A.6 confidence intervals

U
Ulster BOCESUlster BOCES
Confidence Intervals
• Confidence interval: used to describe the amount of uncertainty
associated with a sample estimate of a population parameter
• How to interpret a CI:
You try first: How would you interpret this: “There is a 95% CI that
states that the population mean is less than 150 but greater than 75.”
incorrect interpretation: there is a 95% chance that the population mean falls between 75
and 150
**since the population mean is a population parameter, the population mean is a
constant, not a random variable
Let’s take a look at what the confidence level means first before we talk about the correct
interpretation
Confidence Level: describes the uncertainty associated with a sampling method
What does this mean?
Suppose we use a sampling method to select different samples and compute the
interval estimate for each sample. Then a 95% confidence level says that we should expect
95% of the interval estimates to include a population parameter and the same for an other
confidence level.
Confidence Interval Data
Requirements
Need ALL three:
• Confidence Level
• Statistic
• Margin of Error
• With the above information, the range of the CI is defined by:
sample statistic + margin of error
• Uncertainty associated with the CI is specified by the CL
If Margin of Error not given, must calculate:
ME= Critical Value x Standard Deviation of Statistic
OR
ME= Critical Value x Standard Error of Statistic
How to Construct a Confidence
Interval
1. Identify a sample statistic
{choose the statistic that you will use to estimate
the population parameter (sample mean, sample
proportion, etc.)}
2. Select a confidence level (usually 90%, 95%, 99%)
3. Find Margin of Error (ME)
4. Specify Confidence Interval:
Sample statistic + ME
A.6  confidence intervals
A.6  confidence intervals
A.6  confidence intervals
A.6  confidence intervals
** where z* or t* can be found using the tables and represents the standard error
A.6  confidence intervals
A.6  confidence intervals
How confidence intervals behave
Typically a person performing an observational study chooses the confidence he
desires and the margin of error follows from this choice. We usually want high
confidence and a small margin of error, but we cannot have both. There is usually
a trade-off.
• If we ask for high confidence, we have to allow ourselves a large margin of error.
Example: If I want to predict your average in a course with 99% confidence, I
might say that I am 99% confident that you will get a 75% with a margin of error
of 25%.
That is saying that we are 99% confident that you will get between 50% and 100%. Notice that
this doesn’t say much other than you will probably pass the course.
• If we want a small margin of error, we have to ask for a smaller confidence level.
Example: If I want to predict your average with a margin of error of 2 points, I
might say that I am 50% confident that you will get a 92% with a margin of error
of 2 percentage points.
That is saying that I am 50% confident that you will get between a 90 and 94 in the course.
Again, the small range is impressive but with 50% confidence, I am not very confident at all. It is
a coin flip.
A.6  confidence intervals
Sample Size for Desired Margin of Error
• Sometimes we wish to establish a specified margin of error for a certain confidence level. That fixes
z* and σ certainly cannot change. The only way we can achieve what we want is to change n, the
sample size.
1 de 14

Recomendados

Confidence intervals por
Confidence intervalsConfidence intervals
Confidence intervalsTanay Tandon
9.8K vistas36 diapositivas
Confidence Intervals: Basic concepts and overview por
Confidence Intervals: Basic concepts and overviewConfidence Intervals: Basic concepts and overview
Confidence Intervals: Basic concepts and overviewRizwan S A
10.2K vistas42 diapositivas
Confidence interval por
Confidence intervalConfidence interval
Confidence intervalShakeel Nouman
10.7K vistas46 diapositivas
Confidence interval & probability statements por
Confidence interval & probability statements Confidence interval & probability statements
Confidence interval & probability statements DrZahid Khan
3K vistas16 diapositivas
Review & Hypothesis Testing por
Review & Hypothesis TestingReview & Hypothesis Testing
Review & Hypothesis TestingSr Edith Bogue
1.2K vistas40 diapositivas
Chapter 3 Confidence Interval por
Chapter 3 Confidence IntervalChapter 3 Confidence Interval
Chapter 3 Confidence Intervalghalan
7.5K vistas38 diapositivas

