Integral Lipat Tiga

2. INTEGRAL LIPAT TIGA
KPB 1
08/30/18 2
Permukaan di Ruang (RPermukaan di Ruang (R33
))
Z
x
y
Paraboloida Elips
y
x
z
Bidang
Ax By Cz D+ + =
2 2
2 2
x y
z
a b
= +
Pendahuluan
08/30/18 3
Z
x
y
z
x
y
Paraboloida Hiperbolik
Kerucut
2 2 2
2 2 2
0
x y z
a b c
+ − =
2 2
2 2
x y
z
a b
= −
08/30/18 4
Z
x
y
0a,azyx 2222
>=++
Bola
1
c
z
b
y
a
x
2
2
2
2
2
2
=++
Elipsoida
Z
x
y
08/30/18 5
Z
x
y
2 2 2
2 2 2
1
x y z
a b c
+ − =
Hiperboloida Berdaun Satu
08/30/18 6
Hiperboloida Berdaun DuaHiperboloida Berdaun Dua
Z
x
y
2 2 2
2 2 2
1
x y z
a b c
− − =
08/30/18 7
Integral Lipat Tiga pada BalokIntegral Lipat Tiga pada Balok
x
y
z
∆xk
∆yk
)z,y,x( kkk
B
Bk ∆zk
1. Partisi Balok B menjadi n bagian;
1 2, ,..., ,...,k nB B B B
2. Ambil , ,k k k kx y z B∈
3. Bentuk jumlah Riemann
Definisikan ∆ sebagai diagonal
ruang terpanjang dari Bk
1
( , , )
n
k k k k
k
f x y z V
=
∆∑
08/30/18 8
0
1
( , , ) lim ( , , )
n
k k k k
kB
f x y z dV f x y z V
∆ →
=
= ∆∑∫∫∫
0
1
lim ( , , )
n
k k k k
k
f x y z V
∆ →
=
∆∑
4. Jika 0,∆ → maka diperoleh limit jumlah Riemann
5. Jika limit ini ada, maka dikatakan fungsi ( , , )w f x y z=
terintegralkan secara Riemann pada balok B, ditulis :
9
( , , ) ( , , )
B B
f x y z dV f x y z dx dy dz=∫∫∫ ∫∫∫
V x y z dV dxdydz∆ = ∆ ∆ ∆ → =
Sehingga Integral Lipat Tiga dalam koordinat Cartesius ditulis :
08/30/18 10
ContohContoh
∫∫∫B
dVyzx2
Hitung dengan B adalah balok dengan ukuran
B = {(x,y,z)| 1 ≤ x ≤ 2, 0 ≤ y ≤ 1, 1 ≤ z ≤ 2}
Jawab.
∫∫∫B
dVyzx2
dzdydxyzx∫∫ ∫=
2
1
1
0
2
1
2
dzdyxyz∫ ∫ 





=
2
1
1
0
2
1
3
3
1
dzyz∫ 





=
2
1
1
0
2
2
1
3
7
2
1
2
2
1
6
7






= z
4
7
=
08/30/18 11
Integral Lipat Tiga pada Daerah SembarangIntegral Lipat Tiga pada Daerah Sembarang
• Pandang S benda padat yang terlingkupi oleh balok B, dan
definisikan nilai f nol untuk luar S (gb. 1)
x
y
z
B
S
∫∫∫S
2
dVyzxHitung , Jika S benda padat sembarang
(gb. 1)
08/30/18 12
Integral Lipat Tiga pada Daerah SembarangIntegral Lipat Tiga pada Daerah Sembarang
• Jika S dipandang sebagai himpunan z
sederhana (gb.2) (S dibatasi oleh
z=ψ1(x,y) dan z=ψ2(x,y), dan proyeksi S
pada bidang XOY dipandang sebagai
daerah jenis I) maka:
∫ ∫ ∫∫∫∫ =
b
a
x
x
yx
yxS
dxdydzzyxfdVzyxf
)(
)(
),(
),(
2
1
2
1
),,(),,(
φ
φ
ψ
ψx
y
z
S
Sxyb
a
y=φ2(x)y=φ1(x)
z=ψ2(x,y)
z=ψ1(x,y)
(gb. 2)
13
∫∫∫S
dVzyxf ),,(
Catatan:
( , , ) 1f x y z = , maka
menyatakan volume benda pejal S.
Jika
08/30/18 14
ContohContoh
( , , )
S
f x y z dV∫∫∫Hitung dengan
dan S adalah padat yang dibatasi oleh tabung parabola dan
bidang-bidang z = 0, y=x, y=0
y=0
y=x
x
y
z
Sxy
Sxy = proyeksi S pada XOY
(segitiga)
Jawab.
Dari gambar terlihat bahwa
2
0 Sehingga,
2
S
xyz dV∫∫∫
21
2
2 2
0 0 0
2
x
x
xyz dz dy dx
−
= ∫∫ ∫
22 1
22 2
0
0 0
x
x
xy z dy dx
−
= ∫∫
( , , ) 2f x y z xyz=
21
2
2
z x= −
21
( , , ) | 0 2,0 ,0 2
2
S x y z x y x z x
 
