SlideShare a Scribd company logo
1 of 18
Download to read offline
1
Module
Triangle Trigonometry
What this module is about
This module is about law of sines. As you go over this material, you will develop
the skills in deriving the law of sines. Moreover, you are also expected to learn how to
solve different problems involving the law of sines.
What you are expected to learn
This module is designed for you to demonstrate ability to apply the law of sines to
solve problems involving triangles.
How much do you know?
1. Find the measure of B in ABC if m A = 8o
and m C = 97o
.
2. Find the measure of A in ABC if m B = 18o
14’ and m C = 81o
41’.
3. Two of the measures of the angles of ABC are A = 8o
3’ and B = 59o
6’. Which is
the longest side?
4. What equation involving sin 32o
will be used to find side b?
5. Given a = 62.5 cm, m A = 62o
20’ and m C = 42o
10’. Solve for side b.
6. Solve for the perimeter of ABC if c = 25 cm, m A = 35o
14’ and m B = 68o
.
7. Solve ABC if a = 38.12 cm, m A = 46o
32’ and m C = 79o
17’.
8. Solve ABC if b = 67.25 mm, c = 56.92 mm and m B = 65o
16’.
9. From the top of a building 300 m high, the angles of depression of two street
signs are 17.5o
and 33.2o
. If the street signs are due south of the observation point,
find the distance between them.
10. The angles of elevation of the top of a tower are 35o
from point A and 51o
from
another point B which is 35 m from the base of the tower. If the base of the tower
and the points of observation are on the same level, how far are they from each
other?
What you will do
Lesson 1
93o
50’
32o
c 4
b C
2
Oblique Triangles
An oblique triangle is a triangle which does not contain a right angle. It contains
either three acute angles (acute triangle) or two acute angles and one obtuse angle
(obtuse triangle).
Acute triangle Obtuse triangle
If two of the angles of an oblique triangle are known, the third angle can be
computed. Recall that the sum of the interior angles in a triangle is 180o
.
Examples:
Given two of the angles of ABC, solve for the measure of the third angle.
1. A = 30o
, B = 45o
.
A + B + C = 180o
.
30o
+ 45o
+ C = 180o
.
C = 180o
– (30o
+ 45o
)
C = 180o
– 75o
C = 105o
2. B = 69.25o
, C = 114.5o
.
A + B + C = 180o
.
A + 69.25o
+ 114.5o
= 180o
.
A = 180o
– (69.25o
+ 114.5o
)
A = 180o
– 183.75o
A = 3.75o
3. A = 56o
38’, C = 64o
49’.
A + B + C = 180o
.
56o
38’ + B + 64o
49’o
= 180o
.
B = 180o
– (56o
38’ + 64o
49’)
B = 180o
– 121o
27’
B = 58o
33’
Try this out!
Given two of the angles of ABC, solve for the measure of the third angle.
Set A
1. A = 60o
, B = 45o
2. B = 76o
, C = 64o
3. A = 69.25o
, C = 14.5o
3
4. B = 19.15o
, A = 107.05o
5. C = 85o
38’, A = 74o
23’
Set B
1. A = 57o
, B = 118o
2. B = 46o
, C = 69o
3. A = 51.63o
, C = 70.47o
4. B = 37.3o
, A = 77.24o
5. C = 58o
6’, A = 47o
24’
Set C
1. A = 58o
, B = 77o
2. B = 64o
, C = 64o
3. A = 18.82o
, C = 109.3o
4. B = 56.85o
, A = 37.18o
5. C = 27o
34’, A = 72o
43’
Lesson 2
Deriving the Law of Sines;
Solving Oblique Triangles Involving Two Angles and a Side Opposite One of Them
Consider ABC with altitude h.
C
A c B
The area of this triangle is
1
Area ch
2
= (1)
From the right triangle
h
sin A
b
= (2)
Solving h in (2) gives
H = bsin A (3)
Substituting (3) in (1) gives
1
Area c(bsin A)
2
= (4)
Similarly, two other formulas for the area of ABC can be derived, namely:
b h a
4
1
Area a(csin B)
2
= (5)
and
1
Area b(asin C)
2
= (6)
Since (4), (5), and (6) represent the area of one and the same triangle, then
1 1 1
c(bsin A) a(csin B) b(asin C)
2 2 2
= =
or equivalently
sin A sin B sin C
a b c
= = .
This is the Law of Sines which states that “In any triangle ABC, with a, b, and c
as its sides, and A, B and C as its angles,
sin A sin B sin C
a b c
= = .”
Note that this is also equivalent to
a b c
sin A sin B sin C
= = .
The Law of Sines is used to solve different cases of oblique triangles. One case of
oblique triangle that can be solved using the law of sines involves two angles and a
side opposite one of them.
Examples:
Solve each triangle ABC described below.
1. a = 4, A = 32o
, B = 93o
50’
The given parts of the triangle involve two angles A and B, and side a
which is opposite A. The given parts and the unknown parts are shown in the
figure below.
To solve for C:
A + B + C = 180o
32o
+ 93o
50’ + C = 180
C = 180o
– (32o
+ 93o
50’)
C = 180o
– 125o
50’
C = 54o
10’
To solve for b:
a b
sin A sin B
=
asin B
b
sin A
=
4(sin93 50')
b
sin32
°
=
°
93o
50’
32o
c 4
b C
5
4(0.99776)
b
0.52992
=
b = 7.53
To solve for c:
a c
sin A sin C
=
a sin C
c
sin A
=
4(sin54 10')
c
sin32
°
=
°
4(0.81072)
b
0.52992
=
b = 6.12
2. b = 2.3, C = 42.5o
, B = 84o
The given parts of the triangle involve two angles B and C, and side b
which is opposite B. The given parts and the unknown parts are shown in the
figure below.
To solve for A:
A + B + C = 180o
A + 84o
+ 42.5o
= 180o
A = 180o
– (84o
+ 42.5o
)
A = 180o
– 126.5o
A = 53.5o
or 53o
30’
To solve for c:
c b
sin C sin B
=
bsin C
c
sin B
=
2.3(sin 42.5 )
c
sin84
°
=
°
2.3(0.67559)
c
0.99452
=
c = 1.6
To solve for a:
a b
sin A sin B
=
bsin A
a
sin B
=
84o
42.5o
a
2.3 A
c
6
2.3(sin53 30')
a
sin84
°
=
°
2.3(0.80386)
a
0.99452
=
a =1.86
Try this out!
Solve each triangle ABC described below.
Set A
1. a = 12, A = 60o
, B = 45o
2. b = 20, B = 32o
, C = 24o
3. c = 42.5, A= 35.2o
, C = 29o
4. a = 9, A = 42.4o
, C = 37.8o
5. b = 75, B = 30o
45’, C = 32o
30’
Set B
1. a = 10, A = 61o
, B = 49o
2. c = 80, C = 56o
, B = 68o
3. b = 38, B = 47o
, A = 30o
4. c = 8, C = 77.2o
, A = 88o
5. b = 8, B = 67o
15’, A = 33o
5’
Set C
1. A = 65o
50’, B = 14o
, b = 16
2. A = 69o
15’, C = 28o
40’, a = 80
3. B = 47.5o
, A = 80o
, a = 15.1
4. B = 63o
36’, C = 89o
, b = 8
5. C = 57.25o
, A = 33.5o
, c = 23.5
Lesson 3
Solving Oblique Triangles Involving Two Angles and the Included Side
Another case of oblique triangle that can be solved using the law of sines involves
two angles and the included side.
Examples:
1. c = 440, A = 48o
, B = 75o
The given parts of the triangle involve two angles and the included side.
This case can also be solved using the law of sines. The given parts and the
unknown parts are shown in the figure below.
75o
48o
440
b C
a
7
To solve for C:
A + B + C = 180o
48o
+ 75o
+ C = 180
C = 180o
– (48o
+ 75o
)
C = 180o
– 123o
C = 57o
To solve for a:
a c
sin A sin C
=
csin A
a
sin C
=
440(sin 48 )
a
sin57
°
=
°
440(0.74315)
a
0.83867
=
a = 389.87
To solve for b:
b c
sin B sin C
=
csin B
b
sin C
=