Más contenido relacionado

La actualidad más candente

Confidence Intervals por
Confidence IntervalsConfidence Intervals
Confidence Intervalsmandalina landy
21.1K vistas44 diapositivas
L10 confidence intervals por
L10 confidence intervalsL10 confidence intervals
L10 confidence intervalsLayal Fahad
3.8K vistas44 diapositivas
P value, Power, Type 1 and 2 errors por
P value, Power, Type 1 and 2 errorsP value, Power, Type 1 and 2 errors
P value, Power, Type 1 and 2 errorsRizwan S A
13.9K vistas27 diapositivas
Ch4 Confidence Interval por
Ch4 Confidence IntervalCh4 Confidence Interval
Ch4 Confidence IntervalFarhan Alfin
755 vistas22 diapositivas
Testing Hypothesis por
Testing HypothesisTesting Hypothesis
Testing HypothesisAzmi Mohd Tamil
5K vistas29 diapositivas
Student t-test por
Student t-testStudent t-test
Student t-testSteve Bishop
51.3K vistas65 diapositivas

La actualidad más candente(20)

L10 confidence intervals por Layal Fahad
L10 confidence intervalsL10 confidence intervals
L10 confidence intervals
Layal Fahad3.8K vistas
P value, Power, Type 1 and 2 errors por Rizwan S A
P value, Power, Type 1 and 2 errorsP value, Power, Type 1 and 2 errors
P value, Power, Type 1 and 2 errors
Rizwan S A13.9K vistas
Ch4 Confidence Interval por Farhan Alfin
Ch4 Confidence IntervalCh4 Confidence Interval
Ch4 Confidence Interval
Farhan Alfin755 vistas
Student t-test por Steve Bishop
Student t-testStudent t-test
Student t-test
Steve Bishop51.3K vistas
Lecture 5: Interval Estimation por Marina Santini
Lecture 5: Interval Estimation Lecture 5: Interval Estimation
Lecture 5: Interval Estimation
Marina Santini5K vistas
Confidence intervals: Types and calculations por Rizwan S A
Confidence intervals: Types and calculationsConfidence intervals: Types and calculations
Confidence intervals: Types and calculations
Rizwan S A2.1K vistas
Hypothesis testing and p-value, www.eyenirvaan.com por Eyenirvaan
Hypothesis testing and p-value, www.eyenirvaan.comHypothesis testing and p-value, www.eyenirvaan.com
Hypothesis testing and p-value, www.eyenirvaan.com
Eyenirvaan3.4K vistas
Lecture2 hypothesis testing por o_devinyak
Lecture2 hypothesis testingLecture2 hypothesis testing
Lecture2 hypothesis testing
o_devinyak2.5K vistas

Similar a A.6 confidence intervals

Module 7 Interval estimatorsMaster for Business Statistics.docx por
Module 7 Interval estimatorsMaster for Business Statistics.docxModule 7 Interval estimatorsMaster for Business Statistics.docx
Module 7 Interval estimatorsMaster for Business Statistics.docxgilpinleeanna
6 vistas74 diapositivas
Point and Interval Estimation por
Point and Interval EstimationPoint and Interval Estimation
Point and Interval EstimationShubham Mehta
47.7K vistas43 diapositivas
Confidence interva,P value,Type1-2 error.pptx por
Confidence interva,P value,Type1-2 error.pptxConfidence interva,P value,Type1-2 error.pptx
Confidence interva,P value,Type1-2 error.pptxDr Qurat-ul-ain ayuob
26 vistas24 diapositivas
Mca admission in india por
Mca admission in indiaMca admission in india
Mca admission in indiaEdhole.com
447 vistas15 diapositivas
Bca admission in india por
Bca admission in indiaBca admission in india
Bca admission in indiaEdhole.com
347 vistas15 diapositivas
Understanding specification por
Understanding specification Understanding specification
Understanding specification KarabiBiswas4
50 vistas8 diapositivas

Similar a A.6 confidence intervals(20)