= ≤ ≤ ≤ ≤ ≤ ≤ − 
 
21
2
2
z x= −
08/30/18 15
22
2
0 0
1
2
2
x
xy x dy dx
 
= − ÷
 
∫∫
2
2 4 2
00
1 1
4 2
4 2
x
x x x y dx
 
= − + ÷
 
∫
2
3 5 7
0
1
2
8
x x x dx
 
= − + ÷
 
∫
2
4 6 8
0
1 1 1
2 6 64
x x x= − +
32 4
8 4
3 3
= − + =
08/30/18 16
LatihanLatihan
∫∫∫S
dVz1. Hitung , S benda padat di oktan pertama yang dibatasi oleh bidang-
z = 0, x=y, y=0 dan tabung x2
+ z2
= 1.
2. Sketsa benda pejal S di oktan pertama yang dibatasi tabung y2
+ z2
= 1 dan
bidang x =1 dan x = 4, tuliskan integral lipatnya, kemudian hitung volumenya.
3. Hitung volume benda pejal yang dibatasi oleh :
a. y = x2
, y + z = 4, x = 0, z = 0.
b. 1 = z2
+y2
, y = x, x = 0.
/ 2
0 0 0
sin( )
yz
x y z dxdydz
π
+ +∫ ∫∫4. Hitung
5. Ubah urutan integrasi ke
2 22 93 9
0 0 0
( , , )
y zz
f x y z dxdydz
− −−
∫ ∫ ∫;dzdydx
08/30/18 17
Integral Lipat Tiga (Koordinat Tabung dan Bola)Integral Lipat Tiga (Koordinat Tabung dan Bola)
θ r
z
P(r,θ,z)
x
y
z
θ r
z
P(ρ,θ,φ)
x
y
z
φ
ρ
Syarat & hubungan dg Cartesius
r ≥ 0, 0 ≤ θ ≤ 2 π
x = r cos θ
y = r sin θ
z = z
r2
= x2
+ y2
Syarat & hubungan dg Cartesius
ρ ≥ 0, 0 ≤ θ ≤ 2 π, 0 ≤ φ ≤ π
Jika D benda pejal punya sumbu simetri  gunakan Koordinat Tabung
Jika D benda pejal yang simetri terhadap satu titik  gunakan Koordinat Bola
Koordinat Tabung Koordinat Bola
2 2 2 2
cos ; sin
sin cos
sin
sin sin
cos ;
x r r
x
y r
z x y z
θ ρ φ
ρ φ θ
θ
ρ φ θ
ρ φ ρ
= =
=
=
=
= + + =
08/30/18 18
ContohContoh
1. Sketsa D; D benda pejal di oktan I yang dibatasi oleh
tabung x2
+y2
=4 dan bidang z = 0, z = 4
x
y
z
rθ
2
2
4
D dalam koordinat:
a. Cartesius:
{ }2
( , , ) | 0 2,0 4 ,0 4D x y z x y x z= ≤ ≤ ≤ ≤ − ≤ ≤
b. Tabung:
Jawab.
0
x2
+y2
=4
{ }( , , ) | 0 2,0 / 2,0 4D r z r zθ θ π= ≤ ≤ ≤ ≤ ≤ ≤
08/30/18 19
ContohContoh
2. Sketsa D; D bagian bola x2
+y2
+ z2
=4 di oktan I.
x
y
z
rθ
2
2
D dalam koordinat:
a. Cartesius:
b. Bola:
Jawab.
2
ρ
0
22
4 yxz −−=
2
2 2
( , , ) | 0 2,0 4 ,
0 4
x y z x y x
D
z x y
 ≤ ≤ ≤ ≤ − 
=  
≤ ≤ − −  
{ }( , , ) | 0 2,0 / 2,0 / 2D ρ θ φ ρ θ π φ π= ≤ ≤ ≤ ≤ ≤ ≤
08/30/18 20
Penggantian Peubah dalam Integral Lipat TigaPenggantian Peubah dalam Integral Lipat Tiga
( , , ) ( ( , , ), ( , , ), ( , , )) ( , , )
D D
f x y z dx dy dz f m u v w n u v w p u v w J u v w du dv dw=∫∫∫ ∫∫∫
w
z
v
z
u
z
w
y
v
y
u
y
w
x
v
x
u
x
)w,v,u(J
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
=
Jacobian
( )( , , ) , , , ) , ( , ,x m u v w y n u v w z p u v w= = =Misalkan
maka
dimana
08/30/18 21
Koordinat KartesiusKoordinat Kartesius TabungTabung
x = r cos θ
y = r sin θ
z = z
Matriks Jacobiannya:
2 2
cos sin 0
( , , ) sin cos 0 cos sin
0 0 1
x x x
r z r
y y yJ u v w r r r r
r z
z z z
r z
θ θ θ
θ θ θ θθ
θ
∂ ∂ ∂
∂ ∂ ∂ −
∂ ∂ ∂= = = + =
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
( , , ) ( cos , sin , )
D D
f x y z dx dy dz f r r z r dr d dzθ θ θ=∫∫∫ ∫∫∫
08/30/18 22
Koordinat KartesiusKoordinat Kartesius BolaBola
2
sin cos sin sin cos cos
( , , ) sin sin sin cos cos sin sin
cos 0 sin
x x x
y y yJ
z z z
ρ θ φ φ θ ρ φ θ ρ φ θ
ρ θ φ φ θ ρ φ θ ρ φ θ ρ φρ θ φ
φ ρ φ
ρ θ φ
∂ ∂ ∂
∂ ∂ ∂ −
∂ ∂ ∂= = = −
∂ ∂ ∂
−∂ ∂ ∂
∂ ∂ ∂
2
( , , ) ( sin cos , sin sin , cos ) sin
D D
f x y z dx dy dz f d d dρ φ θ ρ φ θ ρ φ ρ φ ρ θ φ=∫∫∫ ∫∫∫
sin cos
sin sin
cos
x
y
z
ρ φ θ
ρ φ θ
ρ φ
=
=
=
Maka matriks Jacobiannya
08/30/18 23
ContohContoh
1. Hitung volume benda pejal yang dibatasi oleh paraboloid z = x2
+ y2
dan z = 4.
Z
x
y
z = 4
Jawab.
Daerah S dalam Koordinat Cartesius adalah:
2 2
2 2
( , , | 2 2, 4 4 ,
4
x y z x x y x
S
x y z
 − ≤ ≤ − − ≤ ≤ − 
=  
+ ≤ ≤  
Dalam koordinat tabung:
Sxy
{ }2
( , , | 0 2,0 2 , 4S r z r r zθ θ π= ≤ ≤ ≤ ≤ ≤ ≤
08/30/18 24
∫ ∫=
2
0
2
0
4
2
π
θ drdzr r
( )∫ −=
2
0
2
0
2
4 drrr
π
θ
0
2
42
4
1
22 





−= rrπ π8=
Jadi volume benda pejalnya adalah 8π
2
2 2 4
0 0
1
S r
V dv r dz d dr
π
θ= =∫∫∫ ∫ ∫ ∫
Sehingga, volume benda pejalnya adalah
08/30/18 25
2. Hitung volume bola pejal x2
+y2
+ z2
=4 di oktan I.
x
y
z
rθ
2
2
D dalam koordinat:
a. Cartesius:
b. Bola:
Jawab.
2
ρ
0
22
4 yxz −−=
2
2 2
( , , ) | 0 2,0 4 ,
0 4
x y z x y x
D
z x y
 ≤ ≤ ≤ ≤ − 
=  
≤ ≤ − −  
{ }( , , ) | 0 2,0 / 2,0 / 2D ρ θ φ ρ θ π φ π= ≤ ≤ ≤ ≤ ≤ ≤
08/30/18 26
/ 2 / 2 2
2
0 0 0
sin d d d
π π
ρ φ ρ φ θ= ∫ ∫ ∫
∫ ∫ 