440(sin 48 )
b
sin57
°
=
°
440(0.74314)
b
0.96593
=
b = 338.51
2. a = 8.2, B = 38o
26’, C = 75o
19’
The given parts of the triangle involve two angles and the included side.
This case can also be solved using the law of sines. The given parts and the
unknown parts are shown in the figure below.
To solve for A:
A + B + C = 180o
A + 38o
26’ + 75o
19’ = 180
A = 180o
– (38o
26’ + 75o
19’)
C = 180o
– 113o
45’
C = 66o
15’
38o
26’75o
19’
8.2
b c
A
8
To solve for b:
a b
sin A sin B
=
asin B
b
sin A
=
8.2(sin38 26')
b
sin 75 19'
°
=
°
8.2(0.62160)
b
0.96734
=
b = 5.27
To solve for c:
a c
sin A sin C
=
a sin C
c
sin A
=
8.2(sin 66 15')
c
sin75 19'
°
=
°
8.2(0.91531)
c
0.96734
=
c = 7.76
Try this out!
Solve each triangle ABC described below.
Set A
1. a = 12, A = 60o
, B = 45o
2. b = 20, A = 32o
, C = 24o
3. c = 42.5, A = 35.2o
, B = 79o
4. a = 9, A = 42.4o
, B = 37.8o
5. b = 0.751, A = 100o
30’, C = 32o
45’
Set B
1. a = 248, A = 51o
, B = 49o
2. c = 8.5, A = 56o
, B = 68o
3. b = 38, A = 47.2o
, C = 50.5o
4. a = 8, B = 77o
26’, C = 28o
40’
5. c = 1.2, A = 67.3o
, B = 33.9o
Set C
1. A = 65o
50’, B = 14o
, c = 16
2. B = 69.2o
, C = 28.8o
a = 0.8
3. A = 15o
28’, C = 77o
, b = 100
4. a = 1.8, B = 36o
36’, C = 98o
5. c = 23.5, B = 57.25o
, A = 33o
33’
9
Lesson 4
Solving Oblique Triangles Involving Two Sides and an Angle Opposite One of Them
Another case of oblique triangle that can be solved using the law of sines involves
two sides and an angle opposite one of them.
Examples:
1. b = 15, a = 20, A = 80o
25’
The given parts and the unknown parts are shown in the figure below.
To solve for B:
a b
sin A sin B
=
bsin A
sin B
a
=
15(sin80 25')
sin B
20
°
=
15(0.98604)
sin B
20
=
sin B 0.73953=
B = Arcsin (0.73953)
B = 47o
41’29”
To solve for C:
A + B + C = 180o
80o
25’ + 47o
41’ + C = 180
C = 180o
– (80o
25’ + 47o
41’)
C = 180o
– 128o
6’
C = 51o
54’
To solve for c:
a c
sin A sin C
=
a sin C
c
sin A
=
20(sin51 54')
c
sin80 25'
°
=
°
C
80o
25’
15 20
c B
10
20(0.78694)
b
0.98604
=
b = 15.96
2. a = 2.46, c = 5, C = 70.2o
The given parts and the unknown parts are shown in the figure below.
To solve for A:
a c
sin A sin C
=
asin C
sin A
c
=
2.46(sin70.2 )
sin A
5
°
=
2.46(0.94088)
sin A
5
=
sin A = 0.46291
A = Arcsin (0.46291)
A = 27.58o
To solve for B:
A + B + C = 180o
27.58o
+ B + 70.2o
= 180
B = 180o
– (27.58o
+ 70.2o
)
B = 180o
– 97.78o
B = 82.22o
To solve for b:
b c
sin B sin C
=
csin B
b
sin C
=
5(sin82.22 )
b
sin 70.2
°
=
°
5(0.99080)
b
0.94088
=
b = 5.27
Try this out!
Solve each triangle ABC described below.
Set A
70.2o
b 2.46
A 5 B
11
1. a = 12, b = 18, B = 45o
2. b = 20, c = 32, B = 24o
3. a = 2.5, c = 5.2, C = 79o
4. a = 9, b = 14.4, B = 37.8o
5. b = 0.751, c = 1, C = 32o
45’
Set B
1. a = 140, b = 150, B = 49o
2. a = 8.5, c = 5.6, A = 68o
3. a = 47.2, b = 38, A = 50.5o
4. a = 0.8, c = 0.72, C = 28o
40’
5. c = 1.2, b = 6.3, B = 131.5o
Set C
1. A = 65o
50’, a = 15, c = 16
2. B = 95.2o
, b = 2.8, c = 0.8
3. C = 15o
28’, c = 77, b = 100
4. B = 36o
36’, a = 1.8, b = 2.98
5. A = 33o
33’, a = 33.5, b = 57.25
Lesson 5
Solving Problems Involving Oblique Triangles Using The Law of Sines
The following examples show how the law of sines is used to solve word
problems involving oblique triangles.
Examples:
Solve each problem. Show a complete solution.
1. The longer diagonal of a parallelogram is 27 cm. Find the perimeter of the
parallelogram if the angles between the sides and the diagonal are 30o
and
40o
10’.
The perimeter of any parallelogram is twice the sum of the lengths of the
two consecutive sides.
Let x and y be the consecutive sides as shown in the figure. The angle
opposite x is 40o
10’. Hence, the angle θ between x and y is
30o
+ 40o
10’ + θ = 180o
θ = 180o
– (30o
+ 40o
10’)
40o
10’
30o
27 cm y
x
θ
12
θ = 180o
– 70o
10’
θ = 109o
50’
To solve for x:
x 27
sin 40 10' sin109 50'
=
° °
27sin 40 10'
x
sin109 50'
°
=
°
27(0.64501)
x
0.94068
=
x = 18.51 cm
To solve for y:
y 27
sin30 sin109 50'
=
° °
27sin30
y
sin109 50'
°
=
°
27(0.5)
y
0.94068
=
x = 14.35 cm
The perimeter P of the parallelogram is
P = 2(x + y)
P = 2(18.51 + 14.35)
P = 2(32.86)
P = 65.72 cm
2. From the top of a 300 m building, the angle of depression of two traffic aides
on the street are 17o
30’ and 33o
12’, respectively. If they are due south of the
observation point, find the distance between them.
Let B1B2 be the distance between the two traffic aides.
First, find θ1:
θ1 = 33o
12’ – 17o
30’
θ1 = 15o
42’
Then, find OB1:
1
300
cos33 12'
OB
° =
1
300
OB
cos33 12'
=
°
17o
30’
300 m
P B1 B2
33o
12’
θ1
O
17o
30’33o
12’
13
1
300
OB
0.83676
=
OB1 = 358.53
To solve for B1B2:
1 2 1B B OB
sin15 42' sin17 30'
=
° °
1
1 2
OB (sin15 42')
B B
sin17 30'
°
=
°
1 2
358.53(0.27060)
B B
0.30071
=
B1B2 = 322.63 m
Try this out!
Solve each problem. Show a complete solution.
Set A
1. The shorter diagonal of a parallelogram is 5.2 m. Find the perimeter of the
parallelogram if the angles between the sides and the diagonal are 40o
and
30o
10’.
2. From the top of a 150 m lighthouse, the angles of depression of two boats on
the shore are 20o
and 50o
, respectively. If they are due north of the observation
point, find the distance between them.
3. Two policemen 122 meters apart are looking at a woman on top of a tower.
One cop is on the east side and the other on the west side. If the angles of
elevation of the woman from the cops are 42.5o
and 64.8o
, how far is she from
the two cops?
4. The angle between Rizal St. and Bonifacio St. is 27o
and intersect at P. Jose
and Andres leaves P at the same time. Jose jogs at 10 kph on Rizal St. If he is
3 km from Andres after 30 minutes, how fast is Andres running along
Bonifacio St?
5. The angle of elevation of the top of a tower is 40o
30’ from point X and 55o
from another point Y. Point Y is 30 meters from the base of the tower. If the
base of the tower and points X and Y are on the same level, find the
approximate distance from X and Y.
Set B
1. The vertex of an isosceles triangle is 40o
. If the base of the triangle is 18 cm.
find its perimeter.
2. An 80-meter building is on top of a hill. From the top of the building, a nipa
hut is sighted with an angle of depression of 54o
. From the foot of the building
the same nipa hut was sighted with an angle of depression of 45o
. Find the
height of the hill and the horizontal distance from the building to the nipa hut.
3. The lengths of the diagonals of a parallelogram are 32.5 cm and 45.2 cm. The
