SlideShare a Scribd company logo
1 of 44
A Systems Approach to the Modeling and Control of Molecular, Microparticle, and Biological Distributions Eric J. Hukkanen Dept. of Chemical & Biomolecular Engineering University of Illinois at Urbana-Champaign
Introduction ,[object Object],[object Object],[object Object],[object Object],[object Object]
Components of the Systematic Approach NO YES design constraints & performance criteria Robust Optimization optimized design Is model accurate? Hypothesis Mechanism Selection Experimental Data Collection Multiple Models Parameter Estimation Experimental Design experimental constraints Sensitivity & Uncertainty Analysis
Uncertainty Analysis ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Molecular Distribution Outline NO YES design constraints & performance criteria Robust Optimization optimized design Hypothesis Mechanism Selection Experimental Data Collection Multiple Models Parameter Estimation Experimental Design experimental constraints Sensitivity & Uncertainty Analysis  Is model accurate?
Introduction – Free Radical Polymerization ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction – Free Radical Polymerization ,[object Object],Initiator decomposition Initiation Propagation Monomer transfer Termination by combination Termination by disproportionation
Experiments/Equipment – Sensors ATR-FTIR Spectroscopy
Experiments/Equipment – Sensors ,[object Object],[object Object],[object Object]
Modeling of MWD ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modeling of MWD ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modeling of MWD ,[object Object],[object Object],[object Object],[object Object],[object Object],Polymer chain transfer
Parameter Estimation ,[object Object],[object Object],[object Object]
Model Validation
Uncertainty Analysis – Worst-case Output ,[object Object]
Worst-case Analysis of the  Molecular Weight Distribution ,[object Object]
Summary ,[object Object],[object Object],[object Object],[object Object]
Microparticle Distribution Outline NO YES design constraints & performance criteria Robust Optimization optimized design Hypothesis Mechanism Selection Experimental Data Collection Multiple Models Parameter Estimation experimental constraints Sensitivity & Uncertainty Analysis  Is model accurate? Experimental Design
Why Study Suspension Polymerization? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Why Study Suspension Polymerization? ,[object Object],[object Object],[object Object],[object Object]
What is Suspension Polymerization? Monomer Reaction Aqueous Phase: Water, Surfactant Monomer Droplets: Monomer, Initiator Heat of Reaction Time Final Particles
Suspension Polymerization Droplets Particles In Situ Video Microscopy Optical Microscopy
Sensor Technology – Suspension Polymerization ,[object Object],[object Object],[object Object]
Simulation of Polymerization Within Droplets
Simulation of Droplet Size Distribution using Population Balance Equation (PBE) Accounts for droplet breakage and coalescence and polymerization kinetics (i.e., increase in viscosity and volume contraction/expansion)
Simulation of Droplet Size Distribution ,[object Object],[object Object],[object Object],[object Object]
Parameter Estimation for  Droplet Size Distribution ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Comparison of Experiments and Model Predictions
Optimal Control Trajectories and Uncertainty Analysis ,[object Object],[object Object]
Uncertainty Analysis – Moments Output
Summary ,[object Object],[object Object],[object Object],[object Object]
Biological Distribution Outline NO YES design constraints & performance criteria Robust Optimization optimized design Hypothesis Mechanism Selection Experimental Data Collection Multiple Models Parameter Estimation experimental constraints Sensitivity & Uncertainty Analysis  Is model accurate? Experimental Design
Introduction ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction – Model Selection ,[object Object],[object Object]
Experiments/Equipment
Experiments/Equipment
Maximum Likelihood Parameter Estimates  for Single-bond Microscopic Model Model not accurate (total residual = 0.4194)
Proposed Double-bond Microscopic Model ,[object Object]
Maximum Likelihood Parameter Estimates for Double-bond Microscopic Model Model much more accurate (total residual = 0.0687)
Parameter Estimation – Model Identification ,[object Object],[object Object],[object Object]
Model Validation ,[object Object]
Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Overall Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Acknowledgments ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

More Related Content

Similar to A Systems Approach to the Modeling and Control of Molecular, Microparticle, and Biological Distributions