=
2/
0
2/
0
2
0
3
3
1
sin
π π
θρφ drd
( )∫ −=
2/
0
2/
0
cos
3
8
π π
θφ d
( ) 2/
0
3
8 π
θ= π
3
4
=
Jadi volume benda pejalnya adalah 4π/3
1
S
V dV= ∫∫∫
Sehingga
08/30/18 27
LatihanLatihan
∫∫∫D
2
dVx1. Hitung , dengan D benda pejal yang dibatasi
z =9 – x2
– y2
dan bidang xy.
2. Hitung volume benda pejal yang di oktan I yang dibatasi
bola x2
+ y2
+ z2
= 1 dan x2
+ y2
+ z2
=4.
3. Hitung volume benda pejal yang di batasi di atas oleh
bola r2
+ z2
= 5 dan di bawah r2
=4z.
4. Hitung volume benda pejal yang dibatasi oleh paraboloid
z = x2
+ y2
dan bidang z =4.
5. Hitung volume benda pejal yang di batasi oleh bola
x2
+ y2
+ z2
= 9, di bawah oleh bidang z = 0 dan secara
menyamping oleh tabung x2
+y2
=4.
08/30/18 28
6. Hitung volume benda pejal yang di dalam bola x 2
+ y2
+ z2
= 9, di luar kerucut
22
yxz += dan di atas bidang xy.
( )
2 2 2
2 2 2
3 9 9
3/ 22 2 2
3 9 9
x x z
x x z
x y z dy dz dx
− − −
− − − − − −
+ +∫ ∫ ∫7. Hitung
∫ ∫ ∫
−
+
3
0
9
0
2
0
22
2
x
dxdydzyx8. Hitung
2 22 42 4
2 2 2
0 0 0
1
x yx
dz dy dx
x y z
− −−
+ +∫ ∫ ∫9. Hitung
10. Hitung volume benda pejal yang dibatasi oleh tabung
2 2
1x y+ =
dan 4 ; 0y z z+ = =
1 de 28

Recomendados

Integral Garis por
Integral GarisIntegral Garis
Integral GarisKelinci Coklat
44.6K vistas53 diapositivas
Soal dan pembahasan integral permukaan por
Soal dan pembahasan integral permukaanSoal dan pembahasan integral permukaan
Soal dan pembahasan integral permukaanUniversitas Negeri Padang
25.9K vistas16 diapositivas
Integral Lipat Dua ( Kalkulus 2 ) por
Integral Lipat Dua ( Kalkulus 2 )Integral Lipat Dua ( Kalkulus 2 )
Integral Lipat Dua ( Kalkulus 2 )Kelinci Coklat
93K vistas44 diapositivas
Modul persamaan diferensial 1 por
Modul persamaan diferensial 1Modul persamaan diferensial 1
Modul persamaan diferensial 1Maya Umami
348.8K vistas51 diapositivas
Turunan Fungsi Kompleks por
Turunan Fungsi KompleksTurunan Fungsi Kompleks
Turunan Fungsi KompleksRochimatulLaili
44.6K vistas12 diapositivas
Fungsi Dua Peubah ( Kalkulus 2 ) por
Fungsi Dua Peubah ( Kalkulus 2 )Fungsi Dua Peubah ( Kalkulus 2 )
Fungsi Dua Peubah ( Kalkulus 2 )Kelinci Coklat
90.8K vistas88 diapositivas

Más contenido relacionado

La actualidad más candente

Medan vektor por
Medan vektorMedan vektor
Medan vektorEthelbert Phanias
28.8K vistas49 diapositivas
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak) por
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)Kelinci Coklat
39.2K vistas26 diapositivas
Bilangan kompleks por
Bilangan kompleksBilangan kompleks
Bilangan kompleksPT.surga firdaus
118.3K vistas136 diapositivas
sistem koordinat vektor (kartesian, silindris, bola) por
sistem koordinat vektor (kartesian, silindris, bola)sistem koordinat vektor (kartesian, silindris, bola)
sistem koordinat vektor (kartesian, silindris, bola)Albara I Arizona
73.1K vistas15 diapositivas
Persamaan garis lurus(Geometri Analitik Ruang) por
Persamaan garis lurus(Geometri Analitik Ruang)Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Dyas Arientiyya
190.8K vistas17 diapositivas
Deret Fourier por
Deret FourierDeret Fourier
Deret FourierKelinci Coklat
34.7K vistas41 diapositivas

La actualidad más candente(20)

Fungsi Gamma dan Beta (Kalkulus Peubah Banyak) por Kelinci Coklat
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
Kelinci Coklat39.2K vistas
sistem koordinat vektor (kartesian, silindris, bola) por Albara I Arizona
sistem koordinat vektor (kartesian, silindris, bola)sistem koordinat vektor (kartesian, silindris, bola)
sistem koordinat vektor (kartesian, silindris, bola)
Albara I Arizona73.1K vistas
Persamaan garis lurus(Geometri Analitik Ruang) por Dyas Arientiyya
Persamaan garis lurus(Geometri Analitik Ruang)Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)
Dyas Arientiyya190.8K vistas
Persamaan Diferensial Biasa ( Kalkulus 2 ) por Kelinci Coklat
Persamaan Diferensial Biasa ( Kalkulus 2 )Persamaan Diferensial Biasa ( Kalkulus 2 )
Persamaan Diferensial Biasa ( Kalkulus 2 )
Kelinci Coklat28.3K vistas
Kelompok 3 integrasi numerik fix por liabika
Kelompok 3 integrasi numerik fixKelompok 3 integrasi numerik fix
Kelompok 3 integrasi numerik fix
liabika32K vistas
Transformasi Linear ( Aljabar Linear Elementer ) por Kelinci Coklat
Transformasi Linear ( Aljabar Linear Elementer )Transformasi Linear ( Aljabar Linear Elementer )
Transformasi Linear ( Aljabar Linear Elementer )
Kelinci Coklat75.8K vistas
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa) por Neria Yovita
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)
Neria Yovita37.6K vistas
Analisis Vektor ( Bidang ) por Phe Phe
Analisis Vektor ( Bidang )Analisis Vektor ( Bidang )
Analisis Vektor ( Bidang )
Phe Phe63.2K vistas
Iterasi gauss seidel por Nur Fadzri
Iterasi gauss seidelIterasi gauss seidel
Iterasi gauss seidel
Nur Fadzri32.4K vistas
6 Divergensi dan CURL por Simon Patabang
6 Divergensi dan CURL6 Divergensi dan CURL
6 Divergensi dan CURL
Simon Patabang41.7K vistas
Analisis bab1 bab2 por Charro NieZz
Analisis bab1 bab2Analisis bab1 bab2
Analisis bab1 bab2
Charro NieZz125.1K vistas
Fungsi Vektor ( Kalkulus 2 ) por Kelinci Coklat
Fungsi Vektor ( Kalkulus 2 )Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )
Kelinci Coklat18.3K vistas

