SlideShare una empresa de Scribd logo
1 de 11
2014 
“ECUACIONES 
DIFERENCIALES.” 
DONALDO SANCHEZ ZAMARRON 
MATEMATICAS AVANZADAS I 
28/11/2014
ECUACIONES DIFERENCIALES. 
2 
• Conceptos Básicos: 
Es una expresión que involucra a una función desconocida y sus derivadas por 
ejemplo: 
Y + y´ = 0 
• Clasificación de las ecuaciones Diferenciales: 
Ecuación Diferencial Ordinaria. 
Ecuación Diferencial Parcial. 
• Orden de una Ecuación Diferencial 
El orden de la derivada máximo que aparece en la ecuación: 
Y´ significa derivada de Y. 
Y¨ significa segunda derivada.
• Solución de una ecuación diferencial: 
La solución de una ecuación diferencial en una función desconocida “y” y la 
variable independiente “x” definida en un intervalo y es una función y que 
satisface la ecuación diferencial para todos los valores de x en el intervalo dado. 
Y¨+ 4y = 0 
Enseguida se muestra un ejemplo de una solución de una ecuación diferencial 
junto con su comprobación. 
3 
Solución: 
Y= sen2x + cos2x 
Y´ = 2cos2x – 2sen2x 
Y¨= 2 (-sen2x)(2) – 2 (cos2x)(2) 
Y¨= - 4sen2x – 4cos2x 
Comprobación y¨+4y = 0 
- 4sen2x – 4cos2x+ 4 (sen2x+cos2x) = 0 
- -4sen2x – 4cos2x + 4sen2x + 4cos2x = 0 
• Y¨ + 4y = 0 
Y= 5sen2x + 3cos2x 
Y´= 5(cos2x)(2) + 3(-sen2x) (2) 
Y´= 10(cos2x) – 6sen2x 
Y¨= - 20sen2x – 12cos2x 
Comprobación: Y¨ + 4y = 0 
y= - 20sen2x – 12cos2x + 4 (5sen2x + 3cos2x) 
Y= -20sen2x – 12cos2x + 20sen2x + 12cos2x = 0 
Estas dos soluciones se llaman soluciones particulares, pero lo que generalmente 
se obtiene es la solución general: 
Y = C1 sen2x + C2 cos2x
Ahora se muestran algunos métodos para resolver ecuaciones diferenciales. 
4 
• Y = e2x 
Solución: y¨ + y´- 6y = 0 
Y´= 2 e2x 
Y¨ = 4 e2x 
Comprobación: 
4 e2x + 2 e2x - 6(e2x) = 0 
6 – 6 = 0 
• Y = e-2x + e3x
5 
• Solución: y¨ - y´ - 6y = 0 
Y´= -2 e-2x + 3e3x 
Y¨ = 4 e-2x + 9 e3x 
Comprobación: 
-4 e-2x + 9 e3x – (- 2 e-2x + 3 e3x )- 6(e-2x + e3x ) 
6 e-2x + 6 e3x - 6 e-2x - 6 e3x = 0 
• Y = x2 + ex + e-2x 
Solución: y¨ + y´- 2y = 2(1+ x - x2 ) 
Y´= 2x + ex + (-2e-2x ) 
Y¨ = 2 + ex + 4e-2x 
Comprobación: 
2 + ex + 4e-2x + 2x + ex + (-2e-2x ) – 2 (x2 + ex + e-2x ) 
2(1+ x - x2 ) = 2(1+ x - x2 ) 2 x2 - 2 ex - 2 e-2x 
• Y = C1 e2x + C2 (xe2x) 
Solución: y¨ - 4y´ + 4y = 0 
Y´= 2 C1 e2x + 2 C2 xe2x + C2e2x 
Y¨= 4 C1 e2x + 4 C2 xe2x + 2 C2e2x + 2C2e2x 
Comprobación : 
4 C1 e2x + 4 C2 xe2x + 2 C2e2x + 2C2e2x - 4(2 C1 e2x + 2 C2 xe2x + C2e2x ) + 
4 (C1 e2x + C2 (xe2x)) = 0 
4 C1 e2x - 8 C1 e2x + 4 C1 e2x + 4 C2 xe2x + 4 C2 xe2x 
- 8 C2 xe2x - 4 C2e2x - 4 C2e2x = 0
“ECUACIONES DIFERENCIALES POR VARIABLES 
SEPARADAS.” 
6
“ECUACIONES DIFERENCIALES EXACTAS.” 
7 
Si es una ecuación diferencial 
exacta porque: 
=
8
9
10
11

Más contenido relacionado

La actualidad más candente

3 ecuaciones diferenciales_orden_superior (1)
3 ecuaciones diferenciales_orden_superior (1)3 ecuaciones diferenciales_orden_superior (1)
3 ecuaciones diferenciales_orden_superior (1)Jesus Burgos Matos
 
