SlideShare una empresa de Scribd logo
1 de 11
Determinants
Introduction
Every square matrix has associated with it a scalar called its
determinant.
Given a matrix A, we use det(A) or |A| to designate its determinant.
We can also designate the determinant of matrix A by replacing the
brackets by vertical straight lines. For example,
A=[2 1
0 3 ] det(A)=∣
2 1
0 3
∣
Definition 1: The determinant of a 1×1 matrix [a] is the scalar a.
Definition 2: The determinant of a 2×2 matrix is the scalar ad-bc.
For higher order matrices, we will use a recursive procedure to compute
determinants.
[a b
c d]
Expansion by Cofactors
Definition 1: Given a matrix A, a minor is the determinant of
square submatrix of A.
Definition 2: Given a matrix A=[aij] , the cofactor of the element
aij is a scalar obtained by multiplying together the term (-1)i+j
and the minor obtained from A by removing the ith row and the
jth column.
In other words, the cofactor Cij is given by Cij = (−1)i+j
Mij.
For example,
A=
[
a11 a12 a13
a21 a22 a23
a31 a32 a33
]
M21=∣
a12 a13
a32 a33
∣
M22=∣
a11 a13
a31 a33
∣
⇒C21=(−1)2+1
M 21=−M21
⇒C22=(−1)
2+2
M22=M22
Expansion by Cofactors
To find the determinant of a matrix A of arbitrary order,
a)Pick any one row or any one column of the matrix;
b)For each element in the row or column chosen, find its
cofactor;
c)Multiply each element in the row or column chosen by its
cofactor and sum the results. This sum is the determinant of the
matrix.
In other words, the determinant of A is given by
det( A)=∣A∣=∑
j=1
n
aij Cij=ai1 Ci1+ai2 Ci2+⋯+ain Cin
det ( A )=∣A∣=∑
i=1
n
aij Cij=a1j C1j+a2j C2j +⋯+anj Cnj
ith row
expansion
jth column
expansion
Example 1:
We can compute the determinant
1 2 3
4 5 6
7 8 9
=T
by expanding along the first row,
( ) ( ) ( )
1 1 1 2 1 35 6 4 6 4 5
1 2 3
8 9 7 9 7 8
+ + +
= × − + × − + × −T 3 12 9 0= − + − =
Or expand down the second column:
( ) ( ) ( )
1 2 2 2 3 24 6 1 3 1 3
2 5 8
7 9 7 9 4 6
+ + +
= × − + × − + × −T 12 60 48 0= − + =
Example 2: (using a row or column with many zeroes)
( )
2 3
1 5 0
1 5
2 1 1 1
3 1
3 1 0
+
= × −
−
−
16=
Properties of determinants
Property 1: If one row of a matrix consists entirely of zeros, then
the determinant is zero.
Property 2: If two rows of a matrix are interchanged, the
determinant changes sign.
Property 3: If two rows of a matrix are identical, the determinant
is zero.
Property 4: If the matrix B is obtained from the matrix A by
multiplying every element in one row of A by the scalar λ, then |
B|= λ|A|.
Property 5: For an n × n matrix A and any scalar λ, det(λA)=
λn
det(A).
Properties of determinants
Property 6: If a matrix B is obtained from a matrix A by adding to
one row of A, a scalar times another row of A, then |A|=|B|.
Property 7: det(A) = det(AT
).
Property 8: The determinant of a triangular matrix, either upper or
lower, is the product of the elements on the main diagonal.
Property 9: If A and B are of the same order, then
det(AB)=det(A) det(B).
Inversion
Theorem 1: A square matrix has an inverse if and only if its
determinant is not zero.
Below we develop a method to calculate the inverse of
nonsingular matrices using determinants.
Definition 1: The cofactor matrix associated with an n × n matrix
A is an n × n matrix Ac
obtained from A by replacing each
element of A by its cofactor.
Definition 2: The adjugate of an n × n matrix A is the transpose
of the cofactor matrix of A: Aa
= (Ac
)T