Similar a Integral Lipat Tiga

Integral Permukaan (Kalkulus Peubah Banyak) por
Integral Permukaan (Kalkulus Peubah Banyak)Integral Permukaan (Kalkulus Peubah Banyak)
Integral Permukaan (Kalkulus Peubah Banyak)Kelinci Coklat
4.5K vistas21 diapositivas
Kalkulus II stta por
Kalkulus  II sttaKalkulus  II stta
Kalkulus II sttaHari Sumartono
6.1K vistas96 diapositivas
Penerapan Igt Dalam Koordinat Tabung por
Penerapan Igt Dalam Koordinat TabungPenerapan Igt Dalam Koordinat Tabung
Penerapan Igt Dalam Koordinat TabungSubhan Sabar
8.4K vistas44 diapositivas
integrasi por
integrasiintegrasi
integrasiQiu Mil
1.9K vistas28 diapositivas
Penerapan Integral Tentu por
Penerapan Integral TentuPenerapan Integral Tentu
Penerapan Integral TentuRizky Wulansari
16.3K vistas27 diapositivas
Sttm tm 04 modul 2 fungsi dan limit fungsi revisi por
Sttm tm 04 modul 2 fungsi dan limit fungsi revisiSttm tm 04 modul 2 fungsi dan limit fungsi revisi
Sttm tm 04 modul 2 fungsi dan limit fungsi revisiPrayudi MT
78 vistas48 diapositivas

Similar a Integral Lipat Tiga(20)

Integral Permukaan (Kalkulus Peubah Banyak) por Kelinci Coklat
Integral Permukaan (Kalkulus Peubah Banyak)Integral Permukaan (Kalkulus Peubah Banyak)
Integral Permukaan (Kalkulus Peubah Banyak)
Kelinci Coklat4.5K vistas
Penerapan Igt Dalam Koordinat Tabung por Subhan Sabar
Penerapan Igt Dalam Koordinat TabungPenerapan Igt Dalam Koordinat Tabung
Penerapan Igt Dalam Koordinat Tabung
Subhan Sabar8.4K vistas
integrasi por Qiu Mil
integrasiintegrasi
integrasi
Qiu Mil1.9K vistas
Sttm tm 04 modul 2 fungsi dan limit fungsi revisi por Prayudi MT
Sttm tm 04 modul 2 fungsi dan limit fungsi revisiSttm tm 04 modul 2 fungsi dan limit fungsi revisi
Sttm tm 04 modul 2 fungsi dan limit fungsi revisi
Prayudi MT78 vistas
Sttm tm 03 modul 2 fungsi dan limit fungsi revisi por Prayudi MT
Sttm tm 03 modul 2 fungsi dan limit fungsi revisiSttm tm 03 modul 2 fungsi dan limit fungsi revisi
Sttm tm 03 modul 2 fungsi dan limit fungsi revisi
Prayudi MT106 vistas
Kalkulus modul 2 fungsi dan limit fungsi revisi por Prayudi MT
Kalkulus modul 2 fungsi dan limit fungsi revisiKalkulus modul 2 fungsi dan limit fungsi revisi
Kalkulus modul 2 fungsi dan limit fungsi revisi
Prayudi MT129 vistas
Aplikasi integral kal1 por arpdt
Aplikasi integral kal1Aplikasi integral kal1
Aplikasi integral kal1
arpdt1.1K vistas
Aplikasi integral por Dw Alonlyman
Aplikasi integralAplikasi integral
Aplikasi integral
Dw Alonlyman53.2K vistas
kalkulus pert 14Nasibah khumairoh 202144500218.pptx por Maimunah53
kalkulus pert 14Nasibah khumairoh 202144500218.pptxkalkulus pert 14Nasibah khumairoh 202144500218.pptx
kalkulus pert 14Nasibah khumairoh 202144500218.pptx
Maimunah5312 vistas
1 Bilangan Kompleks por Simon Patabang
1 Bilangan Kompleks1 Bilangan Kompleks
1 Bilangan Kompleks
Simon Patabang109.5K vistas
Kalkulus 1-120325042516-phpapp02 por Sepkli Eka
Kalkulus 1-120325042516-phpapp02Kalkulus 1-120325042516-phpapp02
Kalkulus 1-120325042516-phpapp02
Sepkli Eka1.2K vistas
Bilangan kompleks por bagustris
Bilangan kompleksBilangan kompleks
Bilangan kompleks
bagustris3.2K vistas

Más de Kelinci Coklat

Bab 7 integrasi numerik por
Bab 7 integrasi numerikBab 7 integrasi numerik
Bab 7 integrasi numerikKelinci Coklat
29.9K vistas18 diapositivas
Bab 6 turunan numerik por
Bab 6 turunan numerikBab 6 turunan numerik
Bab 6 turunan numerikKelinci Coklat
3K vistas6 diapositivas
Bab 5 interpolasi newton lanjutan por
Bab 5 interpolasi newton lanjutanBab 5 interpolasi newton lanjutan
Bab 5 interpolasi newton lanjutanKelinci Coklat
1K vistas18 diapositivas
Bab 5 interpolasi por
Bab 5 interpolasiBab 5 interpolasi
Bab 5 interpolasiKelinci Coklat
905 vistas14 diapositivas
Bab 4 sistem persamaan linear por
Bab 4 sistem persamaan linearBab 4 sistem persamaan linear
Bab 4 sistem persamaan linearKelinci Coklat
1.6K vistas19 diapositivas
Bab 3 penyelesaian persamaan tak linear por
Bab 3 penyelesaian persamaan tak linearBab 3 penyelesaian persamaan tak linear
Bab 3 penyelesaian persamaan tak linearKelinci Coklat
3.5K vistas26 diapositivas

Más de Kelinci Coklat(20)