angle between the longer side and the longer diagonal is 35o
. Find the length
of the longer side of the parallelogram.
14
4. A diagonal of a parallelogram is 35 cm long and forms angles of 34o
and 43o
with the sides. Find the perimeter and area of the parallelogram.
5. A wooden post is inclined 85o
with the ground. It was broken by a strong
typhoon. If a broken part makes an angle of 25o
with the ground, and the
topmost part of the post is 40 ft from its base, how long was the post?
Set C
1. The measures of two of the angles of a triangle are 50o
and 55o
. If its longest
side measures 17 cm, find the perimeter of the triangle.
2. Bryan’s (B) and Carl’s (C) houses are along the riverbank. On the opposite
side is Angel’s (A) house which is 275 m away from Carl’s. The angles CAB
and ACB are measured and are found to be 125o
and 49o
, respectively. Find
the distance between Angel’s and Bryan’s houses.
3. A park is in the shape of an obtuse triangle. One angle is 45o
and the opposite
side is 280-m long and the other angle is 40o
. Find the perimeter of the park.
4. Three circles are arranged as shown in the figure. Their centers are joined to
form a triangle. Find angle θ.
5. Two forces are acting on each other at point A at an angle 50o
. One force has a
magnitude of 60 lbs. If the resultant force is 75 lbs find the magnitude of the
second force.
Let’s summarize
1. An oblique triangle is a triangle which does not contain a right angle. It contains
either three acute angles (acute triangle) or two acute angles and one obtuse angle
(obtuse triangle).
2. If two of the angles of an oblique triangle are known, the third angle can be
computed. The sum of the interior angles in a triangle is 180o
.
3. In any triangle ABC, with a, b, and c as its sides, and A, B and C as its angles,
sin A sin B sin C
a b c
= = .
This is also equivalent to
r = 1.5
r = 3
r = 2.5θ
30o
15
a b c
sin A sin B sin C
= = .
4. The Law of Sines is used to solve different cases of oblique triangles. This law is
used to solve oblique triangles that involve
a. two angles and a side opposite one of them.
b. two angles and the included side
c. two sides and the angle opposite one of them
What have you learned?
1. Find the measure of B in ABC if m A = 8o
and m C = 97o
.
2. Find the measure of A in ABC if m B = 18o
14’ and m C = 81o
41’.
3. The measures of the side of ABC are c = 83 cm and b = 59 cm and a = 45 cm.
Which is the largest angle?
4. What equation that involves sin 70.2o
will be used to find angle A?
5. Given a = 62.5 cm, m A = 112o
20’ and m C = 42o
10’. Solve for side b.
6. Solve for the perimeter of ABC if c = 25 cm, m A = 35o
14’ and m B = 68o
.
7. Solve ABC if b = 38.12 cm, m B = 46o
32’ and m A = 79o
17’.
8. Solve ABC if b = 67.25 mm, c = 56.92 mm and m B = 65o
16’.
9. From the top of a building 300 m high, the angles of depression of two street
signs are 17.5o
and 33.2o
. If the street signs are due south of the observation point,
find the distance between them.
10. A park is in the shape of an acute triangle. One angle is 55o
and the opposite side
is 300-m long and the other angle is 60o
. Find the perimeter of the park.
Answer Key
How much do you know?
1. 75o
2. 80o
5’
3. c
4.
b 4
sin93 50' sin32
=
° °
5. 68.32 cm
6. 14.82 cm
70.2o
b 2.46
A 5 B
16
7. B = 54o
11’, b = 42.59 cm, c = 51.61 cm
8. C = 50o
14’30”, A = 64o
29’30”, a = 66.83 mm
9. 155.45 m
10. 26.73 m
Lesson 1
Set A
1. 75o
2. 40o
3. 96.25o
4. 53.8o
5. 19o
59’
Set B
1. 5o
2. 65o
3. 57.9o
4. 65.46o
5. 74o
30’
Set C
1. 45 o
2. 52 o
3. 51.88o
4. 85.97o
5. 79o
43’
Lesson 2
Set A
1. C = 75o
, b = 9.80, c = 13.38
2. A = 124o
, a = 31.29, c = 15.35
3. B = 115.8o
, a = 50.53, b = 78.92
4. B = 99.8o
, b = 13.15, c = 8.18
5. A = 116o
45’, a = 130.99, c = 78.81
Set B
1. C = 70o
, b = 8.63, c = 10.74
2. A = 56o
, a = 80, b = 89.47
3. C = 103o
, a = 25.98, c = 50.63
4. B = 14.8o
, a = 8.20, b = 2.10
5. C = 79o
40’, a = 4.74, c = 8.53
Set C
1. C = 100o
10’, a = 60.34, c = 65.10
2. B = 82o
5’, b = 84.73, c = 41.04
3. C = 52.5o
, b = 11.30, c = 12.16
17
4. A = 27o
24’, a = 4.11, c = 8.93
5. B = 89.25o
, a = 15.42, b = 27.94
Lesson 3
Set A
1. C = 75 o
, b = 9.80, c = 13.38
2. B = 123 o
, a = 12.64, c = 9.70
3. C = 65.8 o
, a = 26.84, b = 45.74
4. C = 99.8 o
, b = 8.18, c = 13.15
5. B = 46o
45’, a = 1.014, c = 0.558
Set B
1. C = 80o
, b = 240.84, c = 314.27
2. C = 56o
, a = 8.50, b = 9.51
3. B = 82.3o
, a = 28.14, c = 29.59
4. A = 73o
54’, b = 8.13, c = 3.99
5. C = 79o
33’, a = 1.13, b = 0.68
Set C
1. C = 100o
, a = 14.83, b = 14.83
2. A = 82o
, b = 0.76, c = 0.39
3. B = 87o
32’, a = 26.69, c = 97.53
4. A = 45o
24’, b = 1.51, c = 2.50
5. C = 89o
12’, a = 13.00, b = 19.77
Lesson 4
Set A
1. A = 28o
7’32”, C = 106o
52’28”, c = 10.83
2. A = 115o
23’48”, C = 40o
36’12”, a = 44.42
3. A = 28o
9’36”, B = 72o
50’24”, b = 5.06
4. A = 22o
31’56”, C = 119o
40’4”, c = 20.41
5. A = 123o
16’45”, B = 23o
58’15”, a = 1.55
Set B
1. A = 44o
46’51”, C = 86o
13’9”, c = 198.32
2. B = 74o
20’56”, C = 37o
39’4”, b = 8.83
3. B = 38o
24’20”, C = 91o
5’40”, c = 61.16
4. A = 32o
12’34”, B = 119o
7’26”, b = 1.31
5. A = 40.3o
, C = 8.2, a = 5.44
Set C
1. B = 37o
27’57”, C = 76o
42’3”, b = 10.00
2. A = 71.21o
, C = 16.59o
, a = 0.76
3. A = 144o
16’12”, B = 20o
15’48”, a = 168.61
4. A = 21o
6’31”, C = 122o
17’29”, c = 4.23
5. B = 70o
49’4”, C = 75o
37’56”, c = 58.72
18
Lesson 5
Set A
1. The perimeter is 12.66 m.
2. The distance between them is approximately 286.26 m.
3. The distances of the woman from the two policemen are approximately 86.33 m
and 115.62 m.
4. Andres ran approximately at the rate of 3.21 kph.
5. The distance between X and Y is approximately 20.16 m.
Set B
1. The perimeter of the isosceles triangle is approximately 70.62 cm.
2. The horizontal distance of the building to the nipa hut is 212.55 m.
3. The longer side is 28.31 cm.
4. The perimeter of the parallelogram is 89.18 cm and its area is 1,962.21 sq.cm.
5. The wooden post is 60.40 ft long.
Set C
1. The perimeter is 44.90 cm.
2. The distance between Angel’s and Bryan’s houses is 1,985.54 m.
3. The perimeter of the park is 929 m.
4. The angle θ is 115o
46’ 12”
5. The second force is approximately 97.83 lbs.
How much have you learned?
1. 75o
2. 80o
5’
3. Angle C
4.
sin A sin 70.2
2.46 5
°
=
5. 29.20 cm
6. 63.63 cm
7. C = 54o
11’, a = 51.61 cm, c = 42.59 cm
8. C = 50o
14’30”, A = 64o
29’30”, a = 66.83 mm
9. The distance between the signs is 493.03 m.
10. The perimeter is 949.09 m

