3 SÁCH (LÝ THUYẾT, LUYỆN TẬP, BÀ... por Nguyen Thanh Tu Collection
TÀI LIỆU DẠY THÊM TOÁN 8 CẢ NĂM - DÙNG CHUNG 3 SÁCH (LÝ THUYẾT, LUYỆN TẬP, BÀ...TÀI LIỆU DẠY THÊM TOÁN 8 CẢ NĂM - DÙNG CHUNG 3 SÁCH (LÝ THUYẾT, LUYỆN TẬP, BÀ...
TÀI LIỆU DẠY THÊM TOÁN 8 CẢ NĂM - DÙNG CHUNG 3 SÁCH (LÝ THUYẾT, LUYỆN TẬP, BÀ...
BỘ ĐỀ THI THỬ HỌC KÌ 1 TIẾNG ANH 12 CHƯƠNG TRÌNH MỚI - NĂM 2023-2024 (15 ĐỀ C... por Nguyen Thanh Tu Collection
BỘ ĐỀ THI THỬ HỌC KÌ 1 TIẾNG ANH 12 CHƯƠNG TRÌNH MỚI - NĂM 2023-2024 (15 ĐỀ C...BỘ ĐỀ THI THỬ HỌC KÌ 1 TIẾNG ANH 12 CHƯƠNG TRÌNH MỚI - NĂM 2023-2024 (15 ĐỀ C...
BỘ ĐỀ THI THỬ HỌC KÌ 1 TIẾNG ANH 12 CHƯƠNG TRÌNH MỚI - NĂM 2023-2024 (15 ĐỀ C...
BIÊN SOẠN BỘ ĐỀ CUỐI HỌC KÌ 1 MÔN TOÁN 11 CHÂN TRỜI SÁNG TẠO - NĂM 2024 (BẢN ... por Nguyen Thanh Tu Collection
BIÊN SOẠN BỘ ĐỀ CUỐI HỌC KÌ 1 MÔN TOÁN 11 CHÂN TRỜI SÁNG TẠO - NĂM 2024 (BẢN ...BIÊN SOẠN BỘ ĐỀ CUỐI HỌC KÌ 1 MÔN TOÁN 11 CHÂN TRỜI SÁNG TẠO - NĂM 2024 (BẢN ...
BIÊN SOẠN BỘ ĐỀ CUỐI HỌC KÌ 1 MÔN TOÁN 11 CHÂN TRỜI SÁNG TẠO - NĂM 2024 (BẢN ...
2. Khoa học và nghiên cứu xã hội.pdf por Fred Hub
2. Khoa học và nghiên cứu xã hội.pdf2. Khoa học và nghiên cứu xã hội.pdf
2. Khoa học và nghiên cứu xã hội.pdf
Fred Hub7 vistas
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - CHỌN LỌC TỪ CÁC TR... por Nguyen Thanh Tu Collection
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - CHỌN LỌC TỪ CÁC TR...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - CHỌN LỌC TỪ CÁC TR...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - CHỌN LỌC TỪ CÁC TR...

Ungdung tamthucbac2-giaitoan

  • 1. PHƯƠNG PHÁP TAM THỨC BẬC 2 1 Phần I TÓM TẮT VỀ PHƯƠNG TRÌNH BẬC HAI VÀ TAM THỨC BẬC HAI I. Định nghĩa và cách giải Phương trình: ax2 + bx + c = 0 (a ¹ 0) gọi là phương trình bậc 2 (PTBH). Đa thức: f(x) = ax2 + bx + c = 0 được gọi là tam thức bậc 2 (TTBH). *. Nghiệm của PTBH (nếu có) cũng được gọi là nghiệm của TTBH. *. Dạng chính tắc của TTBH: ax2 + bx + c = a[(x + a b 2 )2 - 2 2 4 4 a acb - ] (1) Từ dạng (1) ta đưa ra cách giải và công thức nghiệm như SGK đã trình bày. II. Sự phân tích TTBH Nếu D > 0 thì f(x) = ax2 + bx + c = a(x - x1)(x - x2) với x1, x2 là các nghiệm. III. Định lý Vi-ét Nếu D > 0 thì phương trình f(x) = ax2 + bx + c = 0 có 2 nghiệm phân biệt và: S = x1 + x2 = - a b P = x1x2 = a c Ngược lại: Nếu x + y = S và x.y = P thì x, y là các nghiệm của phương trình bậc hai: t2 - St + P = 0 IV. Đồ thị hàm số bậc 2: a > 0 D > 0 a > 0 D < 0 a > 0 D = 0 a < 0 D > 0 a < 0 D < 0 a < 0 D = 0 4 2 -2 -4 5 4 2 5 4 2 6 4 2 -2 -5
  • 2. PHƯƠNG PHÁP TAM THỨC BẬC 2 2 V. GTLN, GTNN: Nếu a > 0 Þ f(x) ³ a xfMin a 4 )( 4 D -=Þ D - Nếu a < 0 Þ f(x) £ a xfMax a 4 )( 4 D -=Þ D - GTLN (GTNN) đạt được Û x= -b/2a VI. Dấu tam thức bậc 2: Cho f(x) = ax2 + bx + c (a ¹ 0) Nếu D < 0 thì af(x) > 0 " x ÎR. Nếu D = 0 thì af(x)³ 0 " x Î R. Đẳng thức khi x = -b/2a Nếu D > 0 thì af(x) < 0 " x Î(x1;x2). af(x) ³ 0 " x Î (-¥; x1] U [x2; +¥) Đảo lại: 1) Nếu $ a sao cho: af(a) < 0 thì f(x) có 2 nghiệm phân biệt và x1< a <x2 2) af(a) > 0 af(a) > 0 D > 0 D > 0 a< 2 S a> 2 S Hệ quả trực tiếp: 1') Cho a < b, f(x) = ax2 + bx + c (a ¹ 0) x1 < a < x2 < b a < x1 < b < x2 2') a < x1 < x2 < b Û D > 0 af(a) > 0 af(b) > 0 ba << 2 S Trên đây là 6 nội dung cơ bản nhất về PTBH và TTBH mà SGK ĐS-10 đã trình bày khá kỹ. Sau đây là các ví dụ ứng dụng. ˜š›™ Û x1 < x2 < a; Û a < x1 < x2 [ Û f(a).f(b) < 0