Bab 7 integrasi numerik por Kelinci Coklat
Bab 7 integrasi numerikBab 7 integrasi numerik
Bab 7 integrasi numerik
Kelinci Coklat29.9K vistas
Bab 5 interpolasi newton lanjutan por Kelinci Coklat
Bab 5 interpolasi newton lanjutanBab 5 interpolasi newton lanjutan
Bab 5 interpolasi newton lanjutan
Kelinci Coklat1K vistas
Bab 4 sistem persamaan linear por Kelinci Coklat
Bab 4 sistem persamaan linearBab 4 sistem persamaan linear
Bab 4 sistem persamaan linear
Kelinci Coklat1.6K vistas
Bab 3 penyelesaian persamaan tak linear por Kelinci Coklat
Bab 3 penyelesaian persamaan tak linearBab 3 penyelesaian persamaan tak linear
Bab 3 penyelesaian persamaan tak linear
Kelinci Coklat3.5K vistas
Bab 2 perhitungan galat por Kelinci Coklat
Bab 2  perhitungan galatBab 2  perhitungan galat
Bab 2 perhitungan galat
Kelinci Coklat14.1K vistas
Bab 8 persamaan differensial-biasa por Kelinci Coklat
Bab 8 persamaan differensial-biasaBab 8 persamaan differensial-biasa
Bab 8 persamaan differensial-biasa
Kelinci Coklat2.3K vistas
5. Doubly Linked List (Struktur Data) por Kelinci Coklat
5. Doubly Linked List (Struktur Data)5. Doubly Linked List (Struktur Data)
5. Doubly Linked List (Struktur Data)
Kelinci Coklat12.6K vistas
7. Queue (Struktur Data) por Kelinci Coklat
7. Queue (Struktur Data)7. Queue (Struktur Data)
7. Queue (Struktur Data)
Kelinci Coklat7.7K vistas
6. Stack (Struktur Data) por Kelinci Coklat
6. Stack (Struktur Data)6. Stack (Struktur Data)
6. Stack (Struktur Data)
Kelinci Coklat6.3K vistas
8. Multi List (Struktur Data) por Kelinci Coklat
8. Multi List (Struktur Data)8. Multi List (Struktur Data)
8. Multi List (Struktur Data)
Kelinci Coklat3.8K vistas
4.1 Operasi Dasar Singly Linked List 1 (primitive list) por Kelinci Coklat
4.1 Operasi Dasar Singly Linked List  1 (primitive list)4.1 Operasi Dasar Singly Linked List  1 (primitive list)
4.1 Operasi Dasar Singly Linked List 1 (primitive list)
Kelinci Coklat7.7K vistas
3. Pointer dan List Berkait Singly por Kelinci Coklat
3. Pointer dan List Berkait Singly3. Pointer dan List Berkait Singly
3. Pointer dan List Berkait Singly
Kelinci Coklat532 vistas
4.2. Operasi Dasar Singly Linked List 2 (primitive list) por Kelinci Coklat
4.2. Operasi Dasar Singly Linked List  2 (primitive list)4.2. Operasi Dasar Singly Linked List  2 (primitive list)
4.2. Operasi Dasar Singly Linked List 2 (primitive list)
Kelinci Coklat849 vistas
1. Algoritma, Struktur Data dan Pemrograman Terstruktur por Kelinci Coklat
1. Algoritma, Struktur Data dan Pemrograman Terstruktur1. Algoritma, Struktur Data dan Pemrograman Terstruktur
1. Algoritma, Struktur Data dan Pemrograman Terstruktur
Kelinci Coklat3.3K vistas
2. Array of Record (Struktur Data) por Kelinci Coklat
2. Array of Record (Struktur Data)2. Array of Record (Struktur Data)
2. Array of Record (Struktur Data)
Kelinci Coklat10.1K vistas
Anuitas Biasa (Matematika Keuangan) por Kelinci Coklat
Anuitas Biasa (Matematika Keuangan)Anuitas Biasa (Matematika Keuangan)
Anuitas Biasa (Matematika Keuangan)
Kelinci Coklat52.8K vistas
Bunga Majemuk (Matematika Keuangan) por Kelinci Coklat
Bunga Majemuk (Matematika Keuangan)Bunga Majemuk (Matematika Keuangan)
Bunga Majemuk (Matematika Keuangan)
Kelinci Coklat19K vistas

Último

bank.ppt por
bank.pptbank.ppt
bank.pptDelviaAndrini1
17 vistas8 diapositivas
Materi Hijrah Nabi Muhammad ke Madinah Kelas 4 SD Kurikulum Merdeka.pptx por
Materi Hijrah Nabi Muhammad ke Madinah Kelas 4 SD Kurikulum Merdeka.pptxMateri Hijrah Nabi Muhammad ke Madinah Kelas 4 SD Kurikulum Merdeka.pptx
Materi Hijrah Nabi Muhammad ke Madinah Kelas 4 SD Kurikulum Merdeka.pptxahmadmistari
108 vistas12 diapositivas
Permendikbudristek Nomor 30 Tahun 2021.pdf por
Permendikbudristek Nomor 30 Tahun 2021.pdfPermendikbudristek Nomor 30 Tahun 2021.pdf
Permendikbudristek Nomor 30 Tahun 2021.pdfIrawan Setyabudi
33 vistas35 diapositivas
PELAKSANAAN & Link2 MATERI Training _"TOTAL PRODUCTIVE MAINTENANCE (TPM)". por
PELAKSANAAN & Link2 MATERI Training _"TOTAL PRODUCTIVE MAINTENANCE (TPM)".PELAKSANAAN & Link2 MATERI Training _"TOTAL PRODUCTIVE MAINTENANCE (TPM)".
PELAKSANAAN & Link2 MATERI Training _"TOTAL PRODUCTIVE MAINTENANCE (TPM)".Kanaidi ken
14 vistas71 diapositivas
LK 2.1 Eksplorasi Alternatif Solusi .docx por
LK 2.1 Eksplorasi Alternatif Solusi .docxLK 2.1 Eksplorasi Alternatif Solusi .docx
LK 2.1 Eksplorasi Alternatif Solusi .docxrandalesmana
16 vistas3 diapositivas
Menyambut Usia Baligh Kelas 4 SD Kurikulum Merdeka por
Menyambut Usia Baligh Kelas 4 SD Kurikulum Merdeka Menyambut Usia Baligh Kelas 4 SD Kurikulum Merdeka
Menyambut Usia Baligh Kelas 4 SD Kurikulum Merdeka ahmadmistari
59 vistas14 diapositivas