More Related Content

What's hot

437056180-Equivalences-of-the-statement-and-its-contrapositive-convers-ppt [R...
437056180-Equivalences-of-the-statement-and-its-contrapositive-convers-ppt [R...437056180-Equivalences-of-the-statement-and-its-contrapositive-convers-ppt [R...
437056180-Equivalences-of-the-statement-and-its-contrapositive-convers-ppt [R...
JenilynEspejo1
 
Final Grade 7 Summative Test (Q3) (1).docx
Final Grade 7 Summative Test (Q3) (1).docxFinal Grade 7 Summative Test (Q3) (1).docx
Final Grade 7 Summative Test (Q3) (1).docx
alonajane1
 
7.2 simplifying radicals
7.2 simplifying radicals7.2 simplifying radicals
7.2 simplifying radicals
hisema01
 
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...
AngelaCamillePaynant
 
Right Triangle Similarity
Right Triangle SimilarityRight Triangle Similarity
Right Triangle Similarity
Fidelfo Moral
 
Module 1 geometry of shape and size
Module 1 geometry of shape and sizeModule 1 geometry of shape and size
Module 1 geometry of shape and size
dionesioable
 
Writing Equations of a Line
Writing Equations of a LineWriting Equations of a Line
Writing Equations of a Line
swartzje
 

What's hot (20)

GEOMETRY: POINTS, LINES. PLANES
GEOMETRY: POINTS, LINES. PLANESGEOMETRY: POINTS, LINES. PLANES
GEOMETRY: POINTS, LINES. PLANES
 
Mathematics specialization 11
Mathematics specialization 11Mathematics specialization 11
Mathematics specialization 11
 
Secondary Parts of a Triangle
Secondary Parts of a TriangleSecondary Parts of a Triangle
Secondary Parts of a Triangle
 
Pythagorean theorem
Pythagorean theoremPythagorean theorem
Pythagorean theorem
 
437056180-Equivalences-of-the-statement-and-its-contrapositive-convers-ppt [R...
437056180-Equivalences-of-the-statement-and-its-contrapositive-convers-ppt [R...437056180-Equivalences-of-the-statement-and-its-contrapositive-convers-ppt [R...
437056180-Equivalences-of-the-statement-and-its-contrapositive-convers-ppt [R...
 
Porcentajes.pdf
Porcentajes.pdfPorcentajes.pdf
Porcentajes.pdf
 
Final Grade 7 Summative Test (Q3) (1).docx
Final Grade 7 Summative Test (Q3) (1).docxFinal Grade 7 Summative Test (Q3) (1).docx
Final Grade 7 Summative Test (Q3) (1).docx
 
DLL in Math 7 Week 3.docx
DLL in Math 7 Week 3.docxDLL in Math 7 Week 3.docx
DLL in Math 7 Week 3.docx
 
7.2 simplifying radicals
7.2 simplifying radicals7.2 simplifying radicals
7.2 simplifying radicals
 
Regular Polygons
Regular PolygonsRegular Polygons
Regular Polygons
 
2.5.6 Perpendicular and Angle Bisectors
2.5.6 Perpendicular and Angle Bisectors2.5.6 Perpendicular and Angle Bisectors
2.5.6 Perpendicular and Angle Bisectors
 
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...
 
Nature of the roots of a quadratic equation
Nature of  the roots of a quadratic equationNature of  the roots of a quadratic equation
Nature of the roots of a quadratic equation
 
Division Properties of Exponents
Division Properties of ExponentsDivision Properties of Exponents
Division Properties of Exponents
 
Lp (similar polygons)
Lp (similar polygons)Lp (similar polygons)
Lp (similar polygons)
 
Right Triangle Similarity
Right Triangle SimilarityRight Triangle Similarity
Right Triangle Similarity
 
Module 1 geometry of shape and size
Module 1 geometry of shape and sizeModule 1 geometry of shape and size
Module 1 geometry of shape and size
 
PERMUTATION-COMBINATION.pdf
PERMUTATION-COMBINATION.pdfPERMUTATION-COMBINATION.pdf
PERMUTATION-COMBINATION.pdf
 
Inverse variation
Inverse variationInverse variation
Inverse variation
 
Writing Equations of a Line
Writing Equations of a LineWriting Equations of a Line
Writing Equations of a Line
 

Viewers also liked

MATH I CURRICULUM GUIDE (SEC)
MATH I  CURRICULUM GUIDE  (SEC)MATH I  CURRICULUM GUIDE  (SEC)
MATH I CURRICULUM GUIDE (SEC)
Krystle Retulla
 
Module 3 lesson 17 solving inequality equations
Module 3 lesson 17 solving inequality equationsModule 3 lesson 17 solving inequality equations
Module 3 lesson 17 solving inequality equations
Erik Tjersland
 
Law of sine and cosines
Law of sine and cosinesLaw of sine and cosines
Law of sine and cosines
itutor
 

Viewers also liked (20)

Module 2 triangle trigonometry
Module 2   triangle trigonometryModule 2   triangle trigonometry
Module 2 triangle trigonometry
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
Mathematics 9 Quadratic Equations and Inequalities
Mathematics 9 Quadratic Equations and InequalitiesMathematics 9 Quadratic Equations and Inequalities
Mathematics 9 Quadratic Equations and Inequalities
 
MATH I CURRICULUM GUIDE (SEC)
MATH I  CURRICULUM GUIDE  (SEC)MATH I  CURRICULUM GUIDE  (SEC)
MATH I CURRICULUM GUIDE (SEC)
 
Linear inequalities in two variables
Linear inequalities in two variablesLinear inequalities in two variables
Linear inequalities in two variables
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Law of Sines ppt
Law of Sines pptLaw of Sines ppt
Law of Sines ppt
 
Oblique Triangle
Oblique TriangleOblique Triangle
Oblique Triangle
 
6 1 2 law of sines and cosines
6 1 2 law of sines and cosines6 1 2 law of sines and cosines
6 1 2 law of sines and cosines
 
Module 1 triangle trigonometry
Module 1  triangle trigonometryModule 1  triangle trigonometry
Module 1 triangle trigonometry
 
Module 3 lesson 17 solving inequality equations
Module 3 lesson 17 solving inequality equationsModule 3 lesson 17 solving inequality equations
Module 3 lesson 17 solving inequality equations
 
Law of sine and cosines
Law of sine and cosinesLaw of sine and cosines
Law of sine and cosines
 
Math12 lesson9
Math12 lesson9Math12 lesson9
Math12 lesson9
 
Module 4 Grade 9 Mathematics (RADICALS)
Module 4 Grade 9 Mathematics (RADICALS)Module 4 Grade 9 Mathematics (RADICALS)
Module 4 Grade 9 Mathematics (RADICALS)
 
Mga Gawain sa Ekonomiks 10: Aralin 1.6 - Produksiyon
Mga Gawain sa Ekonomiks 10: Aralin 1.6 - ProduksiyonMga Gawain sa Ekonomiks 10: Aralin 1.6 - Produksiyon
Mga Gawain sa Ekonomiks 10: Aralin 1.6 - Produksiyon
 
Modyul 16 pambanasang kaunlaran
Modyul 16   pambanasang kaunlaranModyul 16   pambanasang kaunlaran
Modyul 16 pambanasang kaunlaran
 
Modyul 12 sektor ng agrikultuta, industriya at pangangalak
Modyul 12   sektor ng agrikultuta, industriya at pangangalakModyul 12   sektor ng agrikultuta, industriya at pangangalak
Modyul 12 sektor ng agrikultuta, industriya at pangangalak
 
K to 12 - Grade 8 Math Learners Module Quarter 2
K to 12 - Grade  8 Math Learners Module Quarter 2K to 12 - Grade  8 Math Learners Module Quarter 2
K to 12 - Grade 8 Math Learners Module Quarter 2
 