Medimmune_022108
Medimmune_022108Medimmune_022108
Medimmune_022108
WISBIOMED
 
AMS_Aviation_2014_Ali
AMS_Aviation_2014_AliAMS_Aviation_2014_Ali
AMS_Aviation_2014_Ali
MDO_Lab
 
Integrative information management for systems biology
Integrative information management for systems biologyIntegrative information management for systems biology
Integrative information management for systems biology
Neil Swainston
 
Planning of experiment in industrial research
Planning of experiment in industrial researchPlanning of experiment in industrial research
Planning of experiment in industrial research
pbbharate
 
NEURAL Network Design Training
NEURAL Network Design  TrainingNEURAL Network Design  Training
NEURAL Network Design Training
ESCOM
 
MRK2231-01_OD_broch_Viscosizer_TD_v2
MRK2231-01_OD_broch_Viscosizer_TD_v2MRK2231-01_OD_broch_Viscosizer_TD_v2
MRK2231-01_OD_broch_Viscosizer_TD_v2
Rajib Ahmed
 
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Leonardo ENERGY
 
AIAA-Aviation-VariableFidelity-2014-Mehmani
AIAA-Aviation-VariableFidelity-2014-MehmaniAIAA-Aviation-VariableFidelity-2014-Mehmani
AIAA-Aviation-VariableFidelity-2014-Mehmani
OptiModel
 
Computational Intelligence Approach for Predicting the Hardness Performances ...
Computational Intelligence Approach for Predicting the Hardness Performances ...Computational Intelligence Approach for Predicting the Hardness Performances ...
Computational Intelligence Approach for Predicting the Hardness Performances ...
Waqas Tariq
 

Similar to A Systems Approach to the Modeling and Control of Molecular, Microparticle, and Biological Distributions (20)

Medimmune_022108
Medimmune_022108Medimmune_022108
Medimmune_022108
 
Modeling MAPK with ODEs and Petri Nets
Modeling MAPK with ODEs and Petri NetsModeling MAPK with ODEs and Petri Nets
Modeling MAPK with ODEs and Petri Nets
 
Cornell Computational Chemistry Seminar
Cornell Computational Chemistry SeminarCornell Computational Chemistry Seminar
Cornell Computational Chemistry Seminar
 
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi MartinelliDSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli
DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli
 
AMS_Aviation_2014_Ali
AMS_Aviation_2014_AliAMS_Aviation_2014_Ali
AMS_Aviation_2014_Ali
 
Integrative information management for systems biology
Integrative information management for systems biologyIntegrative information management for systems biology
Integrative information management for systems biology
 
Verifications and Validations in Finite Element Analysis (FEA)
Verifications and Validations in Finite Element Analysis (FEA)Verifications and Validations in Finite Element Analysis (FEA)
Verifications and Validations in Finite Element Analysis (FEA)
 
Planning of experiment in industrial research
Planning of experiment in industrial researchPlanning of experiment in industrial research
Planning of experiment in industrial research
 
NEURAL Network Design Training
NEURAL Network Design  TrainingNEURAL Network Design  Training
NEURAL Network Design Training
 
MRK2231-01_OD_broch_Viscosizer_TD_v2
MRK2231-01_OD_broch_Viscosizer_TD_v2MRK2231-01_OD_broch_Viscosizer_TD_v2
MRK2231-01_OD_broch_Viscosizer_TD_v2
 
62 friesen field_data_requirements_for_the_validation_of_pv_module_performanc...
62 friesen field_data_requirements_for_the_validation_of_pv_module_performanc...62 friesen field_data_requirements_for_the_validation_of_pv_module_performanc...
62 friesen field_data_requirements_for_the_validation_of_pv_module_performanc...
 
From sensor readings to prediction: on the process of developing practical so...
From sensor readings to prediction: on the process of developing practical so...From sensor readings to prediction: on the process of developing practical so...
From sensor readings to prediction: on the process of developing practical so...
 