Find the adjugate of
Solution:
The cofactor matrix of A:
A=
[−1 3 2
0 −2 1
1 0 −2 ]
[
∣−2 1
0 −2
∣ −∣0 1
1 −2
∣ ∣0 −2
1 0
∣
−∣
3 2
0 −2
∣ ∣
−1 2
1 −2
∣ −∣
−1 3
1 0
∣
∣
3 2
−2 1
∣ −∣
−1 2
0 1
∣ ∣
−1 3
0 −2
∣] =
[4 1 2
6 0 3
7 1 2 ]
Aa
=
[4 6 7
1 0 1
2 3 2 ]
Example of finding adjugate
Inversion using determinants
Theorem 2: A Aa
= Aa
A = |A| I .
If |A| ≠ 0 then from Theorem 2, A(Aa
∣A∣)=(Aa
∣A∣)A=I
A
−1
=
1
∣A∣
A
a
if ∣A∣≠0
That is, if |A| ≠ 0, then A-1
may be obtained by dividing the
adjugate of A by the determinant of A.
For example, if
then
A=[a b
c d ],
A−1
=
1
∣A∣
Aa
=
1
ad−bc [d −b
−c a ]
Use the adjugate of to find A-1A=
[−1 3 2
0 −2 1
1 0 −2 ]
Aa
=
[4 6 7
1 0 1
2 3 2 ]
∣A∣=(−1)(−2)(−2)+(3)(1)(1)−(1)(−2)(2)=3
A
−1
=
1
∣A∣
A
a
=
1
3 [
4 6 7
1 0 1
2 3 2 ]=
[
4
3
2 7
3
1
3
0
1
3
2
3
1 2
3
]
Inversion using determinants: example

Más contenido relacionado

La actualidad más candente

MATRICES
MATRICESMATRICES
MATRICESdaferro
 
Cramers rule
Cramers ruleCramers rule
Cramers rulemstf mstf
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsJaydev Kishnani
 
MATRICES
MATRICESMATRICES
MATRICESfaijmsk
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matricesholmsted
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operationsJessica Garcia
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinantsitutor
 
Mathematics class XI SETS
Mathematics class XI SETSMathematics class XI SETS
Mathematics class XI SETSNaveen R
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptDrazzer_Dhruv
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)NirnayMukharjee
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMohammad Imran
 
presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrixNikhi Jain
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace Manikanta satyala
 

La actualidad más candente (20)

Matrix.
Matrix.Matrix.
Matrix.
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
 
Determinants
DeterminantsDeterminants
Determinants
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
MATRICES
MATRICESMATRICES
MATRICES
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
MATRICES
MATRICESMATRICES
MATRICES
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
 
Mathematics class XI SETS
Mathematics class XI SETSMathematics class XI SETS
Mathematics class XI SETS
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)
 
Matrices
MatricesMatrices
Matrices
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imran
 
presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrix
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 

Similar a Determinants - Mathematics

Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)Ranjay Kumar
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Rai University
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notesVICTOROGOT4
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and DeterminantsAarjavPinara
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraParthDave57
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)shamimakamili
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsoscar
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsoscar
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChaimae Baroudi
 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applicationsNikoBellic28
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And DeterminantsAngie Miller
 
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKMatrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKWaqas Afzal
 

Similar a Determinants - Mathematics (20)

Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)
 
Matrices
MatricesMatrices
Matrices
 
Matrices
MatricesMatrices
Matrices
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
 
M a t r i k s
M a t r i k sM a t r i k s
M a t r i k s
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Determinants
DeterminantsDeterminants
Determinants
 
Determinants
DeterminantsDeterminants
Determinants
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/Slides
 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applications
 
APM.pdf
APM.pdfAPM.pdf
APM.pdf
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
 
1565 matrix01-ppt
1565 matrix01-ppt1565 matrix01-ppt
1565 matrix01-ppt
 
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKMatrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
 

Más de Drishti Bhalla

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures Drishti Bhalla
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & NetworkingDrishti Bhalla
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - MathematicsDrishti Bhalla
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsDrishti Bhalla
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsDrishti Bhalla
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - JavaDrishti Bhalla
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringDrishti Bhalla
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRMDrishti Bhalla
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instructionDrishti Bhalla
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4Drishti Bhalla
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System ThreatsDrishti Bhalla
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software EngineeringDrishti Bhalla
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsDrishti Bhalla
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationDrishti Bhalla
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management SystemDrishti Bhalla
 

Más de Drishti Bhalla (16)

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & Networking
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - Mathematics
 
Holy Rivers - Hindi
Holy Rivers - HindiHoly Rivers - Hindi
Holy Rivers - Hindi
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer Graphics
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating Systems
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - Java
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software Engineering
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRM
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instruction
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System Threats
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software Engineering
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of Algorithms
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of Computation
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management System
 

Último

Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 

Último (20)

Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 

Determinants - Mathematics

  • 2. Introduction Every square matrix has associated with it a scalar called its determinant. Given a matrix A, we use det(A) or |A| to designate its determinant. We can also designate the determinant of matrix A by replacing the brackets by vertical straight lines. For example, A=[2 1 0 3 ] det(A)=∣ 2 1 0 3 ∣ Definition 1: The determinant of a 1×1 matrix [a] is the scalar a. Definition 2: The determinant of a 2×2 matrix is the scalar ad-bc. For higher order matrices, we will use a recursive procedure to compute determinants. [a b c d]
  • 3. Expansion by Cofactors Definition 1: Given a matrix A, a minor is the determinant of square submatrix of A. Definition 2: Given a matrix A=[aij] , the cofactor of the element aij is a scalar obtained by multiplying together the term (-1)i+j and the minor obtained from A by removing the ith row and the jth column. In other words, the cofactor Cij is given by Cij = (−1)i+j Mij. For example, A= [ a11 a12 a13 a21 a22 a23 a31 a32 a33 ] M21=∣ a12 a13 a32 a33 ∣ M22=∣ a11 a13 a31 a33 ∣ ⇒C21=(−1)2+1 M 21=−M21 ⇒C22=(−1) 2+2 M22=M22
  • 4. Expansion by Cofactors To find the determinant of a matrix A of arbitrary order, a)Pick any one row or any one column of the matrix; b)For each element in the row or column chosen, find its cofactor; c)Multiply each element in the row or column chosen by its cofactor and sum the results. This sum is the determinant of the matrix. In other words, the determinant of A is given by det( A)=∣A∣=∑ j=1 n aij Cij=ai1 Ci1+ai2 Ci2+⋯+ain Cin det ( A )=∣A∣=∑ i=1 n aij Cij=a1j C1j+a2j C2j +⋯+anj Cnj ith row expansion jth column expansion
  • 5. Example 1: We can compute the determinant 1 2 3 4 5 6 7 8 9 =T by expanding along the first row, ( ) ( ) ( ) 1 1 1 2 1 35 6 4 6 4 5 1 2 3 8 9 7 9 7 8 + + + = × − + × − + × −T 3 12 9 0= − + − = Or expand down the second column: ( ) ( ) ( ) 1 2 2 2 3 24 6 1 3 1 3 2 5 8 7 9 7 9 4 6 + + + = × − + × − + × −T 12 60 48 0= − + = Example 2: (using a row or column with many zeroes) ( ) 2 3 1 5 0 1 5 2 1 1 1 3 1 3 1 0 + = × − − − 16=
  • 6. Properties of determinants Property 1: If one row of a matrix consists entirely of zeros, then the determinant is zero. Property 2: If two rows of a matrix are interchanged, the determinant changes sign. Property 3: If two rows of a matrix are identical, the determinant is zero. Property 4: If the matrix B is obtained from the matrix A by multiplying every element in one row of A by the scalar λ, then | B|= λ|A|. Property 5: For an n × n matrix A and any scalar λ, det(λA)= λn det(A).
  • 7. Properties of determinants Property 6: If a matrix B is obtained from a matrix A by adding to one row of A, a scalar times another row of A, then |A|=|B|. Property 7: det(A) = det(AT ). Property 8: The determinant of a triangular matrix, either upper or lower, is the product of the elements on the main diagonal. Property 9: If A and B are of the same order, then det(AB)=det(A) det(B).
  • 8. Inversion Theorem 1: A square matrix has an inverse if and only if its determinant is not zero. Below we develop a method to calculate the inverse of nonsingular matrices using determinants. Definition 1: The cofactor matrix associated with an n × n matrix A is an n × n matrix Ac obtained from A by replacing each element of A by its cofactor. Definition 2: The adjugate of an n × n matrix A is the transpose of the cofactor matrix of A: Aa = (Ac )T
  • 9.  Find the adjugate of Solution: The cofactor matrix of A: A= [−1 3 2 0 −2 1 1 0 −2 ] [ ∣−2 1 0 −2 ∣ −∣0 1 1 −2 ∣ ∣0 −2 1 0 ∣ −∣ 3 2 0 −2 ∣ ∣ −1 2 1 −2 ∣ −∣ −1 3 1 0 ∣ ∣ 3 2 −2 1 ∣ −∣ −1 2 0 1 ∣ ∣ −1 3 0 −2 ∣] = [4 1 2 6 0 3 7 1 2 ] Aa = [4 6 7 1 0 1 2 3 2 ] Example of finding adjugate
  • 10. Inversion using determinants Theorem 2: A Aa = Aa A = |A| I . If |A| ≠ 0 then from Theorem 2, A(Aa ∣A∣)=(Aa ∣A∣)A=I A −1 = 1 ∣A∣ A a if ∣A∣≠0 That is, if |A| ≠ 0, then A-1 may be obtained by dividing the adjugate of A by the determinant of A. For example, if then A=[a b c d ], A−1 = 1 ∣A∣ Aa = 1 ad−bc [d −b −c a ]
  • 11. Use the adjugate of to find A-1A= [−1 3 2 0 −2 1 1 0 −2 ] Aa = [4 6 7 1 0 1 2 3 2 ] ∣A∣=(−1)(−2)(−2)+(3)(1)(1)−(1)(−2)(2)=3 A −1 = 1 ∣A∣ A a = 1 3 [ 4 6 7 1 0 1 2 3 2 ]= [ 4 3 2 7 3 1 3 0 1 3 2 3 1 2 3 ] Inversion using determinants: example