  • 3. PHƯƠNG PHÁP TAM THỨC BẬC 2 3 Phần II CÁC BÀI TOÁN ỨNG DỤNG CƠ BẢN 1.GIẢI VÀ BIỆN LUẬN PHƯƠNG TRÌNH BẬC HAI Phép giải phương trình bậc 2 với hệ số bằng số khá đơn giản. Ở đây ta chỉ đề cập đến các phương trình chứa tham số. Một chú ý quan trọng ở đây là: Ta thường quên mất không xét đến trường hợp hệ số a = 0. VD1: Cho phương trình: (m2 - 4)x2 + 2(m + 2)x +1 = 0 (1) a) Tìm m để phương trình (1) có nghiệm. b) Tìm m để phương trình (1) có nghiệm duy nhất. Giải: a) Thông thường HS hay mắc sai lầm là chỉ xét đến trường hợp: D ³ 0 mà bỏ quên trường hợp a = 0 * Nếu m2 - 4 = 0 Û m = ±2. Giá trị m = -2 không thoả mãn. * Nếu m ¹ ±2: pt(1) có nghiệm Û m ¹ ±2 D' ³ 0 Tóm lại pt(1) có nghiệm Û m > -2 b) pt(1) có nghiệm duy nhất trong 2 trường hợp: *Trường hợp 1: a = 0 b ¹ 0 *Trường hợp 2: a ¹ 0 m ¹ ±2 (Trường hợp này không xảy ra) D' = 0 m = -2 Vậy với m = 2 pt(1) có nghiệm duy nhất. VD2: Biện luận theo m số nghiệm pt: x3 + m(x + 2) +8 = 0 (2) Ta có: x3 + 8 - m(x + 2) = (x + 2)(x2 - 2x + 4 - m) = 0 Đặt f(x) = x2 - 2x + 4 - m Þ số nghiệm pt (2) phụ thuộc số nghiệm của f(x). D' = m - 3 , f(-2) = 12 - m Do đó ta có: 1) D' < 0 Û m < 3 Þ f(x) VN Þ pt(2) có 1 nghiệm duy nhất x = -2 2) D' = 0 Û m = 3. Khi đó f(-2) = 12 - m ¹ 0 nên f(x) có 1 nghiệm khác -2 Þ pt(2) có nghiệm phân biệt (x1 = -2; x2 = 1) Û -2 < m ¹ 2 Û m = 2 Û
  • 4. PHƯƠNG PHÁP TAM THỨC BẬC 2 4 3) D' > 0 Û m > 3 *Nếu m > 3 m ¹ 12 * Nếu m =12 Þ pt(2) có 2 ngh 2 nghiệm: 1 nghiệm đơn và một nghiệm kép. VD3: Cho hàm số: y = (x - 2)(x2 + mx + m2 - 3) (3) có đồ thị (C). Tìm m để: a) (C) cắt Ox tại 3 điểm phân biệt. b) (C) tiếp xúc với Ox. Giải tóm tắt: Đặt f(x) = x2 + mx + m2 - 3 a) (C) cắt Ox tại 3 điểm phân biệt Û D > 0 f(2) ¹ 0 b) (C) tiếp xúc với Ox Û f(2) = 0 D = 0 VD4: Chứng minh rằng: Nếu a, b, c là độ dài 3 cạnh của một tam giác thì phương trình a2 x2 + (a2 + b2 - c2 )x + b2 = 0 (4) vô nghiệm Thật vậy: D = (a2 + b2 - c2 )2 - 4a2 b2 = (a2 + b2 - c2 - 2ab)( a2 + b2 - c2 + 2ab) = [(a - b)2 - c2 ][(a + b)2 - c2 ] = (a - b - c)(a - b + c)(a + b - c)(a + b + c) < 0 BÀI TẬP: 1.1. Giải phương trình: (x + 1)(½x½ - 1) = - 2 1 1.2. Giả sử x1 và x2 là các nghiệm của phương trình: ax2 + bx + c = 0. Hãy thiết lập phương trình với các nghiệm là: 1 1 1 x y = và 2 2 1 x y = 1.3. Tìm tất cả các giá trị của k để phương trình: )3( 1 322 -= - +- xk x xx có nghiệm kép không âm 1.4. Tìm tất cả các giá trị của p để parabol: y = x2 + 2px + 13 có đỉnh cách gốc toạ độ một khoảng bằng 5 Þ pt(2) có 3 nghiệm phân biệt. [