Solución de Ecuaciones Cuadráticas aplicando Formula General
Solución de Ecuaciones Cuadráticas aplicando Formula GeneralSolución de Ecuaciones Cuadráticas aplicando Formula General
Solución de Ecuaciones Cuadráticas aplicando Formula GeneralPaola Corona
 
Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano Diego Salazar
 
Conjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesConjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesDiego Salazar
 
EDO Lineal con Coeficientes Constantes
EDO Lineal con Coeficientes ConstantesEDO Lineal con Coeficientes Constantes
EDO Lineal con Coeficientes ConstantesDiego Salazar
 
Ecuaciones Diferenciales[1]
Ecuaciones Diferenciales[1]Ecuaciones Diferenciales[1]
Ecuaciones Diferenciales[1]Eduardo
 
Ecuaciones exponenciales con sol
Ecuaciones exponenciales con solEcuaciones exponenciales con sol
Ecuaciones exponenciales con solklorofila
 
Clase 6 ecuaciones diferenciales 2017 1
Clase 6 ecuaciones diferenciales 2017 1Clase 6 ecuaciones diferenciales 2017 1
Clase 6 ecuaciones diferenciales 2017 1rau pac
 
Semana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferencialesSemana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferencialesnidia maldonado
 
Matematicas 1
Matematicas 1Matematicas 1
Matematicas 1kebni
 
Matemática ii ecuaciones diferenciales
Matemática ii   ecuaciones diferenciales Matemática ii   ecuaciones diferenciales
Matemática ii ecuaciones diferenciales Joe Arroyo Suárez
 

La actualidad más candente (18)

3 ecuaciones diferenciales_orden_superior (1)
3 ecuaciones diferenciales_orden_superior (1)3 ecuaciones diferenciales_orden_superior (1)
3 ecuaciones diferenciales_orden_superior (1)
 
Solución de Ecuaciones Cuadráticas aplicando Formula General
Solución de Ecuaciones Cuadráticas aplicando Formula GeneralSolución de Ecuaciones Cuadráticas aplicando Formula General
Solución de Ecuaciones Cuadráticas aplicando Formula General
 
INECUACIONES
INECUACIONESINECUACIONES
INECUACIONES
 
Mate4 guia3
Mate4 guia3Mate4 guia3
Mate4 guia3
 
Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano
 
Conjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesConjunto Fundamental de Soluciones
Conjunto Fundamental de Soluciones
 
Variacion de parametros
Variacion de parametrosVariacion de parametros
Variacion de parametros
 
EDO Lineal con Coeficientes Constantes
EDO Lineal con Coeficientes ConstantesEDO Lineal con Coeficientes Constantes
EDO Lineal con Coeficientes Constantes
 
Examen 2
Examen 2Examen 2
Examen 2
 
Ecuaciones Diferenciales[1]
Ecuaciones Diferenciales[1]Ecuaciones Diferenciales[1]
Ecuaciones Diferenciales[1]
 
Ecuaciones exponenciales con sol
Ecuaciones exponenciales con solEcuaciones exponenciales con sol
Ecuaciones exponenciales con sol
 
Clase 6 ecuaciones diferenciales 2017 1
Clase 6 ecuaciones diferenciales 2017 1Clase 6 ecuaciones diferenciales 2017 1
Clase 6 ecuaciones diferenciales 2017 1
 
Semana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferencialesSemana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferenciales
 
Matematicas 1
Matematicas 1Matematicas 1
Matematicas 1
 
Ecudif semana-1
Ecudif semana-1Ecudif semana-1
Ecudif semana-1
 
Ecudif semana-2
Ecudif semana-2Ecudif semana-2
Ecudif semana-2
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Matemática ii ecuaciones diferenciales
Matemática ii   ecuaciones diferenciales Matemática ii   ecuaciones diferenciales
Matemática ii ecuaciones diferenciales
 

Destacado (8)

Teoria de limites
Teoria de limitesTeoria de limites
Teoria de limites
 
Tema 5 Los Cambios Químicos Física y Química 2º ESO
Tema 5 Los Cambios Químicos Física y Química 2º ESOTema 5 Los Cambios Químicos Física y Química 2º ESO
Tema 5 Los Cambios Químicos Física y Química 2º ESO
 
Velocidad de Reaccion
Velocidad de ReaccionVelocidad de Reaccion
Velocidad de Reaccion
 
