Hemos actualizado nuestra política de privacidad. Haga clic aquí para revisar los detalles. Pulse aquí para revisar los detalles
Active su período de prueba de 30 días gratis para desbloquear las lecturas ilimitadas.
Active su período de prueba de 30 días gratis para seguir leyendo.
Descargar para leer sin conexión
Abstract: Algebraic structures in which the property of commutativity is substituted by the me- diality property are introduced. We consider (associative) graded algebras and instead of almost commutativity (generalized commutativity or e-commutativity), we introduce almost mediality (“commutativity-to-mediality” ansatz). Higher graded twisted products and “deforming” brackets (being the medial analog of Lie brackets) are defined. Toyoda’s theorem which connects (universal) medial algebras with abelian algebras is proven for the almost medial graded algebras introduced here. In a similar way we generalize tensor categories and braided tensor categories. A polyadic (non-strict) tensor category has an n-ary tensor product as an additional multiplication with (n-1) associators of the arity (2n-1) satisfying a (n^2-1)-gon relation, which is a polyadic analog of the pentagon axiom. Polyadic monoidal categories may contain several unit objects, and it is also possible that all objects are units. A new kind of polyadic categories (called groupal) is defined: they are close to monoidal categories but may not contain units: instead the querfunctor and (natural) functorial isomorphisms, the quertors, are considered (by analogy with the querelements in n-ary groups). The arity-nonreducible n-ary braiding is introduced and the equation for it is derived, which for n=2 coincides with the Yang–Baxter equation. Then, analogously to the first part of the paper, we introduce “medialing” instead of braiding and construct “medialed” polyadic tensor categories.
Abstract: Algebraic structures in which the property of commutativity is substituted by the me- diality property are introduced. We consider (associative) graded algebras and instead of almost commutativity (generalized commutativity or e-commutativity), we introduce almost mediality (“commutativity-to-mediality” ansatz). Higher graded twisted products and “deforming” brackets (being the medial analog of Lie brackets) are defined. Toyoda’s theorem which connects (universal) medial algebras with abelian algebras is proven for the almost medial graded algebras introduced here. In a similar way we generalize tensor categories and braided tensor categories. A polyadic (non-strict) tensor category has an n-ary tensor product as an additional multiplication with (n-1) associators of the arity (2n-1) satisfying a (n^2-1)-gon relation, which is a polyadic analog of the pentagon axiom. Polyadic monoidal categories may contain several unit objects, and it is also possible that all objects are units. A new kind of polyadic categories (called groupal) is defined: they are close to monoidal categories but may not contain units: instead the querfunctor and (natural) functorial isomorphisms, the quertors, are considered (by analogy with the querelements in n-ary groups). The arity-nonreducible n-ary braiding is introduced and the equation for it is derived, which for n=2 coincides with the Yang–Baxter equation. Then, analogously to the first part of the paper, we introduce “medialing” instead of braiding and construct “medialed” polyadic tensor categories.
Parece que ya has recortado esta diapositiva en .
¡Acabas de recortar tu primera diapositiva!
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Cancela en cualquier momento.Lecturas ilimitadas
Aprenda más rápido y de forma más inteligente con los mejores expertos
Descargas ilimitadas
Descárguelo para aprender sin necesidad de estar conectado y desde cualquier lugar
¡Además, tiene acceso gratis a Scribd!
Acceso instantáneo a millones de libros electrónicos, audiolibros, revistas, podcasts y mucho más.
Lea y escuche sin conexión desde cualquier dispositivo.
Acceso gratis a servicios prémium como TuneIn, Mubi y muchos más.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.
¡Gracias!