  • 5. PHƯƠNG PHÁP TAM THỨC BẬC 2 5 2. BIỂU THỨC ĐỐI XỨNG CỦA HAI NGHIỆM HỆ THỨC GIỮA CÁC NGHIỆM PTBH Đặt Sn = nn xx 21 + , x1x2 = P Ta có S1 = x1 + x2 = S S2 = 2 2 2 1 xx + = (x1 + x2)2 - 2x1x2 = S2 - 2P . . . . . . . . . . . . . . . . . Sn được tính theo công thức truy hồi sau: aSn + bSn-1 + cSn-2 = 0 (*) Ta chứng minh (*) như sau: Gọi x1, x2 là nghiệm của phương trình: ax2 + bx + c = 0 Þ 01 2 1 =++ cbxax (1) 02 2 2 =++ cbxax (2) Nhân hai vế của (1) và (2) lần lượt với 2 1 -n x và 2 2 -n x (nÎZ, n > 2) Ta có: 02 1 1 11 =++ -- nnn cxbxax (3) 02 2 1 22 =++ -- nnn cxbxax (4) Cộng (3) và (4) vế với vế ta được 0)()()( 2 2 2 1 1 2 1 121 =+++++ ---- nnnnnn xxcxxbxxa Ta có điều PCM. VD5: Cho .)31()31( 55 -++=A Chứng minh A Î Z HS: A = S5 = 152 VD6: Cho f(x) = 2x2 + 2(m+1)x + m2 + 4m + 3 Gọi x1, x2 là nghiệm của f(x). Tìm Max A A=| x1x2 - 2x1 - 2x2 | Giải: Để $ x1, x2 thì D ³ 0 Û -5 £ m £ -1 (*) Khi đó: 2 782 ++ = mm A Xét dấu của A ta có: m2 + 8m + 7 £ 0 "x thoả mãn (*) Þ A = 2 9 2 9 2 )4(9 2 78 22 =Þ£ +- = --- MaxA mmm VD7: Tìm điều kiện cần và đủ để phương trình ax2 + bx + c = 0 (a ¹ 0) có 2 nghiệm và nghiệm này gấp k lần nghiệm kia. Giải: Xét: M = (x1 - kx2)(x2 - kx1) = . . . . . .
  • 6. PHƯƠNG PHÁP TAM THỨC BẬC 2 6 = (k + 1)2 ac - kb2 Þ Điều kiện cần: Nếu x1 = kx2 hoặc x2 = kx1 Þ M = 0 Û (k + 1)2 ac = kb2 Điều kiện đủ: Nếu (k + 1)2 ac = kb2 Û M = 0 Û x1 = kx2 x2 = kx1 VD8: Biết a, b, c thoả mãn: a2 + b2 + c2 = 2 (1) ab + bc + ca = 1 (2) Chứng minh: 3 4 ,, 3 4 ££- cba (3) Nhận xét: Từ (1) và (2) ta thấy vai trò của a, b, c bình đẳng nên ta chỉ cần chứng minh 1 trong 3 số a, b, c thoả mãn (3). Đặt: S = a + b P = ab Từ (1) và (2) ta có: S2 - 2P = 2 - c2 (4) P + cS = 1 (5) Từ (5) Þ P = 1 - cS thay vào (4) ta có S2 - 2(1 - cS) = 2 - c2 Û S2 + 2cS + c2 - 4 = 0 Û S = -c + 2 S = -c - 2 * Nếu S = -c +2 Þ P = c2 - 2c + 1 Þ a, b là nghiệm của phương trình: t2 - (2 - c)t + c2 - 2c + 1 = 0 Phương trình này phải có nghiệm Û D ³ 0 Û 0 £ c £ 4/3 * Nếu S = -c - 2 Tương tự ta có: -4/3 £ c £ 0 Tóm lại: Ta có 3 4 ,, 3 4 ££- cba VD9: Tìm m để đồ thị hàm số y = x2 - 4x + m cắt Ox tại 2 điểm phân biệt A, B sao cho: OA = 3 OB HD: OA = | xA | ; OB = | xB | và xét 2 trường hợp: xA= 3xB và xA= - 3xB BÀI TẬP: 2.1. Tìm tất cả các giá trị của m để tổng các bình phương các nghiệm của phương trình: x2 - mx + m - 1 = 0 đạt giá trị nhỏ nhất. 2.2. Giả sử (x, y) là nghiệm của hệ phương trình: x + y = 2a - 1 x2 + y2 = a2 + 2a - 3 Xác định a để tích xy nhỏ nhất [ [
  • 7. PHƯƠNG PHÁP TAM THỨC BẬC 2 7 3. QUAN HỆ GIỮA CÁC NGHIỆM CỦA HAI PTBH 1) Hai phương trình ax2 + bx + c = 0 và a'x2 + b'x + c = 0 có nghiệm chung Û Hệ ax2 + bx + c = 0 a'x2 + b'x + c = 0 Ta có thể giải hệ (1) bằng phương pháp thế. Tuy nhiên nếu ta giải theo phương pháp sau đây thì đơn giản hơn nhiều: Đặt x2 = y ta có: ay + bx = - c a'y + b'x = - c' Þ Hệ (1) có nghiệm Û Hệ (2) có nghiệm y = x2 ï î ï í ì = ¹ Û ï î ï í ì = ¹ Û D D D D D D D D D x y xy 2 2 2 00 VD10: Chứng minh rằng nếu 2 phương trình x2 + p1x + q1 = 0 và x2 + p2x + q2 = 0 có nghiệm chung thì: (q1 - q2)2 + (p1 - p2)(q2p1 - q1p2) = 0 HD: Sử dụng phương pháp đã trình bày ở trên. 2) Hai phương trình bậc 2 tương đương. Chú ý: HS hay bỏ sót trường hợp: Nếu 2 phương trình cùng vô nghiệm thì tương đương (trên tập nào đó) VD11: Tìm m để hai phương trình x2 -mx + 2m - 3 = 0 và x2 -(m2 + m - 4)x +1 = 0 tương đương *Trường hợp 1: D1 < 0 D2 < 0 *Trường hợp 2: Sử dụng Vi-ét 3) Hai phương trình có nghiệm xen kẽ nhau. Chú ý rằng: Mọi phương trình ax2 + bx + c = 0 (a ¹ 0) bao giờ cũng đưa được về dạng: x2 + px + q = 0 Do đó ta có bài toán: Với điều kiện nào của p, q, p', q' để 2 phương trình: (1) có nghiệm (2)