Estequiometria
EstequiometriaEstequiometria
Estequiometria
 
REACCIONES QUÍMICAS 4º ESO
REACCIONES QUÍMICAS 4º ESOREACCIONES QUÍMICAS 4º ESO
REACCIONES QUÍMICAS 4º ESO
 
Reacciones Químicas
Reacciones QuímicasReacciones Químicas
Reacciones Químicas
 
PRINCIPIOS FUNDAMENTALES DE ESTEQUIOMETRIA
PRINCIPIOS FUNDAMENTALES DE ESTEQUIOMETRIAPRINCIPIOS FUNDAMENTALES DE ESTEQUIOMETRIA
PRINCIPIOS FUNDAMENTALES DE ESTEQUIOMETRIA
 
QUÍMICA II DE BACHILLERATO
QUÍMICA II DE BACHILLERATOQUÍMICA II DE BACHILLERATO
QUÍMICA II DE BACHILLERATO
 

Similar a Ecuaciones diferenciales (20)

Alee1
Alee1Alee1
Alee1
 
Ec. dif.
Ec. dif.Ec. dif.
Ec. dif.
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Diapos mate
Diapos mateDiapos mate
Diapos mate
 
Examen 2
Examen 2Examen 2
Examen 2
 
Calculo IV
Calculo IVCalculo IV
Calculo IV
 
Calculo 4
Calculo 4Calculo 4
Calculo 4
 
Matematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirezMatematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirez
 
Guia 2
Guia 2Guia 2
Guia 2
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Hernandez Sanchez Isaac
Hernandez Sanchez IsaacHernandez Sanchez Isaac
Hernandez Sanchez Isaac
 
Ecuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superiorEcuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superior
 
ecuaciones diferenciales_orden_superior
 ecuaciones diferenciales_orden_superior ecuaciones diferenciales_orden_superior
ecuaciones diferenciales_orden_superior
 
Matematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirezMatematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirez
 
Concepto ecuacion dif...
Concepto  ecuacion dif...Concepto  ecuacion dif...
Concepto ecuacion dif...
 
Ecuaciones diferenciales matematicas avanzadas
Ecuaciones diferenciales matematicas avanzadasEcuaciones diferenciales matematicas avanzadas
Ecuaciones diferenciales matematicas avanzadas
 
Remedial
RemedialRemedial
Remedial
 
Ecuaciones diferenciales
Ecuaciones diferenciales Ecuaciones diferenciales
Ecuaciones diferenciales
 
Calculo 4 trab 2. final.
Calculo 4 trab 2. final.Calculo 4 trab 2. final.
Calculo 4 trab 2. final.
 

Más de Donaldo Sanchez Zamarron

Más de Donaldo Sanchez Zamarron (7)

Transformada de laplace de segunda derivada
Transformada de laplace de segunda derivadaTransformada de laplace de segunda derivada
Transformada de laplace de segunda derivada
 
Transformada de laplace primera derivada
Transformada de laplace primera derivadaTransformada de laplace primera derivada
Transformada de laplace primera derivada
 
Transformada de-la-place con ecuaciones diferenciales
Transformada de-la-place con ecuaciones diferencialesTransformada de-la-place con ecuaciones diferenciales
Transformada de-la-place con ecuaciones diferenciales
 
Transformada de la place con ecuaciones parciales.
Transformada de la place con ecuaciones parciales.Transformada de la place con ecuaciones parciales.
Transformada de la place con ecuaciones parciales.
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
 
Teoria de limites 2
Teoria de limites 2 Teoria de limites 2
Teoria de limites 2
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 

Último

594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...humberto espejo
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......dianamontserratmayor
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptxJOSLUISCALLATAENRIQU
 
Estudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesEstudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesRamonCortez4
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidasNelsonQuispeQuispitu
 
Introduccion-a-los-tipos-de-cemento (1).pdf
Introduccion-a-los-tipos-de-cemento (1).pdfIntroduccion-a-los-tipos-de-cemento (1).pdf
Introduccion-a-los-tipos-de-cemento (1).pdfjhorbycoralsanchez
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdfRicardoRomeroUrbano
 
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptxMUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptxIcelaMartnezVictorin
 
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTACUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTAvanessaecharry2511
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOCamiloSaavedra30
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialyajhairatapia
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdfPPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdfDarwinJPaulino
 
Informe Mensual MARZO DE SUPERVISION.docx
Informe Mensual MARZO DE SUPERVISION.docxInforme Mensual MARZO DE SUPERVISION.docx
Informe Mensual MARZO DE SUPERVISION.docxTAKESHISAC
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdffredyflores58
 

Último (20)

594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
 
Estudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesEstudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras viales
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidas
 
Linea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptxLinea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptx
 
Introduccion-a-los-tipos-de-cemento (1).pdf
Introduccion-a-los-tipos-de-cemento (1).pdfIntroduccion-a-los-tipos-de-cemento (1).pdf
Introduccion-a-los-tipos-de-cemento (1).pdf
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
 
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptxMUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
MUROS Y CONEXIONES NTC 2017 CONCRETO REFORZADO.pptx
 
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTACUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundial
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdfPPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
 