Grade 9 Mathematics Module 7 Triangle Trigonometry
 Grade 9 Mathematics Module 7 Triangle Trigonometry Grade 9 Mathematics Module 7 Triangle Trigonometry
Grade 9 Mathematics Module 7 Triangle Trigonometry
 
MATH GRADE 10 LEARNER'S MODULE
MATH GRADE 10 LEARNER'S MODULEMATH GRADE 10 LEARNER'S MODULE
MATH GRADE 10 LEARNER'S MODULE
 

Similar to Module triangle trigonometry

Assignment # 5
Assignment # 5Assignment # 5
Assignment # 5
Aya Chavez
 
Trigonometric Problems
Trigonometric ProblemsTrigonometric Problems
Trigonometric Problems
aluahp
 
Enamen de triángulos rectángulos
Enamen de  triángulos rectángulosEnamen de  triángulos rectángulos
Enamen de triángulos rectángulos
beatrizjyj2011
 
Lecture 18 section 7.1 & 7.3 laws of sin & cos
Lecture 18   section 7.1 & 7.3 laws of sin & cosLecture 18   section 7.1 & 7.3 laws of sin & cos
Lecture 18 section 7.1 & 7.3 laws of sin & cos
njit-ronbrown
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
Sanpraju
 
Law of cosines
Law of cosinesLaw of cosines
Law of cosines
Rval14
 
Test answer sheet for learners
Test answer sheet for learnersTest answer sheet for learners
Test answer sheet for learners
KAubreyM
 
C2 st lecture 8 pythagoras and trigonometry handout
C2 st lecture 8   pythagoras and trigonometry handoutC2 st lecture 8   pythagoras and trigonometry handout
C2 st lecture 8 pythagoras and trigonometry handout
fatima d
 

Similar to Module triangle trigonometry (20)

Assignment # 5
Assignment # 5Assignment # 5
Assignment # 5
 
Trigonometric Problems
Trigonometric ProblemsTrigonometric Problems
Trigonometric Problems
 
Enamen de triángulos rectángulos
Enamen de  triángulos rectángulosEnamen de  triángulos rectángulos
Enamen de triángulos rectángulos
 
14 right angle trigonometry
14 right angle trigonometry14 right angle trigonometry
14 right angle trigonometry
 
Oblique triangles made by: MR. ROLAND M. LEOPAR
Oblique triangles made by: MR. ROLAND M. LEOPAROblique triangles made by: MR. ROLAND M. LEOPAR
Oblique triangles made by: MR. ROLAND M. LEOPAR
 
Lecture 18 section 7.1 & 7.3 laws of sin & cos
Lecture 18   section 7.1 & 7.3 laws of sin & cosLecture 18   section 7.1 & 7.3 laws of sin & cos
Lecture 18 section 7.1 & 7.3 laws of sin & cos
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
The sine and cosine rule
The sine and cosine ruleThe sine and cosine rule
The sine and cosine rule
 
Sine rule
Sine ruleSine rule
Sine rule
 
Matematicas1.pptx convertido
Matematicas1.pptx convertidoMatematicas1.pptx convertido
Matematicas1.pptx convertido
 
Law of cosines
Law of cosinesLaw of cosines
Law of cosines
 
Trigo the sine and cosine rule
Trigo the sine and cosine ruleTrigo the sine and cosine rule
Trigo the sine and cosine rule
 
Test answer sheet for learners
Test answer sheet for learnersTest answer sheet for learners
Test answer sheet for learners
 
Law of Sines
Law of SinesLaw of Sines
Law of Sines
 
C2 st lecture 8 pythagoras and trigonometry handout
C2 st lecture 8   pythagoras and trigonometry handoutC2 st lecture 8   pythagoras and trigonometry handout
C2 st lecture 8 pythagoras and trigonometry handout
 
Hprec10 1
Hprec10 1Hprec10 1
Hprec10 1
 
Module 4 geometry of shape and size
Module 4  geometry of shape and sizeModule 4  geometry of shape and size
Module 4 geometry of shape and size
 
GEN ED MATH 2 PNU[1].pptx
GEN ED MATH 2 PNU[1].pptxGEN ED MATH 2 PNU[1].pptx
GEN ED MATH 2 PNU[1].pptx
 
Basic technical mathematics with calculus 10th edition washington solutions m...
Basic technical mathematics with calculus 10th edition washington solutions m...Basic technical mathematics with calculus 10th edition washington solutions m...
Basic technical mathematics with calculus 10th edition washington solutions m...
 

More from dionesioable

Results based performance management system (rpms) for dep ed
Results   based performance management system (rpms) for dep edResults   based performance management system (rpms) for dep ed
Results based performance management system (rpms) for dep ed
dionesioable
 
1 1a modyul final ok
1 1a modyul final ok1 1a modyul final ok
1 1a modyul final ok
dionesioable
 
1 1c modyul final ok
1 1c modyul final ok1 1c modyul final ok
1 1c modyul final ok
dionesioable
 
1 1b modyul final ok
1 1b modyul final ok1 1b modyul final ok
1 1b modyul final ok
dionesioable
 
Biology m16 diversity of plants
Biology m16 diversity of plantsBiology m16 diversity of plants
Biology m16 diversity of plants
dionesioable
 
Biology m1 nature of biology
Biology m1 nature of biologyBiology m1 nature of biology
Biology m1 nature of biology
dionesioable
 

More from dionesioable (20)

Squad drill
Squad drillSquad drill
Squad drill
 
Dril
DrilDril
Dril
 
Modyul 01 hegrapiya ng daigdig
Modyul 01   hegrapiya ng daigdigModyul 01   hegrapiya ng daigdig
Modyul 01 hegrapiya ng daigdig
 
Innovation presentation
Innovation presentationInnovation presentation
Innovation presentation
 
Results based performance management system (rpms) for dep ed
Results   based performance management system (rpms) for dep edResults   based performance management system (rpms) for dep ed
Results based performance management system (rpms) for dep ed
 
Unit 1, mod 3 Sulyap ng Buhay Panlipunan sa Sinaunang Panahon
Unit 1, mod 3 Sulyap ng Buhay Panlipunan sa Sinaunang PanahonUnit 1, mod 3 Sulyap ng Buhay Panlipunan sa Sinaunang Panahon
Unit 1, mod 3 Sulyap ng Buhay Panlipunan sa Sinaunang Panahon
 
Unit 1, mod 4 Pagtatag ng kolonyang Espanyol at mga patakarang kolonyal
Unit 1, mod 4 Pagtatag ng kolonyang Espanyol at mga patakarang kolonyalUnit 1, mod 4 Pagtatag ng kolonyang Espanyol at mga patakarang kolonyal
Unit 1, mod 4 Pagtatag ng kolonyang Espanyol at mga patakarang kolonyal
 
Unit 1, mod 2 Ang bangang Manunggul at mga sinaunang paniniwala
Unit 1, mod 2 Ang bangang Manunggul at mga sinaunang paniniwalaUnit 1, mod 2 Ang bangang Manunggul at mga sinaunang paniniwala
Unit 1, mod 2 Ang bangang Manunggul at mga sinaunang paniniwala
 
1 1a modyul final ok
1 1a modyul final ok1 1a modyul final ok
1 1a modyul final ok
 
1 1c modyul final ok
1 1c modyul final ok1 1c modyul final ok
1 1c modyul final ok
 
1 1b modyul final ok
1 1b modyul final ok1 1b modyul final ok
1 1b modyul final ok
 
Deped Sch calendar 2014 -15
Deped Sch calendar 2014 -15Deped Sch calendar 2014 -15
Deped Sch calendar 2014 -15
 
Biology m13 human reproductive system
Biology m13 human reproductive systemBiology m13 human reproductive system
Biology m13 human reproductive system
 
Biology m8 integumentary & excretory systems
Biology m8 integumentary & excretory systemsBiology m8 integumentary & excretory systems
Biology m8 integumentary & excretory systems
 
Biology m6 the levels of biological organization
Biology m6 the levels of biological organizationBiology m6 the levels of biological organization
Biology m6 the levels of biological organization
 
Biology m3 movement of matls thru the cell membrane
Biology m3 movement of matls thru the cell membraneBiology m3 movement of matls thru the cell membrane
Biology m3 movement of matls thru the cell membrane
 