  • 8. PHƯƠNG PHÁP TAM THỨC BẬC 2 8 x2 + px + q = 0 và x2 + p'x + q' = 0 có nghiệm xen kẽ nhau. Ta xét 2 khả năng: * Khả năng 1: Nếu p = p' Khi đó: Nếu q = q' Þ 2 đồ thị trùng nhau (không thoả mãn) Nếu q ¹ q' Þ Đồ thị này là tịnh tiến của đồ thị kia dọc theo đường thẳng 2 P x -= nên cũng không thoả mãn. * Khả năng 2: Nếu p ¹ p' Þ 2 parabol cắt nhau tại điểm có hoành độ Þ+÷÷ ø ö çç è æ - - +÷÷ ø ö çç è æ - - =Þ - - = q pp qq p pp qq y pp qq x ' ' ' ' ' ' 2 00 Để 2 phương trình có nghiệm xen kẽ nhau thì y0 < 0 Û (q - q')2 + p(q - q')(p' - p) + q(p' - p)2 < 0 VD12: Tìm m để 2 phương trình x2 + 3x + 2m = 0 và x2 + 6x + 5m = 0 có nghiệm xen kẽ nhau. ĐS: m Î (0 ; 1) BÀI TẬP: 3.1. Cho hai phương trình: x2 - 2x + m = 0 và x2 + 2x - 3m = 0 a). Tìm m để 2 phương trình có nghiệm chung. b). Tìm m để 2 phương trình tương đương. c). Tìm m để 2 phương trình có các nghiệm xen kẽ nhau. 3.2. Tìm m để hai phương trình sau có nghiệm chung: x2 - mx + 2m + 1 = 0 và mx2 - (2m + 1)x - 1 = 0 3.3. Tìm m và n để hai phương trình tương đương: x2 - (2m + n)x - 3m = 0 và x2 - (m+3n)x - 6 = 0 3.4. Tìm m để phương trình sau có 4 nghiệm phân biệt: (x2 - mx + 1)(x2 + x +m) = 0 ˜š›™
  • 9. PHƯƠNG PHÁP TAM THỨC BẬC 2 9 4. SỰ TỒN TẠI NGHIỆM CỦA PTBH 1) Sử dụng: PT ax2 + bx + c = 0 có nghiệm Û D ³ 0 VD13: Chứng minh rằng: Nếu a1.a2 ³ 2(b1 + b2) thì ít nhất 1 trong 2 phương trình x2 + a1x + b1 = 0 (1) x2 + a2x + b2 = 0 (2) có nghiệm Giải: D1 = 2 2 221 2 1 4;4 baba -=D- Do đó: D1 + D2 = 02)(4 21 2 2 2 121 2 2 2 1 ³-+³+-+ aaaabbaa DPCMÞê ë é ³D ³D Þ 0 0 2 1 VD14: Chứng minh rằng: Trong 3 phương trình sau: x2 + 2ax+ bc = 0 x2 + 2bx + ca = 0 x2 + 2cx + ab = 0 Có ít nhất một phương trình có nghiệm Giải: Ta có: D1 + D2 + D3 = [ ] 0)()()( 2 1 222 ³-+-+- accbba Þ có ít nhất 1 biểu thức không âm Þ ĐPCM 2) Sử dụng định lý về dấu tam thức bậc hai: * Nếu af(a) < 0 Þ x1 < a < x2 * Nếu f(a)f(b) < 0 Þ x1 < a < x2 < b a < x1 < b < x2 Điều quan trọng là việc chọn a, b sao cho hợp lý. VD15: Chứng minh rằng: Phương trình: f(x) = (x - a)(x - b) + (x - b)(x - c) + (x - c)(x- a) = 0 Với a < b < c luôn có 2 nghiệm phân biệt thoả mãn: a < x1 < b < x2 < c Giải: Rõ ràng f(x) là 1 TTBH có hệ số của x2 là 3 và: f(b) = (b - c)( b - a) < 0 vì a < b < c Þ f(x) có 2 nghiệm và x1 < b < x2 f(a) = (a - b)(a - c) > 0 vì a < b < c nên a nằm ngoài [x1 ; x2] mà a < b Þ a < x1 < b < x2 [