Último(20)

Materi Hijrah Nabi Muhammad ke Madinah Kelas 4 SD Kurikulum Merdeka.pptx por ahmadmistari
Materi Hijrah Nabi Muhammad ke Madinah Kelas 4 SD Kurikulum Merdeka.pptxMateri Hijrah Nabi Muhammad ke Madinah Kelas 4 SD Kurikulum Merdeka.pptx
Materi Hijrah Nabi Muhammad ke Madinah Kelas 4 SD Kurikulum Merdeka.pptx
ahmadmistari108 vistas
Permendikbudristek Nomor 30 Tahun 2021.pdf por Irawan Setyabudi
Permendikbudristek Nomor 30 Tahun 2021.pdfPermendikbudristek Nomor 30 Tahun 2021.pdf
Permendikbudristek Nomor 30 Tahun 2021.pdf
Irawan Setyabudi33 vistas
PELAKSANAAN & Link2 MATERI Training _"TOTAL PRODUCTIVE MAINTENANCE (TPM)". por Kanaidi ken
PELAKSANAAN & Link2 MATERI Training _"TOTAL PRODUCTIVE MAINTENANCE (TPM)".PELAKSANAAN & Link2 MATERI Training _"TOTAL PRODUCTIVE MAINTENANCE (TPM)".
PELAKSANAAN & Link2 MATERI Training _"TOTAL PRODUCTIVE MAINTENANCE (TPM)".
Kanaidi ken14 vistas
LK 2.1 Eksplorasi Alternatif Solusi .docx por randalesmana
LK 2.1 Eksplorasi Alternatif Solusi .docxLK 2.1 Eksplorasi Alternatif Solusi .docx
LK 2.1 Eksplorasi Alternatif Solusi .docx
randalesmana16 vistas
Menyambut Usia Baligh Kelas 4 SD Kurikulum Merdeka por ahmadmistari
Menyambut Usia Baligh Kelas 4 SD Kurikulum Merdeka Menyambut Usia Baligh Kelas 4 SD Kurikulum Merdeka
Menyambut Usia Baligh Kelas 4 SD Kurikulum Merdeka
ahmadmistari59 vistas
Royyan A. Dzakiy - Be an Inspiring Student Leader in The Digital Era [22 Aug ... por razakroy
Royyan A. Dzakiy - Be an Inspiring Student Leader in The Digital Era [22 Aug ...Royyan A. Dzakiy - Be an Inspiring Student Leader in The Digital Era [22 Aug ...
Royyan A. Dzakiy - Be an Inspiring Student Leader in The Digital Era [22 Aug ...
razakroy16 vistas
Bimtek Pencegahan Kekerasan dalam Rumah Tangga.pdf por Irawan Setyabudi
Bimtek Pencegahan Kekerasan dalam Rumah Tangga.pdfBimtek Pencegahan Kekerasan dalam Rumah Tangga.pdf
Bimtek Pencegahan Kekerasan dalam Rumah Tangga.pdf
Irawan Setyabudi27 vistas
Fajar Saputra (E1G022057).pptx por FajarSaputra57
Fajar Saputra (E1G022057).pptxFajar Saputra (E1G022057).pptx
Fajar Saputra (E1G022057).pptx
FajarSaputra5714 vistas
PELAKSANAAN & Link2 MATERI Workshop _"Pembangunan SDM_INDONESIA EMAS 2045". por Kanaidi ken
PELAKSANAAN  & Link2 MATERI Workshop _"Pembangunan SDM_INDONESIA EMAS 2045".PELAKSANAAN  & Link2 MATERI Workshop _"Pembangunan SDM_INDONESIA EMAS 2045".
PELAKSANAAN & Link2 MATERI Workshop _"Pembangunan SDM_INDONESIA EMAS 2045".
Kanaidi ken66 vistas
Motivasi Meningkatkan Diri por KemindoGroup
Motivasi Meningkatkan DiriMotivasi Meningkatkan Diri
Motivasi Meningkatkan Diri
KemindoGroup13 vistas
Modul 6 - Pend. ABK.pptx por AzizahRaiza1
Modul 6 - Pend. ABK.pptxModul 6 - Pend. ABK.pptx
Modul 6 - Pend. ABK.pptx
AzizahRaiza116 vistas
LAPORAN BEST PRACTICE ok.pdf por AdeSuryadi21
LAPORAN BEST PRACTICE ok.pdfLAPORAN BEST PRACTICE ok.pdf
LAPORAN BEST PRACTICE ok.pdf
AdeSuryadi2115 vistas
SISTEM KOMPUTER_DELVIA ANDRINI.pptx por DelviaAndrini1
SISTEM KOMPUTER_DELVIA ANDRINI.pptxSISTEM KOMPUTER_DELVIA ANDRINI.pptx
SISTEM KOMPUTER_DELVIA ANDRINI.pptx
DelviaAndrini116 vistas