Biology m1 nature of biology
Biology m1 nature of biologyBiology m1 nature of biology
Biology m1 nature of biology
 
Biology m18 animals with backbones
Biology m18 animals with backbonesBiology m18 animals with backbones
Biology m18 animals with backbones
 
Biology m16 diversity of plants
Biology m16 diversity of plantsBiology m16 diversity of plants
Biology m16 diversity of plants
 
Biology m1 nature of biology
Biology m1 nature of biologyBiology m1 nature of biology
Biology m1 nature of biology
 

Recently uploaded

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Recently uploaded (20)

Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 

Module triangle trigonometry

  • 1. 1 Module Triangle Trigonometry What this module is about This module is about law of sines. As you go over this material, you will develop the skills in deriving the law of sines. Moreover, you are also expected to learn how to solve different problems involving the law of sines. What you are expected to learn This module is designed for you to demonstrate ability to apply the law of sines to solve problems involving triangles. How much do you know? 1. Find the measure of B in ABC if m A = 8o and m C = 97o . 2. Find the measure of A in ABC if m B = 18o 14’ and m C = 81o 41’. 3. Two of the measures of the angles of ABC are A = 8o 3’ and B = 59o 6’. Which is the longest side? 4. What equation involving sin 32o will be used to find side b? 5. Given a = 62.5 cm, m A = 62o 20’ and m C = 42o 10’. Solve for side b. 6. Solve for the perimeter of ABC if c = 25 cm, m A = 35o 14’ and m B = 68o . 7. Solve ABC if a = 38.12 cm, m A = 46o 32’ and m C = 79o 17’. 8. Solve ABC if b = 67.25 mm, c = 56.92 mm and m B = 65o 16’. 9. From the top of a building 300 m high, the angles of depression of two street signs are 17.5o and 33.2o . If the street signs are due south of the observation point, find the distance between them. 10. The angles of elevation of the top of a tower are 35o from point A and 51o from another point B which is 35 m from the base of the tower. If the base of the tower and the points of observation are on the same level, how far are they from each other? What you will do Lesson 1 93o 50’ 32o c 4 b C
  • 2. 2 Oblique Triangles An oblique triangle is a triangle which does not contain a right angle. It contains either three acute angles (acute triangle) or two acute angles and one obtuse angle (obtuse triangle). Acute triangle Obtuse triangle If two of the angles of an oblique triangle are known, the third angle can be computed. Recall that the sum of the interior angles in a triangle is 180o . Examples: Given two of the angles of ABC, solve for the measure of the third angle. 1. A = 30o , B = 45o . A + B + C = 180o . 30o + 45o + C = 180o . C = 180o – (30o + 45o ) C = 180o – 75o C = 105o 2. B = 69.25o , C = 114.5o . A + B + C = 180o . A + 69.25o + 114.5o = 180o . A = 180o – (69.25o + 114.5o ) A = 180o – 183.75o A = 3.75o 3. A = 56o 38’, C = 64o 49’. A + B + C = 180o . 56o 38’ + B + 64o 49’o = 180o . B = 180o – (56o 38’ + 64o 49’) B = 180o – 121o 27’ B = 58o 33’ Try this out! Given two of the angles of ABC, solve for the measure of the third angle. Set A 1. A = 60o , B = 45o 2. B = 76o , C = 64o 3. A = 69.25o , C = 14.5o
  • 3. 3 4. B = 19.15o , A = 107.05o 5. C = 85o 38’, A = 74o 23’ Set B 1. A = 57o , B = 118o 2. B = 46o , C = 69o 3. A = 51.63o , C = 70.47o 4. B = 37.3o , A = 77.24o 5. C = 58o 6’, A = 47o 24’ Set C 1. A = 58o , B = 77o 2. B = 64o , C = 64o 3. A = 18.82o , C = 109.3o 4. B = 56.85o , A = 37.18o 5. C = 27o 34’, A = 72o 43’ Lesson 2 Deriving the Law of Sines; Solving Oblique Triangles Involving Two Angles and a Side Opposite One of Them Consider ABC with altitude h. C A c B The area of this triangle is 1 Area ch 2 = (1) From the right triangle h sin A b = (2) Solving h in (2) gives H = bsin A (3) Substituting (3) in (1) gives 1 Area c(bsin A) 2 = (4) Similarly, two other formulas for the area of ABC can be derived, namely: b h a
  • 4. 4 1 Area a(csin B) 2 = (5) and 1 Area b(asin C) 2 = (6) Since (4), (5), and (6) represent the area of one and the same triangle, then 1 1 1 c(bsin A) a(csin B) b(asin C) 2 2 2 = = or equivalently sin A sin B sin C a b c = = . This is the Law of Sines which states that “In any triangle ABC, with a, b, and c as its sides, and A, B and C as its angles, sin A sin B sin C a b c = = .” Note that this is also equivalent to a b c sin A sin B sin C = = . The Law of Sines is used to solve different cases of oblique triangles. One case of oblique triangle that can be solved using the law of sines involves two angles and a side opposite one of them. Examples: Solve each triangle ABC described below. 1. a = 4, A = 32o , B = 93o 50’ The given parts of the triangle involve two angles A and B, and side a which is opposite A. The given parts and the unknown parts are shown in the figure below. To solve for C: A + B + C = 180o 32o + 93o 50’ + C = 180 C = 180o – (32o + 93o 50’) C = 180o – 125o 50’ C = 54o 10’ To solve for b: a b sin A sin B = asin B b sin A = 4(sin93 50') b sin32 ° = ° 93o 50’ 32o c 4 b C
  • 5. 5 4(0.99776) b 0.52992 = b = 7.53 To solve for c: a c sin A sin C = a sin C c sin A = 4(sin54 10') c sin32 ° = ° 4(0.81072) b 0.52992 = b = 6.12 2. b = 2.3, C = 42.5o , B = 84o The given parts of the triangle involve two angles B and C, and side b which is opposite B. The given parts and the unknown parts are shown in the figure below. To solve for A: A + B + C = 180o A + 84o + 42.5o = 180o A = 180o – (84o + 42.5o ) A = 180o – 126.5o A = 53.5o or 53o 30’ To solve for c: c b sin C sin B = bsin C c sin B = 2.3(sin 42.5 ) c sin84 ° = ° 2.3(0.67559) c 0.99452 = c = 1.6 To solve for a: a b sin A sin B = bsin A a sin B = 84o 42.5o a 2.3 A c
  • 6. 6 2.3(sin53 30') a sin84 ° = ° 2.3(0.80386) a 0.99452 = a =1.86 Try this out! Solve each triangle ABC described below. Set A 1. a = 12, A = 60o , B = 45o 2. b = 20, B = 32o , C = 24o 3. c = 42.5, A= 35.2o , C = 29o 4. a = 9, A = 42.4o , C = 37.8o 5. b = 75, B = 30o 45’, C = 32o 30’ Set B 1. a = 10, A = 61o , B = 49o 2. c = 80, C = 56o , B = 68o 3. b = 38, B = 47o , A = 30o 4. c = 8, C = 77.2o , A = 88o 5. b = 8, B = 67o 15’, A = 33o 5’ Set C 1. A = 65o 50’, B = 14o , b = 16 2. A = 69o 15’, C = 28o 40’, a = 80 3. B = 47.5o , A = 80o , a = 15.1 4. B = 63o 36’, C = 89o , b = 8 5. C = 57.25o , A = 33.5o , c = 23.5 Lesson 3 Solving Oblique Triangles Involving Two Angles and the Included Side Another case of oblique triangle that can be solved using the law of sines involves two angles and the included side. Examples: 1. c = 440, A = 48o , B = 75o The given parts of the triangle involve two angles and the included side. This case can also be solved using the law of sines. The given parts and the unknown parts are shown in the figure below. 75o 48o 440 b C a