Module 7 Interval estimatorsMaster for Business Statistics.docx por gilpinleeanna
Module 7 Interval estimatorsMaster for Business Statistics.docxModule 7 Interval estimatorsMaster for Business Statistics.docx
Module 7 Interval estimatorsMaster for Business Statistics.docx
gilpinleeanna6 vistas
Point and Interval Estimation por Shubham Mehta
Point and Interval EstimationPoint and Interval Estimation
Point and Interval Estimation
Shubham Mehta47.7K vistas
Mca admission in india por Edhole.com
Mca admission in indiaMca admission in india
Mca admission in india
Edhole.com447 vistas
Bca admission in india por Edhole.com
Bca admission in indiaBca admission in india
Bca admission in india
Edhole.com347 vistas
Understanding specification por KarabiBiswas4
Understanding specification Understanding specification
Understanding specification
KarabiBiswas450 vistas
Section 7 Analyzing our Marketing Test, Survey Results .docx por kenjordan97598
Section 7 Analyzing our Marketing Test, Survey Results .docxSection 7 Analyzing our Marketing Test, Survey Results .docx
Section 7 Analyzing our Marketing Test, Survey Results .docx
kenjordan975983 vistas
LESSON-2_CONFIDENCE-INTERVAL-KENN-GEDORIA.pptx por HarlynEslabon
LESSON-2_CONFIDENCE-INTERVAL-KENN-GEDORIA.pptxLESSON-2_CONFIDENCE-INTERVAL-KENN-GEDORIA.pptx
LESSON-2_CONFIDENCE-INTERVAL-KENN-GEDORIA.pptx
HarlynEslabon17 vistas
Findings, Conclusions, & RecommendationsReport Writing por ShainaBoling829
Findings, Conclusions, & RecommendationsReport WritingFindings, Conclusions, & RecommendationsReport Writing
Findings, Conclusions, & RecommendationsReport Writing
ShainaBoling8294 vistas
Chapter 8 review por drahkos1
Chapter 8 reviewChapter 8 review
Chapter 8 review
drahkos13.6K vistas
Week 5 review section powerpoint por tcalero
Week 5   review section powerpointWeek 5   review section powerpoint
Week 5 review section powerpoint
tcalero230 vistas
how to i interpret confidence intervals for predictions at 95 and 99.pdf por amitenterprises2
how to i interpret confidence intervals for predictions at 95 and 99.pdfhow to i interpret confidence intervals for predictions at 95 and 99.pdf
how to i interpret confidence intervals for predictions at 95 and 99.pdf
amitenterprises25 vistas
Iterpret a Confidence Interval- A center producing standardized exams.pdf por vishalateen
Iterpret a Confidence Interval- A center producing standardized exams.pdfIterpret a Confidence Interval- A center producing standardized exams.pdf
Iterpret a Confidence Interval- A center producing standardized exams.pdf
vishalateen21 vistas
Odds ratio and confidence interval por UttamaTungkhang
Odds ratio and confidence intervalOdds ratio and confidence interval
Odds ratio and confidence interval
UttamaTungkhang672 vistas
inferencial statistics por anjaemerry
inferencial statisticsinferencial statistics
inferencial statistics
anjaemerry82 vistas

Más de Ulster BOCES

Sampling means por
Sampling meansSampling means
Sampling meansUlster BOCES
825 vistas5 diapositivas
Sampling distributions por
Sampling distributionsSampling distributions
Sampling distributionsUlster BOCES
789 vistas5 diapositivas
Geometric distributions por
Geometric distributionsGeometric distributions
Geometric distributionsUlster BOCES
3.3K vistas3 diapositivas
Binomial distributions por
Binomial distributionsBinomial distributions
Binomial distributionsUlster BOCES
410 vistas4 diapositivas
Means and variances of random variables por
Means and variances of random variablesMeans and variances of random variables
Means and variances of random variablesUlster BOCES
501 vistas4 diapositivas
Simulation por
SimulationSimulation
SimulationUlster BOCES
476 vistas5 diapositivas

Más de Ulster BOCES(20)