Integral Lipat Tiga

  • 1. 2. INTEGRAL LIPAT TIGA KPB 1
  • 2. 08/30/18 2 Permukaan di Ruang (RPermukaan di Ruang (R33 )) Z x y Paraboloida Elips y x z Bidang Ax By Cz D+ + = 2 2 2 2 x y z a b = + Pendahuluan
  • 3. 08/30/18 3 Z x y z x y Paraboloida Hiperbolik Kerucut 2 2 2 2 2 2 0 x y z a b c + − = 2 2 2 2 x y z a b = −
  • 5. 08/30/18 5 Z x y 2 2 2 2 2 2 1 x y z a b c + − = Hiperboloida Berdaun Satu
  • 6. 08/30/18 6 Hiperboloida Berdaun DuaHiperboloida Berdaun Dua Z x y 2 2 2 2 2 2 1 x y z a b c − − =
  • 7. 08/30/18 7 Integral Lipat Tiga pada BalokIntegral Lipat Tiga pada Balok x y z ∆xk ∆yk )z,y,x( kkk B Bk ∆zk 1. Partisi Balok B menjadi n bagian; 1 2, ,..., ,...,k nB B B B 2. Ambil , ,k k k kx y z B∈ 3. Bentuk jumlah Riemann Definisikan ∆ sebagai diagonal ruang terpanjang dari Bk 1 ( , , ) n k k k k k f x y z V = ∆∑
  • 8. 08/30/18 8 0 1 ( , , ) lim ( , , ) n k k k k kB f x y z dV f x y z V ∆ → = = ∆∑∫∫∫ 0 1 lim ( , , ) n k k k k k f x y z V ∆ → = ∆∑ 4. Jika 0,∆ → maka diperoleh limit jumlah Riemann 5. Jika limit ini ada, maka dikatakan fungsi ( , , )w f x y z= terintegralkan secara Riemann pada balok B, ditulis :
  • 9. 9 ( , , ) ( , , ) B B f x y z dV f x y z dx dy dz=∫∫∫ ∫∫∫ V x y z dV dxdydz∆ = ∆ ∆ ∆ → = Sehingga Integral Lipat Tiga dalam koordinat Cartesius ditulis :
  • 10. 08/30/18 10 ContohContoh ∫∫∫B dVyzx2 Hitung dengan B adalah balok dengan ukuran B = {(x,y,z)| 1 ≤ x ≤ 2, 0 ≤ y ≤ 1, 1 ≤ z ≤ 2} Jawab. ∫∫∫B dVyzx2 dzdydxyzx∫∫ ∫= 2 1 1 0 2 1 2 dzdyxyz∫ ∫       = 2 1 1 0 2 1 3 3 1 dzyz∫       = 2 1 1 0 2 2 1 3 7 2 1 2 2 1 6 7       = z 4 7 =
  • 11. 08/30/18 11 Integral Lipat Tiga pada Daerah SembarangIntegral Lipat Tiga pada Daerah Sembarang • Pandang S benda padat yang terlingkupi oleh balok B, dan definisikan nilai f nol untuk luar S (gb. 1) x y z B S ∫∫∫S 2 dVyzxHitung , Jika S benda padat sembarang (gb. 1)
  • 12. 08/30/18 12 Integral Lipat Tiga pada Daerah SembarangIntegral Lipat Tiga pada Daerah Sembarang • Jika S dipandang sebagai himpunan z sederhana (gb.2) (S dibatasi oleh z=ψ1(x,y) dan z=ψ2(x,y), dan proyeksi S pada bidang XOY dipandang sebagai daerah jenis I) maka: ∫ ∫ ∫∫∫∫ = b a x x yx yxS dxdydzzyxfdVzyxf )( )( ),( ),( 2 1 2 1 ),,(),,( φ φ ψ ψx y z S Sxyb a y=φ2(x)y=φ1(x) z=ψ2(x,y) z=ψ1(x,y) (gb. 2)
  • 13. 13 ∫∫∫S dVzyxf ),,( Catatan: ( , , ) 1f x y z = , maka menyatakan volume benda pejal S. Jika
  • 14. 08/30/18 14 ContohContoh ( , , ) S f x y z dV∫∫∫Hitung dengan dan S adalah padat yang dibatasi oleh tabung parabola dan bidang-bidang z = 0, y=x, y=0 y=0 y=x x y z Sxy Sxy = proyeksi S pada XOY (segitiga) Jawab. Dari gambar terlihat bahwa 2 0 Sehingga, 2 S xyz dV∫∫∫ 21 2 2 2 0 0 0 2 x x xyz dz dy dx − = ∫∫ ∫ 22 1 22 2 0 0 0 x x xy z dy dx − = ∫∫ ( , , ) 2f x y z xyz= 21 2 2 z x= − 21 ( , , ) | 0 2,0 ,0 2 2 S x y z x y x z x   = ≤ ≤ ≤ ≤ ≤ ≤ −    21 2 2 z x= −
  • 15. 08/30/18 15 22 2 0 0 1 2 2 x xy x dy dx   = − ÷   ∫∫ 2 2 4 2 00 1 1 4 2 4 2 x x x x y dx   = − + ÷   ∫ 2 3 5 7 0 1 2 8 x x x dx   = − + ÷   ∫ 2 4 6 8 0 1 1 1 2 6 64 x x x= − + 32 4 8 4 3 3 = − + =
  • 16. 08/30/18 16 LatihanLatihan ∫∫∫S dVz1. Hitung , S benda padat di oktan pertama yang dibatasi oleh bidang- z = 0, x=y, y=0 dan tabung x2 + z2 = 1. 2. Sketsa benda pejal S di oktan pertama yang dibatasi tabung y2 + z2 = 1 dan bidang x =1 dan x = 4, tuliskan integral lipatnya, kemudian hitung volumenya. 3. Hitung volume benda pejal yang dibatasi oleh : a. y = x2 , y + z = 4, x = 0, z = 0. b. 1 = z2 +y2 , y = x, x = 0. / 2 0 0 0 sin( ) yz x y z dxdydz π + +∫ ∫∫4. Hitung 5. Ubah urutan integrasi ke 2 22 93 9 0 0 0 ( , , ) y zz f x y z dxdydz − −− ∫ ∫ ∫;dzdydx
  • 17. 08/30/18 17 Integral Lipat Tiga (Koordinat Tabung dan Bola)Integral Lipat Tiga (Koordinat Tabung dan Bola) θ r z P(r,θ,z) x y z θ r z P(ρ,θ,φ) x y z φ ρ Syarat & hubungan dg Cartesius r ≥ 0, 0 ≤ θ ≤ 2 π x = r cos θ y = r sin θ z = z r2 = x2 + y2 Syarat & hubungan dg Cartesius ρ ≥ 0, 0 ≤ θ ≤ 2 π, 0 ≤ φ ≤ π Jika D benda pejal punya sumbu simetri  gunakan Koordinat Tabung Jika D benda pejal yang simetri terhadap satu titik  gunakan Koordinat Bola Koordinat Tabung Koordinat Bola 2 2 2 2 cos ; sin sin cos sin sin sin cos ; x r r x y r z x y z θ ρ φ ρ φ θ θ ρ φ θ ρ φ ρ = = = = = = + + =