  • 7. 7 To solve for C: A + B + C = 180o 48o + 75o + C = 180 C = 180o – (48o + 75o ) C = 180o – 123o C = 57o To solve for a: a c sin A sin C = csin A a sin C = 440(sin 48 ) a sin57 ° = ° 440(0.74315) a 0.83867 = a = 389.87 To solve for b: b c sin B sin C = csin B b sin C = 440(sin 48 ) b sin57 ° = ° 440(0.74314) b 0.96593 = b = 338.51 2. a = 8.2, B = 38o 26’, C = 75o 19’ The given parts of the triangle involve two angles and the included side. This case can also be solved using the law of sines. The given parts and the unknown parts are shown in the figure below. To solve for A: A + B + C = 180o A + 38o 26’ + 75o 19’ = 180 A = 180o – (38o 26’ + 75o 19’) C = 180o – 113o 45’ C = 66o 15’ 38o 26’75o 19’ 8.2 b c A
  • 8. 8 To solve for b: a b sin A sin B = asin B b sin A = 8.2(sin38 26') b sin 75 19' ° = ° 8.2(0.62160) b 0.96734 = b = 5.27 To solve for c: a c sin A sin C = a sin C c sin A = 8.2(sin 66 15') c sin75 19' ° = ° 8.2(0.91531) c 0.96734 = c = 7.76 Try this out! Solve each triangle ABC described below. Set A 1. a = 12, A = 60o , B = 45o 2. b = 20, A = 32o , C = 24o 3. c = 42.5, A = 35.2o , B = 79o 4. a = 9, A = 42.4o , B = 37.8o 5. b = 0.751, A = 100o 30’, C = 32o 45’ Set B 1. a = 248, A = 51o , B = 49o 2. c = 8.5, A = 56o , B = 68o 3. b = 38, A = 47.2o , C = 50.5o 4. a = 8, B = 77o 26’, C = 28o 40’ 5. c = 1.2, A = 67.3o , B = 33.9o Set C 1. A = 65o 50’, B = 14o , c = 16 2. B = 69.2o , C = 28.8o a = 0.8 3. A = 15o 28’, C = 77o , b = 100 4. a = 1.8, B = 36o 36’, C = 98o 5. c = 23.5, B = 57.25o , A = 33o 33’
  • 9. 9 Lesson 4 Solving Oblique Triangles Involving Two Sides and an Angle Opposite One of Them Another case of oblique triangle that can be solved using the law of sines involves two sides and an angle opposite one of them. Examples: 1. b = 15, a = 20, A = 80o 25’ The given parts and the unknown parts are shown in the figure below. To solve for B: a b sin A sin B = bsin A sin B a = 15(sin80 25') sin B 20 ° = 15(0.98604) sin B 20 = sin B 0.73953= B = Arcsin (0.73953) B = 47o 41’29” To solve for C: A + B + C = 180o 80o 25’ + 47o 41’ + C = 180 C = 180o – (80o 25’ + 47o 41’) C = 180o – 128o 6’ C = 51o 54’ To solve for c: a c sin A sin C = a sin C c sin A = 20(sin51 54') c sin80 25' ° = ° C 80o 25’ 15 20 c B
  • 10. 10 20(0.78694) b 0.98604 = b = 15.96 2. a = 2.46, c = 5, C = 70.2o The given parts and the unknown parts are shown in the figure below. To solve for A: a c sin A sin C = asin C sin A c = 2.46(sin70.2 ) sin A 5 ° = 2.46(0.94088) sin A 5 = sin A = 0.46291 A = Arcsin (0.46291) A = 27.58o To solve for B: A + B + C = 180o 27.58o + B + 70.2o = 180 B = 180o – (27.58o + 70.2o ) B = 180o – 97.78o B = 82.22o To solve for b: b c sin B sin C = csin B b sin C = 5(sin82.22 ) b sin 70.2 ° = ° 5(0.99080) b 0.94088 = b = 5.27 Try this out! Solve each triangle ABC described below. Set A 70.2o b 2.46 A 5 B
  • 11. 11 1. a = 12, b = 18, B = 45o 2. b = 20, c = 32, B = 24o 3. a = 2.5, c = 5.2, C = 79o 4. a = 9, b = 14.4, B = 37.8o 5. b = 0.751, c = 1, C = 32o 45’ Set B 1. a = 140, b = 150, B = 49o 2. a = 8.5, c = 5.6, A = 68o 3. a = 47.2, b = 38, A = 50.5o 4. a = 0.8, c = 0.72, C = 28o 40’ 5. c = 1.2, b = 6.3, B = 131.5o Set C 1. A = 65o 50’, a = 15, c = 16 2. B = 95.2o , b = 2.8, c = 0.8 3. C = 15o 28’, c = 77, b = 100 4. B = 36o 36’, a = 1.8, b = 2.98 5. A = 33o 33’, a = 33.5, b = 57.25 Lesson 5 Solving Problems Involving Oblique Triangles Using The Law of Sines The following examples show how the law of sines is used to solve word problems involving oblique triangles. Examples: Solve each problem. Show a complete solution. 1. The longer diagonal of a parallelogram is 27 cm. Find the perimeter of the parallelogram if the angles between the sides and the diagonal are 30o and 40o 10’. The perimeter of any parallelogram is twice the sum of the lengths of the two consecutive sides. Let x and y be the consecutive sides as shown in the figure. The angle opposite x is 40o 10’. Hence, the angle θ between x and y is 30o + 40o 10’ + θ = 180o θ = 180o – (30o + 40o 10’) 40o 10’ 30o 27 cm y x θ
  • 12. 12 θ = 180o – 70o 10’ θ = 109o 50’ To solve for x: x 27 sin 40 10' sin109 50' = ° ° 27sin 40 10' x sin109 50' ° = ° 27(0.64501) x 0.94068 = x = 18.51 cm To solve for y: y 27 sin30 sin109 50' = ° ° 27sin30 y sin109 50' ° = ° 27(0.5) y 0.94068 = x = 14.35 cm The perimeter P of the parallelogram is P = 2(x + y) P = 2(18.51 + 14.35) P = 2(32.86) P = 65.72 cm 2. From the top of a 300 m building, the angle of depression of two traffic aides on the street are 17o 30’ and 33o 12’, respectively. If they are due south of the observation point, find the distance between them. Let B1B2 be the distance between the two traffic aides. First, find θ1: θ1 = 33o 12’ – 17o 30’ θ1 = 15o 42’ Then, find OB1: 1 300 cos33 12' OB ° = 1 300 OB cos33 12' = ° 17o 30’ 300 m P B1 B2 33o 12’ θ1 O 17o 30’33o 12’
  • 13. 13 1 300 OB 0.83676 = OB1 = 358.53 To solve for B1B2: 1 2 1B B OB sin15 42' sin17 30' = ° ° 1 1 2 OB (sin15 42') B B sin17 30' ° = ° 1 2 358.53(0.27060) B B 0.30071 = B1B2 = 322.63 m Try this out! Solve each problem. Show a complete solution. Set A 1. The shorter diagonal of a parallelogram is 5.2 m. Find the perimeter of the parallelogram if the angles between the sides and the diagonal are 40o and 30o 10’. 2. From the top of a 150 m lighthouse, the angles of depression of two boats on the shore are 20o and 50o , respectively. If they are due north of the observation point, find the distance between them. 3. Two policemen 122 meters apart are looking at a woman on top of a tower. One cop is on the east side and the other on the west side. If the angles of elevation of the woman from the cops are 42.5o and 64.8o , how far is she from the two cops? 4. The angle between Rizal St. and Bonifacio St. is 27o and intersect at P. Jose and Andres leaves P at the same time. Jose jogs at 10 kph on Rizal St. If he is 3 km from Andres after 30 minutes, how fast is Andres running along Bonifacio St? 5. The angle of elevation of the top of a tower is 40o 30’ from point X and 55o from another point Y. Point Y is 30 meters from the base of the tower. If the base of the tower and points X and Y are on the same level, find the approximate distance from X and Y. Set B 1. The vertex of an isosceles triangle is 40o . If the base of the triangle is 18 cm. find its perimeter. 2. An 80-meter building is on top of a hill. From the top of the building, a nipa hut is sighted with an angle of depression of 54o . From the foot of the building the same nipa hut was sighted with an angle of depression of 45o . Find the height of the hill and the horizontal distance from the building to the nipa hut. 3. The lengths of the diagonals of a parallelogram are 32.5 cm and 45.2 cm. The angle between the longer side and the longer diagonal is 35o . Find the length of the longer side of the parallelogram.