Sampling distributions por Ulster BOCES
Sampling distributionsSampling distributions
Sampling distributions
Ulster BOCES789 vistas
Geometric distributions por Ulster BOCES
Geometric distributionsGeometric distributions
Geometric distributions
Ulster BOCES3.3K vistas
Binomial distributions por Ulster BOCES
Binomial distributionsBinomial distributions
Binomial distributions
Ulster BOCES410 vistas
Means and variances of random variables por Ulster BOCES
Means and variances of random variablesMeans and variances of random variables
Means and variances of random variables
Ulster BOCES501 vistas
General probability rules por Ulster BOCES
General probability rulesGeneral probability rules
General probability rules
Ulster BOCES1.5K vistas
Planning and conducting surveys por Ulster BOCES
Planning and conducting surveysPlanning and conducting surveys
Planning and conducting surveys
Ulster BOCES4.9K vistas
Overview of data collection methods por Ulster BOCES
Overview of data collection methodsOverview of data collection methods
Overview of data collection methods
Ulster BOCES463 vistas
Exploring bivariate data por Ulster BOCES
Exploring bivariate dataExploring bivariate data
Exploring bivariate data
Ulster BOCES3.1K vistas
Normal probability plot por Ulster BOCES
Normal probability plotNormal probability plot
Normal probability plot
Ulster BOCES918 vistas
Exploring data stemplot por Ulster BOCES
Exploring data   stemplotExploring data   stemplot
Exploring data stemplot
Ulster BOCES620 vistas
Exploring data other plots por Ulster BOCES
Exploring data   other plotsExploring data   other plots
Exploring data other plots
Ulster BOCES499 vistas
Exploring data histograms por Ulster BOCES
Exploring data   histogramsExploring data   histograms
Exploring data histograms
Ulster BOCES574 vistas
Calculating percentages from z scores por Ulster BOCES
Calculating percentages from z scoresCalculating percentages from z scores
Calculating percentages from z scores
Ulster BOCES709 vistas
Standardizing scores por Ulster BOCES
Standardizing scoresStandardizing scores
Standardizing scores
Ulster BOCES407 vistas
Intro to statistics por Ulster BOCES
Intro to statisticsIntro to statistics
Intro to statistics
Ulster BOCES1.6K vistas
Describing quantitative data with numbers por Ulster BOCES
Describing quantitative data with numbersDescribing quantitative data with numbers
Describing quantitative data with numbers
Ulster BOCES1.7K vistas
Displaying quantitative data por Ulster BOCES
Displaying quantitative dataDisplaying quantitative data
Displaying quantitative data
Ulster BOCES2.3K vistas

Último

STPI OctaNE CoE Brochure.pdf por
STPI OctaNE CoE Brochure.pdfSTPI OctaNE CoE Brochure.pdf
STPI OctaNE CoE Brochure.pdfmadhurjyapb
13 vistas1 diapositiva
Design Driven Network Assurance por
Design Driven Network AssuranceDesign Driven Network Assurance
Design Driven Network AssuranceNetwork Automation Forum
15 vistas42 diapositivas
handbook for web 3 adoption.pdf por
handbook for web 3 adoption.pdfhandbook for web 3 adoption.pdf
handbook for web 3 adoption.pdfLiveplex
22 vistas16 diapositivas
Democratising digital commerce in India-Report por
Democratising digital commerce in India-ReportDemocratising digital commerce in India-Report
Democratising digital commerce in India-ReportKapil Khandelwal (KK)
15 vistas161 diapositivas
Mini-Track: Challenges to Network Automation Adoption por
Mini-Track: Challenges to Network Automation AdoptionMini-Track: Challenges to Network Automation Adoption
Mini-Track: Challenges to Network Automation AdoptionNetwork Automation Forum
12 vistas27 diapositivas
PRODUCT PRESENTATION.pptx por
PRODUCT PRESENTATION.pptxPRODUCT PRESENTATION.pptx
PRODUCT PRESENTATION.pptxangelicacueva6
13 vistas1 diapositiva

Último(20)