Informe Mensual MARZO DE SUPERVISION.docx
Informe Mensual MARZO DE SUPERVISION.docxInforme Mensual MARZO DE SUPERVISION.docx
Informe Mensual MARZO DE SUPERVISION.docx
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
 
presentación manipulación manual de cargas sunafil
presentación manipulación manual de cargas sunafilpresentación manipulación manual de cargas sunafil
presentación manipulación manual de cargas sunafil
 

Ecuaciones diferenciales

  • 1. 2014 “ECUACIONES DIFERENCIALES.” DONALDO SANCHEZ ZAMARRON MATEMATICAS AVANZADAS I 28/11/2014
  • 2. ECUACIONES DIFERENCIALES. 2 • Conceptos Básicos: Es una expresión que involucra a una función desconocida y sus derivadas por ejemplo: Y + y´ = 0 • Clasificación de las ecuaciones Diferenciales: Ecuación Diferencial Ordinaria. Ecuación Diferencial Parcial. • Orden de una Ecuación Diferencial El orden de la derivada máximo que aparece en la ecuación: Y´ significa derivada de Y. Y¨ significa segunda derivada.
  • 3. • Solución de una ecuación diferencial: La solución de una ecuación diferencial en una función desconocida “y” y la variable independiente “x” definida en un intervalo y es una función y que satisface la ecuación diferencial para todos los valores de x en el intervalo dado. Y¨+ 4y = 0 Enseguida se muestra un ejemplo de una solución de una ecuación diferencial junto con su comprobación. 3 Solución: Y= sen2x + cos2x Y´ = 2cos2x – 2sen2x Y¨= 2 (-sen2x)(2) – 2 (cos2x)(2) Y¨= - 4sen2x – 4cos2x Comprobación y¨+4y = 0 - 4sen2x – 4cos2x+ 4 (sen2x+cos2x) = 0 - -4sen2x – 4cos2x + 4sen2x + 4cos2x = 0 • Y¨ + 4y = 0 Y= 5sen2x + 3cos2x Y´= 5(cos2x)(2) + 3(-sen2x) (2) Y´= 10(cos2x) – 6sen2x Y¨= - 20sen2x – 12cos2x Comprobación: Y¨ + 4y = 0 y= - 20sen2x – 12cos2x + 4 (5sen2x + 3cos2x) Y= -20sen2x – 12cos2x + 20sen2x + 12cos2x = 0 Estas dos soluciones se llaman soluciones particulares, pero lo que generalmente se obtiene es la solución general: Y = C1 sen2x + C2 cos2x
  • 4. Ahora se muestran algunos métodos para resolver ecuaciones diferenciales. 4 • Y = e2x Solución: y¨ + y´- 6y = 0 Y´= 2 e2x Y¨ = 4 e2x Comprobación: 4 e2x + 2 e2x - 6(e2x) = 0 6 – 6 = 0 • Y = e-2x + e3x
  • 5. 5 • Solución: y¨ - y´ - 6y = 0 Y´= -2 e-2x + 3e3x Y¨ = 4 e-2x + 9 e3x Comprobación: -4 e-2x + 9 e3x – (- 2 e-2x + 3 e3x )- 6(e-2x + e3x ) 6 e-2x + 6 e3x - 6 e-2x - 6 e3x = 0 • Y = x2 + ex + e-2x Solución: y¨ + y´- 2y = 2(1+ x - x2 ) Y´= 2x + ex + (-2e-2x ) Y¨ = 2 + ex + 4e-2x Comprobación: 2 + ex + 4e-2x + 2x + ex + (-2e-2x ) – 2 (x2 + ex + e-2x ) 2(1+ x - x2 ) = 2(1+ x - x2 ) 2 x2 - 2 ex - 2 e-2x • Y = C1 e2x + C2 (xe2x) Solución: y¨ - 4y´ + 4y = 0 Y´= 2 C1 e2x + 2 C2 xe2x + C2e2x Y¨= 4 C1 e2x + 4 C2 xe2x + 2 C2e2x + 2C2e2x Comprobación : 4 C1 e2x + 4 C2 xe2x + 2 C2e2x + 2C2e2x - 4(2 C1 e2x + 2 C2 xe2x + C2e2x ) + 4 (C1 e2x + C2 (xe2x)) = 0 4 C1 e2x - 8 C1 e2x + 4 C1 e2x + 4 C2 xe2x + 4 C2 xe2x - 8 C2 xe2x - 4 C2e2x - 4 C2e2x = 0
  • 6. “ECUACIONES DIFERENCIALES POR VARIABLES SEPARADAS.” 6
  • 7. “ECUACIONES DIFERENCIALES EXACTAS.” 7 Si es una ecuación diferencial exacta porque: =
  • 8. 8
  • 9. 9
  • 10. 10
  • 11. 11