  • 10. PHƯƠNG PHÁP TAM THỨC BẬC 2 10 f(c) = (c - a)(c - b) > 0 nên c nằm ngoài [x1;x2] mà c > b nên a< x1< b <x2< c VD16: Chứng minh: Nếu | a+c | < | b | thì pt: ax2 + bx + c = 0 có nghiệm. Giải: * Nếu a = 0 Þ | c | < | b | Þ b ¹ 0 Þ phương trình trở thành: bx + c = 0 có nghiệm x = - c/b * Nếu a ¹ 0 thì | a+c | < | b | Û (a + c)2 < b2 Û (a + c - b)(a + c + b) < 0 Û f(-1)f(1) < 0 Þ f(x) = ax2 + bx + c luôn luôn có nghiệm Î (0;1) VD17: Biết: 2a + 3b + 6c = 0 Chứng minh: Phương trình ax2 + bx + c = 0 có ít nhất một nghiệm Î (0;1) Giải: * Nếu a = 0 Þ 3b + 6c = 0 Û b. 2 1 + c = 0 Þ x = 1/2 là nghiệm của phương trình ( và 1/c Î (0;1) ) * Nếu a ¹ 0 Þ 2a + 3b + 6c = f(1) + f(0) + 4f(1/2) = 0 Nhưng f(0), f(1), f(1/2) không thể đồng thời bằng 0 vì nếu như vậy thì phương trình bậc 2 có 3 nghiệm phân biệt (!). Điều đó chứng tỏ: Trong 3 biểu thức f(0), f(1), f(1/2) phải tồn tại 2 biểu thức trái dấu Þ f(x) có ít nhất 1 nghiệm Î (0;1) BÀI TẬP: 4.1. Cho a, b, c là 3 số khác nhau và khác 0. Chứng minh rằng: phương trình sau luôn có nghiệm: ab(x - a)(x - b) + bc(x - b)(x - c) + ca(x - c)(x - a) = 0 4.2. Cho m > 0 và a, b, c là 3 số thoả mãn: 0 12 =+ + + + m c m b m a Chứng minh rằng: Phương trình ax2 + bx + c = 0 có nghiệm trong (0;1) 4.3. Chứng minh rằng phương trình: ax2 + bx + c = 0 có nghiệm nếu một trong hai điều kiện sau được thoả mãn: a(a + 2b + 4c) < 0 5a + 3b + 2c = 0 4.4. Biết rằng phương trình: x2 + ax + b + c = 0 vô nghiệm. Chứng minh rằng phương trình: x2 + bx - a - c = 2 có nghiệm. 4.5. Chứng minh rằng phương trình: m xx =+ cos 1 sin 1 có nghiệm với mọi m.
  • 11. PHƯƠNG PHÁP TAM THỨC BẬC 2 11 5. TAM THỨC BẬC HAI VÀ BẤT ĐẲNG THỨC 1) Dạng áp dụng trực tiếp dấu TTBH: VD18: Cho D ABC chứng minh rằng: RxCosCCosBxCosA x Î"++³+ )( 2 1 2 Xét f(x) = 2 2 x - x(cosB + cosC) + 1 - cosA ³ 0 " x Î R Dx = (cosB + cosC)2 - 2(1 - cosA) = 0 22 4 22 £ - - CB Sin A Sin Þ ĐPCM Dấu đẳng thức xẩy ra Û A = B = C hay tam giác ABC đều. Chú ý: Nếu x= 1 Þ cosA + cosB + cosC £ 2 3 là 1 bất đẳng thức quen thuộc 2) Dạng áp dụng ngược lại: Giả sử: Cần phải chứng minh dạng: D £ 0 ta chứng minh f(x) không đổi dấu khi đó ta viết D £ 0 thành dạng: b2 - 4ac để xác định f(x). VD19: Chứng minh bất đẳng thức Bunhiacopxky: ( ) nibaba iiii ,1)1(¸ 222 =³å åå Bất đẳng thức Û ( ) )2(0222 £- å åå iiii baba *Nếu a1 = a2 = . . . . . = an = 0 Þ bất đẳng thức (1) hiển nhiên đúng. Nếu 02 ¹å ia Ta xét tam thức: f(x) = ( ) ( ) ååå +- 222 2 iiii bxbaxa Ta có f(x) = ( )å £DÞÎ"³- 0'0 2 Rxbxa ii chính là ĐPCM. Dấu "=" Û x = i i a b = l VD20: Các số a, b, c, d, p, q thoả mãn: p2 + q2 - a2 - b2 - c2 - d2 > 0 (1) Chứng minh: (p2 - a2 - b2 )(q2 - c2 - d2 ) £ (pq - ac - bd)2 (2) Giải: Vì (1) nên: (p2 - a2 - b2 ) + (q2 - c2 - d2 ) > 0 Þ $ 1 trong 2 số hạng khác 0 và dương. Không mất tính tổng quát, giả sử: p2 - a2 - b2 > 0 Xét tam thức: f(x) = (p2 - a2 - b2 )x2 - 2 (pq - ac - bd)x + (q2 - c2 - d2 )