  • 14. 14 4. A diagonal of a parallelogram is 35 cm long and forms angles of 34o and 43o with the sides. Find the perimeter and area of the parallelogram. 5. A wooden post is inclined 85o with the ground. It was broken by a strong typhoon. If a broken part makes an angle of 25o with the ground, and the topmost part of the post is 40 ft from its base, how long was the post? Set C 1. The measures of two of the angles of a triangle are 50o and 55o . If its longest side measures 17 cm, find the perimeter of the triangle. 2. Bryan’s (B) and Carl’s (C) houses are along the riverbank. On the opposite side is Angel’s (A) house which is 275 m away from Carl’s. The angles CAB and ACB are measured and are found to be 125o and 49o , respectively. Find the distance between Angel’s and Bryan’s houses. 3. A park is in the shape of an obtuse triangle. One angle is 45o and the opposite side is 280-m long and the other angle is 40o . Find the perimeter of the park. 4. Three circles are arranged as shown in the figure. Their centers are joined to form a triangle. Find angle θ. 5. Two forces are acting on each other at point A at an angle 50o . One force has a magnitude of 60 lbs. If the resultant force is 75 lbs find the magnitude of the second force. Let’s summarize 1. An oblique triangle is a triangle which does not contain a right angle. It contains either three acute angles (acute triangle) or two acute angles and one obtuse angle (obtuse triangle). 2. If two of the angles of an oblique triangle are known, the third angle can be computed. The sum of the interior angles in a triangle is 180o . 3. In any triangle ABC, with a, b, and c as its sides, and A, B and C as its angles, sin A sin B sin C a b c = = . This is also equivalent to r = 1.5 r = 3 r = 2.5θ 30o
  • 15. 15 a b c sin A sin B sin C = = . 4. The Law of Sines is used to solve different cases of oblique triangles. This law is used to solve oblique triangles that involve a. two angles and a side opposite one of them. b. two angles and the included side c. two sides and the angle opposite one of them What have you learned? 1. Find the measure of B in ABC if m A = 8o and m C = 97o . 2. Find the measure of A in ABC if m B = 18o 14’ and m C = 81o 41’. 3. The measures of the side of ABC are c = 83 cm and b = 59 cm and a = 45 cm. Which is the largest angle? 4. What equation that involves sin 70.2o will be used to find angle A? 5. Given a = 62.5 cm, m A = 112o 20’ and m C = 42o 10’. Solve for side b. 6. Solve for the perimeter of ABC if c = 25 cm, m A = 35o 14’ and m B = 68o . 7. Solve ABC if b = 38.12 cm, m B = 46o 32’ and m A = 79o 17’. 8. Solve ABC if b = 67.25 mm, c = 56.92 mm and m B = 65o 16’. 9. From the top of a building 300 m high, the angles of depression of two street signs are 17.5o and 33.2o . If the street signs are due south of the observation point, find the distance between them. 10. A park is in the shape of an acute triangle. One angle is 55o and the opposite side is 300-m long and the other angle is 60o . Find the perimeter of the park. Answer Key How much do you know? 1. 75o 2. 80o 5’ 3. c 4. b 4 sin93 50' sin32 = ° ° 5. 68.32 cm 6. 14.82 cm 70.2o b 2.46 A 5 B
  • 16. 16 7. B = 54o 11’, b = 42.59 cm, c = 51.61 cm 8. C = 50o 14’30”, A = 64o 29’30”, a = 66.83 mm 9. 155.45 m 10. 26.73 m Lesson 1 Set A 1. 75o 2. 40o 3. 96.25o 4. 53.8o 5. 19o 59’ Set B 1. 5o 2. 65o 3. 57.9o 4. 65.46o 5. 74o 30’ Set C 1. 45 o 2. 52 o 3. 51.88o 4. 85.97o 5. 79o 43’ Lesson 2 Set A 1. C = 75o , b = 9.80, c = 13.38 2. A = 124o , a = 31.29, c = 15.35 3. B = 115.8o , a = 50.53, b = 78.92 4. B = 99.8o , b = 13.15, c = 8.18 5. A = 116o 45’, a = 130.99, c = 78.81 Set B 1. C = 70o , b = 8.63, c = 10.74 2. A = 56o , a = 80, b = 89.47 3. C = 103o , a = 25.98, c = 50.63 4. B = 14.8o , a = 8.20, b = 2.10 5. C = 79o 40’, a = 4.74, c = 8.53 Set C 1. C = 100o 10’, a = 60.34, c = 65.10 2. B = 82o 5’, b = 84.73, c = 41.04 3. C = 52.5o , b = 11.30, c = 12.16
  • 17. 17 4. A = 27o 24’, a = 4.11, c = 8.93 5. B = 89.25o , a = 15.42, b = 27.94 Lesson 3 Set A 1. C = 75 o , b = 9.80, c = 13.38 2. B = 123 o , a = 12.64, c = 9.70 3. C = 65.8 o , a = 26.84, b = 45.74 4. C = 99.8 o , b = 8.18, c = 13.15 5. B = 46o 45’, a = 1.014, c = 0.558 Set B 1. C = 80o , b = 240.84, c = 314.27 2. C = 56o , a = 8.50, b = 9.51 3. B = 82.3o , a = 28.14, c = 29.59 4. A = 73o 54’, b = 8.13, c = 3.99 5. C = 79o 33’, a = 1.13, b = 0.68 Set C 1. C = 100o , a = 14.83, b = 14.83 2. A = 82o , b = 0.76, c = 0.39 3. B = 87o 32’, a = 26.69, c = 97.53 4. A = 45o 24’, b = 1.51, c = 2.50 5. C = 89o 12’, a = 13.00, b = 19.77 Lesson 4 Set A 1. A = 28o 7’32”, C = 106o 52’28”, c = 10.83 2. A = 115o 23’48”, C = 40o 36’12”, a = 44.42 3. A = 28o 9’36”, B = 72o 50’24”, b = 5.06 4. A = 22o 31’56”, C = 119o 40’4”, c = 20.41 5. A = 123o 16’45”, B = 23o 58’15”, a = 1.55 Set B 1. A = 44o 46’51”, C = 86o 13’9”, c = 198.32 2. B = 74o 20’56”, C = 37o 39’4”, b = 8.83 3. B = 38o 24’20”, C = 91o 5’40”, c = 61.16 4. A = 32o 12’34”, B = 119o 7’26”, b = 1.31 5. A = 40.3o , C = 8.2, a = 5.44 Set C 1. B = 37o 27’57”, C = 76o 42’3”, b = 10.00 2. A = 71.21o , C = 16.59o , a = 0.76 3. A = 144o 16’12”, B = 20o 15’48”, a = 168.61 4. A = 21o 6’31”, C = 122o 17’29”, c = 4.23 5. B = 70o 49’4”, C = 75o 37’56”, c = 58.72
  • 18. 18 Lesson 5 Set A 1. The perimeter is 12.66 m. 2. The distance between them is approximately 286.26 m. 3. The distances of the woman from the two policemen are approximately 86.33 m and 115.62 m. 4. Andres ran approximately at the rate of 3.21 kph. 5. The distance between X and Y is approximately 20.16 m. Set B 1. The perimeter of the isosceles triangle is approximately 70.62 cm. 2. The horizontal distance of the building to the nipa hut is 212.55 m. 3. The longer side is 28.31 cm. 4. The perimeter of the parallelogram is 89.18 cm and its area is 1,962.21 sq.cm. 5. The wooden post is 60.40 ft long. Set C 1. The perimeter is 44.90 cm. 2. The distance between Angel’s and Bryan’s houses is 1,985.54 m. 3. The perimeter of the park is 929 m. 4. The angle θ is 115o 46’ 12” 5. The second force is approximately 97.83 lbs. How much have you learned? 1. 75o 2. 80o 5’ 3. Angle C 4. sin A sin 70.2 2.46 5 ° = 5. 29.20 cm 6. 63.63 cm 7. C = 54o 11’, a = 51.61 cm, c = 42.59 cm 8. C = 50o 14’30”, A = 64o 29’30”, a = 66.83 mm 9. The distance between the signs is 493.03 m. 10. The perimeter is 949.09 m