Modelling physiological uncertainty
Modelling physiological uncertaintyModelling physiological uncertainty
Modelling physiological uncertainty
 
Leveraging Feature Selection Within TreeNet
Leveraging Feature Selection Within TreeNetLeveraging Feature Selection Within TreeNet
Leveraging Feature Selection Within TreeNet
 
CAD v2
CAD v2CAD v2
CAD v2
 
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
 
A novel auto-tuning method for fractional order PID controllers
A novel auto-tuning method for fractional order PID controllersA novel auto-tuning method for fractional order PID controllers
A novel auto-tuning method for fractional order PID controllers
 
AIAA-Aviation-VariableFidelity-2014-Mehmani
AIAA-Aviation-VariableFidelity-2014-MehmaniAIAA-Aviation-VariableFidelity-2014-Mehmani
AIAA-Aviation-VariableFidelity-2014-Mehmani
 
Computational Intelligence Approach for Predicting the Hardness Performances ...
Computational Intelligence Approach for Predicting the Hardness Performances ...Computational Intelligence Approach for Predicting the Hardness Performances ...
Computational Intelligence Approach for Predicting the Hardness Performances ...
 
Grid Connected Electricity Storage Systems (1/2)
Grid Connected Electricity Storage Systems (1/2)Grid Connected Electricity Storage Systems (1/2)
Grid Connected Electricity Storage Systems (1/2)
 

A Systems Approach to the Modeling and Control of Molecular, Microparticle, and Biological Distributions

  • 1. A Systems Approach to the Modeling and Control of Molecular, Microparticle, and Biological Distributions Eric J. Hukkanen Dept. of Chemical & Biomolecular Engineering University of Illinois at Urbana-Champaign
  • 2.
  • 3. Components of the Systematic Approach NO YES design constraints & performance criteria Robust Optimization optimized design Is model accurate? Hypothesis Mechanism Selection Experimental Data Collection Multiple Models Parameter Estimation Experimental Design experimental constraints Sensitivity & Uncertainty Analysis
  • 4.
  • 5. Molecular Distribution Outline NO YES design constraints & performance criteria Robust Optimization optimized design Hypothesis Mechanism Selection Experimental Data Collection Multiple Models Parameter Estimation Experimental Design experimental constraints Sensitivity & Uncertainty Analysis Is model accurate?
  • 6.
  • 7.
  • 8. Experiments/Equipment – Sensors ATR-FTIR Spectroscopy
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 15.
  • 16.
  • 17.
  • 18. Microparticle Distribution Outline NO YES design constraints & performance criteria Robust Optimization optimized design Hypothesis Mechanism Selection Experimental Data Collection Multiple Models Parameter Estimation experimental constraints Sensitivity & Uncertainty Analysis Is model accurate? Experimental Design
  • 19.
  • 20.
  • 21. What is Suspension Polymerization? Monomer Reaction Aqueous Phase: Water, Surfactant Monomer Droplets: Monomer, Initiator Heat of Reaction Time Final Particles
  • 22. Suspension Polymerization Droplets Particles In Situ Video Microscopy Optical Microscopy
  • 23.
  • 24. Simulation of Polymerization Within Droplets
  • 25. Simulation of Droplet Size Distribution using Population Balance Equation (PBE) Accounts for droplet breakage and coalescence and polymerization kinetics (i.e., increase in viscosity and volume contraction/expansion)
  • 26.
  • 27.
  • 28. Comparison of Experiments and Model Predictions
  • 29.
  • 30. Uncertainty Analysis – Moments Output
  • 31.
  • 32. Biological Distribution Outline NO YES design constraints & performance criteria Robust Optimization optimized design Hypothesis Mechanism Selection Experimental Data Collection Multiple Models Parameter Estimation experimental constraints Sensitivity & Uncertainty Analysis Is model accurate? Experimental Design
  • 33.
  • 34.
  • 37. Maximum Likelihood Parameter Estimates for Single-bond Microscopic Model Model not accurate (total residual = 0.4194)
  • 38.
  • 39. Maximum Likelihood Parameter Estimates for Double-bond Microscopic Model Model much more accurate (total residual = 0.0687)
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.

Editor's Notes

  1. Provide a picture of the MWD
  2. The second item needs to be clearer Fourth item should list computer
  3. Is this section really simulation? Isn’t it really model validation? title should say what the purpose of the slide is, e.g., example comparison of model predictions with experimental data
  4. Figures are too small. It is not clear what the purpose of this slide is. Why not just use only the second set of plots?
  5. Isn’t this really the distributional results, not the worst-case results (see title)?