  • 12. PHƯƠNG PHÁP TAM THỨC BẬC 2 12 Ta có f(x) = (px - q)2 - (ax - c)2 - (bx - d)2 Þ nếu x = p q Þ f( p q ) = -(a 22 ).(). d p q bc p q --- < 0 mà (p2 - a2 - b2 ) > 0 nên: af( ) p q < 0 Þ f(x) có nghiệm Þ D' ³ 0 Þ ĐPCM BÀI TẬP: 5.1. Cho a3 > 36 và abc = 1. Chứng minh rằng: cabcabcb a ++>++ 22 2 3 HD: a3 > 36 Þ a > 0 và abc = 1 Þ bc = a 1 . Đưa bất đẳng thức về dạng: (b + c)2 - a(b+c) - 0 3 3 2 >+ a a và xét tam thức bậc hai: f(x) = x2 - ax - 3 3 2 a a + 5.2. Cho a, b, c là ba cạnh của một tam giác. Ba số x, y, z thoả mãn điều kiện: ax + by + cz = 0. Chứng minh: xy + yz + zx £ 0 HD: Từ ax + by + cz = 0 và do c ¹ 0 (vì c >0) nên có z = c byax+ - . Ta viết lại bất đẳng thức dưới dạng sau: xy c byax+ - (x + y) £ 0. Biến đổi bđt này về dạng: ax2 + xy(a+ b - c) + by2 ³ 0. Xét tam thức bậc hai: f(t) = at2 + y(a+ b - c)t + by2 với a >0. 5.3. Cho a >0 và n là số nguyên dương. Chứng minh rằng: 2 141 ... ++ <++++ a aaaa n dấu căn HD: Đặt aaaa ++++ ... = Un . Vì a > 0 nên Un > Un-1 . Mặt khác: Un 2 = a + Un-1 suy ra: Un 2 < a + Un hay Un 2 - Un + a < 0. Xét tam thức bậc hai: f(x) = x2 - x - a 5.4. Cho c > b > a > 0. Đặt d2 = a2 + b2 + c2 ; P = 4(a + b + c) ; S = 2(ab + bc + ca)
  • 13. PHƯƠNG PHÁP TAM THỨC BẬC 2 13 Chứng minh rằng: cSdPSdPa <-+<--< ) 2 1 4 1 ( 3 1 ) 2 1 4 1 ( 3 1 22 HD: Xét tam thức bậc hai: f(x) = x2 - ) 2 1 16 ( 9 1 6 1 2 2 Sd P Px +-+ 6. TAM THỨC BẬC HAI VÀ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH HỆ PHƯƠNG TRÌNH, HỆ BẤT PHƯƠNG TRÌNH I. Hệ đối xứng kiểu I: Là hệ phương trình mà nếu đổi vai trò x và y cho nhau thì mỗi phương trình không thay đổi. Phương pháp giải hệ đối xứng kiểu I là: Đặt S = x + y, P = xy Þ S2 ³ 4P Giải hệ tìm S, P cuối cùng giải phương trình: X2 - SX + P = 0 tìm x, y. VD21: Giải hệ: ïî ï í ì =+ =+ 35 30 yyxx xyyx Đặt 0,0 ³=³= vyux Hệ trở thành: î í ì = = Ú î í ì = = Þ ==Þ î í ì =- = Û ïî ï í ì =+ =+ 4 9 9 4 6,5 353 30 35 30 333 22 y x y x PS PSS PS vu uvvu VD22: Biết (x,y) là nghiệm của hệ: î í ì +-=+ =+ 6222 myx myx Tìm GTNN, GTLN của biểu thức: M = xy + 2(x + y) Giải: Hệ được viết thành: î í ì -= = 32 mP mS Þ x, y là nghiệm của phương trình: t2 - mt + m2 - 3 = 0 (*) Þ Để hệ có nghiệm thì phương trình (*) có nghiệm Û D ³ 0 Û | m | £ 2 Khi đó M = P + 2S = m2 + 2m - 3 Bài toán trở thành: Tìm GTLN, GTNN của M trong [-2;2] (Đây là bài toán cơ bản) M(-2) = -3, M(2) = 5, M(-1) = 4 Þ MaxM = 5, MinM = -4
  • 14. PHƯƠNG PHÁP TAM THỨC BẬC 2 14 Chú ý: HS rất dễ gặp sai lầm là xét M = m2 + 2m - 3 trên R khi đó chỉ có GTNN chứ không có GTLN. VD23: Cho x, y thoả mãn x + y = 2. Tìm GTNN của F = x3 + y3 Giải: Bài toán quy về tìm tập giá trị của F Hay: Tìm F để hệ î í ì =+ =+ Fyx yx 33 2 có nghiệm. Hệ trở thành: ïî ï í ì - = = Þ î í ì =- = 6 8 2 3 2 3 F P S FPSS S Þ x, y là nghiệm cỷa phương trình: t2 - 2t + 0 6 8 = - F (*) Hệ có nghiệm Û phương trình (*) có nghiệm Û D' ³ 0 Û F ³ 2 Þ MinF = 2 ( khi x = y) II. Tam thức bậc 2 với phương trình, bất phương trình VD24: Tìm a sao cho bất đẳng thức: 25y2 + )1(25 100 1 2 xyaxyx -+-³ được nghiệm đúng " cặp (x;y) thoả mãn | x | = | y | Giải: Ta xét 2 trường hợp: Trường hợp 1: x = y (1) Þ (a+50)x2 - 2x + 0 100 1 ³ Û 50 0 050 ³Û î í ì £D >+ a a Trường hợp 2: x = -y (1) Þ (50 - a)x2 + 0 100 1 ³ Û a £ 50 (3) Để (1) đúng với " (x;y) thì phải thoả mãn cả x = y và x = -y Þ a = 50 VD25: Tìm m để hệ ïî ï í ì £-+ £+- )2(04 )1(02 2 2 mxx mxx có nghiệm duy nhất. Giải: Cộng 2 bất phương trình ta có: 2x2 + 2x £ 0 Û -1£ x £ 0 (3) Þ Nghiệm của hệ phải thoả mãn (3) Xét các tam thức ở vế trái. Ta có: (1) và (2) có nghiệm Û 14 04 01 0 0 ' 2 ' 1 ££-Û î í ì ³+ ³- Û ïî ï í ì ³D ³D m m m