  • 18. 08/30/18 18 ContohContoh 1. Sketsa D; D benda pejal di oktan I yang dibatasi oleh tabung x2 +y2 =4 dan bidang z = 0, z = 4 x y z rθ 2 2 4 D dalam koordinat: a. Cartesius: { }2 ( , , ) | 0 2,0 4 ,0 4D x y z x y x z= ≤ ≤ ≤ ≤ − ≤ ≤ b. Tabung: Jawab. 0 x2 +y2 =4 { }( , , ) | 0 2,0 / 2,0 4D r z r zθ θ π= ≤ ≤ ≤ ≤ ≤ ≤
  • 19. 08/30/18 19 ContohContoh 2. Sketsa D; D bagian bola x2 +y2 + z2 =4 di oktan I. x y z rθ 2 2 D dalam koordinat: a. Cartesius: b. Bola: Jawab. 2 ρ 0 22 4 yxz −−= 2 2 2 ( , , ) | 0 2,0 4 , 0 4 x y z x y x D z x y  ≤ ≤ ≤ ≤ −  =   ≤ ≤ − −   { }( , , ) | 0 2,0 / 2,0 / 2D ρ θ φ ρ θ π φ π= ≤ ≤ ≤ ≤ ≤ ≤
  • 20. 08/30/18 20 Penggantian Peubah dalam Integral Lipat TigaPenggantian Peubah dalam Integral Lipat Tiga ( , , ) ( ( , , ), ( , , ), ( , , )) ( , , ) D D f x y z dx dy dz f m u v w n u v w p u v w J u v w du dv dw=∫∫∫ ∫∫∫ w z v z u z w y v y u y w x v x u x )w,v,u(J ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = Jacobian ( )( , , ) , , , ) , ( , ,x m u v w y n u v w z p u v w= = =Misalkan maka dimana
  • 21. 08/30/18 21 Koordinat KartesiusKoordinat Kartesius TabungTabung x = r cos θ y = r sin θ z = z Matriks Jacobiannya: 2 2 cos sin 0 ( , , ) sin cos 0 cos sin 0 0 1 x x x r z r y y yJ u v w r r r r r z z z z r z θ θ θ θ θ θ θθ θ ∂ ∂ ∂ ∂ ∂ ∂ − ∂ ∂ ∂= = = + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( , , ) ( cos , sin , ) D D f x y z dx dy dz f r r z r dr d dzθ θ θ=∫∫∫ ∫∫∫
  • 22. 08/30/18 22 Koordinat KartesiusKoordinat Kartesius BolaBola 2 sin cos sin sin cos cos ( , , ) sin sin sin cos cos sin sin cos 0 sin x x x y y yJ z z z ρ θ φ φ θ ρ φ θ ρ φ θ ρ θ φ φ θ ρ φ θ ρ φ θ ρ φρ θ φ φ ρ φ ρ θ φ ∂ ∂ ∂ ∂ ∂ ∂ − ∂ ∂ ∂= = = − ∂ ∂ ∂ −∂ ∂ ∂ ∂ ∂ ∂ 2 ( , , ) ( sin cos , sin sin , cos ) sin D D f x y z dx dy dz f d d dρ φ θ ρ φ θ ρ φ ρ φ ρ θ φ=∫∫∫ ∫∫∫ sin cos sin sin cos x y z ρ φ θ ρ φ θ ρ φ = = = Maka matriks Jacobiannya
  • 23. 08/30/18 23 ContohContoh 1. Hitung volume benda pejal yang dibatasi oleh paraboloid z = x2 + y2 dan z = 4. Z x y z = 4 Jawab. Daerah S dalam Koordinat Cartesius adalah: 2 2 2 2 ( , , | 2 2, 4 4 , 4 x y z x x y x S x y z  − ≤ ≤ − − ≤ ≤ −  =   + ≤ ≤   Dalam koordinat tabung: Sxy { }2 ( , , | 0 2,0 2 , 4S r z r r zθ θ π= ≤ ≤ ≤ ≤ ≤ ≤
  • 24. 08/30/18 24 ∫ ∫= 2 0 2 0 4 2 π θ drdzr r ( )∫ −= 2 0 2 0 2 4 drrr π θ 0 2 42 4 1 22       −= rrπ π8= Jadi volume benda pejalnya adalah 8π 2 2 2 4 0 0 1 S r V dv r dz d dr π θ= =∫∫∫ ∫ ∫ ∫ Sehingga, volume benda pejalnya adalah
  • 25. 08/30/18 25 2. Hitung volume bola pejal x2 +y2 + z2 =4 di oktan I. x y z rθ 2 2 D dalam koordinat: a. Cartesius: b. Bola: Jawab. 2 ρ 0 22 4 yxz −−= 2 2 2 ( , , ) | 0 2,0 4 , 0 4 x y z x y x D z x y  ≤ ≤ ≤ ≤ −  =   ≤ ≤ − −   { }( , , ) | 0 2,0 / 2,0 / 2D ρ θ φ ρ θ π φ π= ≤ ≤ ≤ ≤ ≤ ≤
  • 26. 08/30/18 26 / 2 / 2 2 2 0 0 0 sin d d d π π ρ φ ρ φ θ= ∫ ∫ ∫ ∫ ∫       = 2/ 0 2/ 0 2 0 3 3 1 sin π π θρφ drd ( )∫ −= 2/ 0 2/ 0 cos 3 8 π π θφ d ( ) 2/ 0 3 8 π θ= π 3 4 = Jadi volume benda pejalnya adalah 4π/3 1 S V dV= ∫∫∫ Sehingga
  • 27. 08/30/18 27 LatihanLatihan ∫∫∫D 2 dVx1. Hitung , dengan D benda pejal yang dibatasi z =9 – x2 – y2 dan bidang xy. 2. Hitung volume benda pejal yang di oktan I yang dibatasi bola x2 + y2 + z2 = 1 dan x2 + y2 + z2 =4. 3. Hitung volume benda pejal yang di batasi di atas oleh bola r2 + z2 = 5 dan di bawah r2 =4z. 4. Hitung volume benda pejal yang dibatasi oleh paraboloid z = x2 + y2 dan bidang z =4. 5. Hitung volume benda pejal yang di batasi oleh bola x2 + y2 + z2 = 9, di bawah oleh bidang z = 0 dan secara menyamping oleh tabung x2 +y2 =4.
  • 28. 08/30/18 28 6. Hitung volume benda pejal yang di dalam bola x 2 + y2 + z2 = 9, di luar kerucut 22 yxz += dan di atas bidang xy. ( ) 2 2 2 2 2 2 3 9 9 3/ 22 2 2 3 9 9 x x z x x z x y z dy dz dx − − − − − − − − − + +∫ ∫ ∫7. Hitung ∫ ∫ ∫ − + 3 0 9 0 2 0 22 2 x dxdydzyx8. Hitung 2 22 42 4 2 2 2 0 0 0 1 x yx dz dy dx x y z − −− + +∫ ∫ ∫9. Hitung 10. Hitung volume benda pejal yang dibatasi oleh tabung 2 2 1x y+ = dan 4 ; 0y z z+ = =