STPI OctaNE CoE Brochure.pdf por madhurjyapb
STPI OctaNE CoE Brochure.pdfSTPI OctaNE CoE Brochure.pdf
STPI OctaNE CoE Brochure.pdf
madhurjyapb13 vistas
handbook for web 3 adoption.pdf por Liveplex
handbook for web 3 adoption.pdfhandbook for web 3 adoption.pdf
handbook for web 3 adoption.pdf
Liveplex22 vistas
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors por sugiuralab
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab19 vistas
Unit 1_Lecture 2_Physical Design of IoT.pdf por StephenTec
Unit 1_Lecture 2_Physical Design of IoT.pdfUnit 1_Lecture 2_Physical Design of IoT.pdf
Unit 1_Lecture 2_Physical Design of IoT.pdf
StephenTec12 vistas
Voice Logger - Telephony Integration Solution at Aegis por Nirmal Sharma
Voice Logger - Telephony Integration Solution at AegisVoice Logger - Telephony Integration Solution at Aegis
Voice Logger - Telephony Integration Solution at Aegis
Nirmal Sharma31 vistas
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... por Jasper Oosterveld
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
Jasper Oosterveld13 vistas
HTTP headers that make your website go faster - devs.gent November 2023 por Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023HTTP headers that make your website go faster - devs.gent November 2023
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn21 vistas
Igniting Next Level Productivity with AI-Infused Data Integration Workflows por Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software257 vistas
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf por Dr. Jimmy Schwarzkopf
STKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdfSTKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdf
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf
Piloting & Scaling Successfully With Microsoft Viva por Richard Harbridge
Piloting & Scaling Successfully With Microsoft VivaPiloting & Scaling Successfully With Microsoft Viva
Piloting & Scaling Successfully With Microsoft Viva
Richard Harbridge12 vistas
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... por James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson66 vistas
AMAZON PRODUCT RESEARCH.pdf por JerikkLaureta
AMAZON PRODUCT RESEARCH.pdfAMAZON PRODUCT RESEARCH.pdf
AMAZON PRODUCT RESEARCH.pdf
JerikkLaureta19 vistas

A.6 confidence intervals

  • 2. • Confidence interval: used to describe the amount of uncertainty associated with a sample estimate of a population parameter • How to interpret a CI: You try first: How would you interpret this: “There is a 95% CI that states that the population mean is less than 150 but greater than 75.” incorrect interpretation: there is a 95% chance that the population mean falls between 75 and 150 **since the population mean is a population parameter, the population mean is a constant, not a random variable Let’s take a look at what the confidence level means first before we talk about the correct interpretation Confidence Level: describes the uncertainty associated with a sampling method What does this mean? Suppose we use a sampling method to select different samples and compute the interval estimate for each sample. Then a 95% confidence level says that we should expect 95% of the interval estimates to include a population parameter and the same for an other confidence level.
  • 3. Confidence Interval Data Requirements Need ALL three: • Confidence Level • Statistic • Margin of Error • With the above information, the range of the CI is defined by: sample statistic + margin of error • Uncertainty associated with the CI is specified by the CL If Margin of Error not given, must calculate: ME= Critical Value x Standard Deviation of Statistic OR ME= Critical Value x Standard Error of Statistic
  • 4. How to Construct a Confidence Interval 1. Identify a sample statistic {choose the statistic that you will use to estimate the population parameter (sample mean, sample proportion, etc.)} 2. Select a confidence level (usually 90%, 95%, 99%) 3. Find Margin of Error (ME) 4. Specify Confidence Interval: Sample statistic + ME
  • 9. ** where z* or t* can be found using the tables and represents the standard error
  • 12. How confidence intervals behave Typically a person performing an observational study chooses the confidence he desires and the margin of error follows from this choice. We usually want high confidence and a small margin of error, but we cannot have both. There is usually a trade-off. • If we ask for high confidence, we have to allow ourselves a large margin of error. Example: If I want to predict your average in a course with 99% confidence, I might say that I am 99% confident that you will get a 75% with a margin of error of 25%. That is saying that we are 99% confident that you will get between 50% and 100%. Notice that this doesn’t say much other than you will probably pass the course. • If we want a small margin of error, we have to ask for a smaller confidence level. Example: If I want to predict your average with a margin of error of 2 points, I might say that I am 50% confident that you will get a 92% with a margin of error of 2 percentage points. That is saying that I am 50% confident that you will get between a 90 and 94 in the course. Again, the small range is impressive but with 50% confidence, I am not very confident at all. It is a coin flip.
  • 14. Sample Size for Desired Margin of Error • Sometimes we wish to establish a specified margin of error for a certain confidence level. That fixes z* and σ certainly cannot change. The only way we can achieve what we want is to change n, the sample size.