  • 15. PHƯƠNG PHÁP TAM THỨC BẬC 2 15 Ta có các khả năng sau: a) Bpt (1) có nghiệm duy nhất và cũng là nghiệm của (2): Bpt (1) có nghiệm duy nhất Û m = 1 Þ x = 1 không thoả mãn (3) b) Bpt (2) có nghiệm duy nhất và cũng là nghiệm của (1): Bpt (2) có nghiệm duy nhất Û m = -4 Þ x = -2 không thoả mãn (3) c) Bpt (1) Û x1 = 1 - mxxm -+=££- 111 2 Bpt (2) Û x3 = -2 - mxxm ++-=££- 424 4 Với - 4 < m < 1 BÀI TẬP: 6.1. Cho hệ phương trình: ax2 + bx + c = y ay2 + by + c = z az2 + bz + c = x Trong đó: a ¹ 0 và (b - 1)2 - 4ac < 0. Chứng minh rằng hệ phương trình trên vô nghiệm. HD: Xét a > 0 (trường hợp a < 0 lý luận tương tự) Phản chứng, giả sử hệ trên có ngiệm (x0, y0, z0). Khi đó: ax2 + bx + c = y0 ay2 + by + c = z0 az2 + bz + c = x0 Cộng từng vế ba phương trình trên ta có: [ax0 2 + (b-1)x0 + c] + [ay0 2 + (b-1)y0 + c] + [az0 2 + (b-1)z0 + c] = 0. Xét tam thức: f(t) = at2 + (b-1)t + c thì f(x0) + f(y0) + f(x0) = 0 mà D = (b - 1)2 - 4ac < 0 nên af(t) > 0 với mọi t thuộc R từ đó suy ra mâu thuẫn. 6.2. Tìm m sao cho với mọi x cũng đều nghiệm đúng ít nhất một trong hai bất phương trình: x2 + 5m2 + 8m > 2(3mx + 2) x2 + 4m2 ³ m(4x + 1) HD: Đưa hai bpt trên về dạng tam thức bậc hai đối với x và xét các khả năng có thể có của các biệt thức D1 và D2 6.3. Gọi L là chiều dài các đoạn nghiệm trên trục số của hệ bpt: -2 £ x2 + px + q £ 2
  • 16. PHƯƠNG PHÁP TAM THỨC BẬC 2 16 Chứng minh rằng: L £ 4 với mọi p, q HD: Xét các khả năng của D1 và D2 6.4. Giải và biện luận theo a bpt: 112 ->-- axax HD: Đặt t = 1-x ³ 0, chuyển về một vế bpt trên và xét tam thức vế trái. 6.5. Cho hai phương trình: x2 + 3x + 2m = 0 x2 + 6x + 5m = 0 Tìm m để mỗi phương trình có 2 nghiệm phân biệt và giữa hai nghiệm của phương trình này có đúng một nghiệm của phương trình kia. HD: Sử dụng định lý đảo. 6.6. Tìm m sao cho phương trình: x4 + mx3 + x2 + mx + 1 = 0 có không ít hơn 2 nghiệm âm khác nhau. HD: Nhận xét rằng x = 0 không phải là nghiệm phương trình dù m nhận giá trị nào. Đặt: x t 1 1 += và xét f(t) = t2 + mt - 1 với ½t½ ³ 2. 6.7. Cho phương trình f(x) = ax2 + bx + c = 0 (1) 1. Giả sử ½a½ > ½b½ + ½c½. Chứng minh rằng trong khoảng (-1;1) phương trình (1) có hai nghiệm hoặc không có nghiệm nào. 2. Giả sử ½b½ > ½a½ + ½c½. Chứng minh rằng trong khoảng (-1;1) phương trình (1) có đúng 1 nghiệm. 3. Giả sử ½c½ > ½a½ + ½b½. Chứng minh rằng trong khoảng (-1;1) phương trình (1) vô nghiệm. 6.8. Tìm m để phương trình sau có nghiệm: x4 + mx3 + 2mx2 + m + 1 6.9. Tìm m để phương trình sau có nghiệm: 03105)4(22 2 =-++++- xmxmx HD: Để căn thức riêng một vế và biến đổi tương đương. 6.10. Giải và biện luận theo m bpt: mmxx 2>--
