Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Module 7 topic 1 notes and instruction

  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Module 7 topic 1 notes and instruction

  1. 2. <ul><li>Our body systems are interconnected and dependent on </li></ul><ul><li>each other! </li></ul><ul><li>It takes all the systems for human </li></ul><ul><li>growth and development. </li></ul><ul><li>How is this related to a system of linear equations? </li></ul>
  2. 3. <ul><li>Think back to linear equations! </li></ul><ul><li>Given y = 2 x – 3, a &quot;solution&quot; to this equation was any ( x , y ) point that &quot;worked&quot; in the equation, made the equation TRUE! </li></ul><ul><li>y = 2 x – 3 </li></ul><ul><li>1 = 2(2) – 3 </li></ul><ul><li>1 = 4 – 3 </li></ul><ul><li>1 = 1 </li></ul><ul><li>(2,1) is a solution since the statement is true! </li></ul>
  3. 5. <ul><li>Graphing is one of many methods used to solve a linear system. </li></ul><ul><li>Solving Linear Systems by Graphing </li></ul>
  4. 6. <ul><li>Linear Systems </li></ul><ul><li>Intersect at (3,0) </li></ul>
  5. 8. <ul><li>The equations must be in slope-intercept form: (y = mx + b) </li></ul><ul><li>Graph the system. </li></ul><ul><li>Find the point(s) of intersection. </li></ul><ul><li>  </li></ul><ul><li>If they DO NOT INTERSECT … </li></ul><ul><li>PARALLEL Lines produce NO SOLUTION b/c there are NO POINTS in common! </li></ul><ul><li>SAME Lines produce MANY SOLUTIONS b/c they share ALL POINTS! </li></ul>
  6. 9. After reading the material in this topic, it is time to check your knowledge.  You may repeat the practice until you have received a score of 80 or above! Once you have successfully completed this assignment, you can move to the Mastery Assignments.