  • 17. PHƯƠNG PHÁP TAM THỨC BẬC 2 17 7. TAM THỨC BẬC HAI VÀ TƯƠNG GIAO ĐỒ THỊ Trong các bài toán về tương giao đồ thị có sử dụng các kiến thức về tam thức bậc hai là thường các vấn đề sau: 1. Tìm giao điểm của hai đồ thị: Quy về giải hệ phương trình 2. Tìm tiếp tuyến: Điều kiện phương trình có nghiệm kép 3. Tìm quỹ tích: Sử dụng biểu thức giữa các nghiệm của phương trình 4. Chứng minh tính đối xứng (trục, tâm), tính vuông góc. Tuy nhiên nếu sử dụng thêm các kiến thức về đạo hàm thì ta có các bài toán phức tạp hơn và hay hơn nhiều. Sau đây ta xét một số ví dụ: VD26: Chứng minh rằng đường thẳng: y = -x luôn cắt parabol: y = x2 - 2(m + 2)x + m2 + 3m tại 2 điểm phân biệt và khoảng cách giữa 2 điểm đó không phụ thuộc vào m. Giải: Hoành độ giao điểm là nghiệm phương trình: x2 - 2(m + 2)x + m2 + 3m = -x Û x2 - (2m + 3)x + m2 + 3m = 0 (*) Ta có: D = (2m + 3)2 - 4(m2 + 3m) = 9 > 0 nên phương trình (*) luôn có 2 nghiệm phân biệt với mọi m Þ đường thẳng luôn cắt parabol tại 2 điểm phân biệt. Giả sử 2 điểm đó là A(xA; yA) và B(xB; yB) Trong đó: xA = m và xB = m + 3 (m và m + 3 là hai nghiệm của phương trình (*). Þ yA = - xA = -m; yB = - xB = -m - 3 Ta có: AB = 2318)()( 22 ==-+- BABA yyxx không phụ thuộc m. VD27: Cho hàm số: y = 1 22 - - x xx có đồ thị (P). a). Chứng minh rằng: Đường thẳng (d): y = - x + k luôn cắt đồ thị (P) tại hai điểm phân biệt A, B. b). Tìm k để OA ^ OB
  • 18. PHƯƠNG PHÁP TAM THỨC BẬC 2 18 Giải: Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình: 1 22 - - x xx = - x + k Û 2x2 - (k + 3)x + k = 0 (*) Dễ thấy x = 1 không phải là nghiệm của (*) D = (k - 1)2 + 8 > 0 với mọi k nên phương trình (*) luôn có 2 nghiệm phân biệt với mọi k Þ a) được chứng minh. Mặt khác: Hệ số góc của OA là: a = A A A A x kx x y +- = Hệ số góc của OB là: b = B B B B x kx x y +- = OA ^ OB Û a.b = -1 Û 1 . )(. . 2 -= ++- = +-+- BA BABA B B A A xx kxxkxx x kx x kx (**) Theo Vi-ét thì: xA + xB = 2 3+k ; xA.xB = 2 k . Thay vào (**) ta có: k = 1 Vậy: OA ^ OB Û k = 1 BÀI TẬP: 7.1. Chứng minh rằng: Đường thẳng y = x + 2 là trục đối xứng của đồ thị hàm số: 1 1 + - = x x y HD: Đường thẳng y = x + 2 là trục đối xứng của đồ thị 1 1 + - = x x y (P) Û các đường thẳng vuông góc với đường thẳng y = x + 2 cắt (P) tại hai điểm phân biệt A, B sao cho trung điểm I của AB nằm trên đường thẳng y = x + 2. 7.2. Cho hàm số: 1 2 - = x x y có đồ thị (P). Tìm 2 điểm A, B trên đồ thị (P) và đối xứng nhau qua đường thẳng y = x - 1 HD: Tương tự bài 7.1 7.3. Tìm a để đồ thị hàm số: 2 1232 + +++ = x aaxax y tiếp xúc với đường thẳng: y = a
  • 19. PHƯƠNG PHÁP TAM THỨC BẬC 2 19 7.4. Chứng minh rằng đường thẳng y = -x + m luôn cắt đồ thị hàm số 2 12 + + = x x y tại hai điểm phân biệt A, B. Tìm m để AB ngắn nhất. 7.5. Viết phương trình tiếp tuyến chung của hai parabol: y = x2 - 5x và y = -x2 + 3x - 10 7.6. Tìm các điểm trên trục tung từ đó có thể kẻ được 2 tiếp tuyến tới đồ thị hàm số x xy 1 += và 2 tiếp tuyến này vuông góc với nhau. 7.7. Tìm m để đường thẳng y = x + m cắt parabol y = x2 tại 2 điểm phân biệt A, B sao cho OA ^OB 7.8. Cho hàm số: 1 4 2 - - = x xx y có đồ thị (P) a). Xác định tiếp tuyến đi qua điểm (1;-4) b). Chứng minh rằng đường thẳng y = 3x + a luôn cắt đồ thị (P) tại 2 điểm phân biệt A, B. Tìm giá trị nhỏ nhất của biểu thức d =½xA - xB½ š&›