25/mayo/2011
ACTIVIDAD (LOGICA)
Asesoria
Realizarlassiguientestablasde verdad:
A) X^(X˅Y)
X Y X ^ (X˅Y)V V V V V V V
V F V...
C) ~ (m ˅~n) ^ m
mn ~ (m ˅ ~n) ^ m
V V F V V F F V
V F F V V V F V
F V V F F F F F
F F F V V V F F
D) (a˅~b) ^ (~m)
a b m(...
BIBLIOGRAFIA:
 http://www.edukativos.com/apuntes/archives/445
 http://www.buenastareas.com/ensayos/Introducci%C3%B3n-a-L...
Lógica Computacional y Programación es vital para entender la elaboración
del software ya que para esto se requiere que el...
 Las matemáticas y la lógica
Del año 600 aC hasta300 aC se desarrollan en Grecialosprincipios formalesde lasmatemáticas.E...
La obrasobre curvas cónicas de Apolonio de Perga, ungeómetrade laépocahelenística, inicialmentedirigido aeuclidianos
exqui...
 Nikolai I. Lobachevsky
Matemático ruso, 1792-1856; fundalaGeometríaNo Euclidianay renuevapor ello los fundamentos quehas...
(ecuaciones) entreellas.Boole dio un método generalparaformalizar lainferenciadeductiva, representando complicados
racioci...
 La Revolución Digital
Estarevolución se iniciacon lainvención de lacomputadoradigital y elacceso universal alas redes de...
El gran impulsor de lamatemáticacontemporáneay pionero de lageometríafractal6 aquien lacomputación purarevelala
moderna Ge...
La programación lógica consiste enla aplicación del corpus de conocimiento sobre lógica para
el diseño de lenguajes de pro...
> Las constantes, representadas poruna cadena de caracteres, pueden ser números o cualquier cadena que
comience en minúscu...
permitiera una rápida adaptación a nuevas reglas: se reemplazó el módulo de tasaciones, construyendo
un módulo lógico con ...
Así, la conclusión de un silogismo se encuentra eliminando el término medio de un sistema de tres ecuaciones,
conforme a l...
La lógica se ocupa de la validez de los racionamientos y no de la verdad de los enunciados que los
constituyen (le verdad ...
Ejemplo #2
-Si las matemáticas es una ciencia inexacta, entonces dos mas dos no siempre es cuatro. Es así que las
matemáti...
Actividad logica(true tables)
Próxima SlideShare
Cargando en…5
×

Actividad logica(true tables)

602 visualizaciones

Publicado el

  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Actividad logica(true tables)

  1. 1. 25/mayo/2011 ACTIVIDAD (LOGICA) Asesoria Realizarlassiguientestablasde verdad: A) X^(X˅Y) X Y X ^ (X˅Y)V V V V V V V V F V V V V F F V F F F V V F F F F F F F B) ~a ^ y a y ~a ^ yV V F F V V F F F F F V V V V F F V F F
  2. 2. C) ~ (m ˅~n) ^ m mn ~ (m ˅ ~n) ^ m V V F V V F F V V F F V V V F V F V V F F F F F F F F V V V F F D) (a˅~b) ^ (~m) a b m(a ˅ ~b) ^ (~m) V V V V V F F F V V F V V F F V V F V V V V F F V F F V V V F V F V V F F F V F F V F F F F F V F F V F V V V F F F F F V V F V
  3. 3. BIBLIOGRAFIA:  http://www.edukativos.com/apuntes/archives/445  http://www.buenastareas.com/ensayos/Introducci%C3%B3n-a-La- Logica/56300.html  http://html.rincondelvago.com/la-logica_computacional-difusa- simbolica-y-proporcional.html  http://www.cobat.edu.mx/Gu%C3%ADas_Educativas/Gu%C3%ADas_3- 4-5- 6_Plan_Anterior/Bloque%205%20acrobat/L%C3%B3gica%20computaci onal/L%C3%B3gica%20computacional_proce.pdf  http://www.amzi.com/articles/code07_whitepaper.pdf  http://apuntes.rincondelvago.com/logica-de-la-programacion.html  http://w3.mor.itesm.mx/logical/log9808/evolución.html.  http://www.unibague.edu.co/~gustavo.martinez/cursos/lc/EvoLogica .htm  http://www.psicomundo.com/enlaces/internet/boole.htm  http://www.euclides.org/menu/articles/article101.htm  http://www.saber.ula.ve/bitstream/123456789/16221/2/lm-u5.pdf  http://biblioteca.universia.net/html_bura/ficha/params/title/unidad-5- aplicaciones-logica-computacional/id/37658018.html  http://html.rincondelvago.com/razonamiento-logico_1.html  http://blogs.ua.es/ignaciolog/category/logica-computacional/
  4. 4. Lógica Computacional y Programación es vital para entender la elaboración del software ya que para esto se requiere que el programador tenga un pensamiento lógico, razonado y sistemático, para plasmar dichos procesos de uso cotidiano en sentencias entendibles por la computadora. Es la encargada de dar a conocer los valores de una estructura o serie de datos para así poder darles solución a problemas lógicos. Este tipo de lógica se deriva también de la lógica matemática que se usa para las ciencias computacionales, el uso de esta es necesario en diversos niveles, tal es el caso de los circuitos computacionales, en la programación y en el análisis y optimización (de recursos temporales y espaciales) de algoritmos.  SU EVOLUCION: El nacimiento de la lógica propiamente dicho está directamente relacionado con el nacimiento intelectual del ser humano. La lógica emerge como mecanismo espontáneo en el enfrentamiento del hombre con la naturaleza, para comprenderla y aprovecharla. Poncairé destaca cinco etapas o revoluciones en ese proceso que se presentan entre dos grandes tópicos: del rigor y la formalidad, a la creatividad y el caos. Las etapas se identifican como: Revolución Matemática, Revolución Científica, Revolución Formal y Revolución Digital además de la próxima y prevista Revolución Lógica.  Lógica Matemática La lógicamatemáticacuestionacon rigor los conceptosy las reglas dededucción utilizados en matemáticas lo que convierte lalógicaen unaespecie de metamatemática. Una teoríamatemáticaconsideraobjetosdefinidos -enteros, por ejemplo-y define leyes querelacionan aestosobjetos entresí, losaxiomas de lateoría. De losaxiomas se deducennuevasproposiciones -los teoremas-,y aveces,nuevosobjetos.Laconstrucción de sistemasformales-formalización, piedraangular de lalógica matemática-, permite eliminar laarbitrariedad en laelección de los axiomas y definir explícitay exhaustivamente lasreglas de ladeducción matemática.
  5. 5.  Las matemáticas y la lógica Del año 600 aC hasta300 aC se desarrollan en Grecialosprincipios formalesde lasmatemáticas.Esteperiodo clásico lo protagonizan Platón, Aristóteles y Euclides. Platón proponeideas o abstracciones.Aristótelesresuelveel razonamiento deductivo y sistematizado. Euclides eselautor que estableceelmétodo axiomático. En los Elementos Euclidesorganizalas pruebas deductivas de que dispone dentro de unaestructurasistemática, rigurosa, altamente eficaz.  Platón Platón, 427aC - 347 aC, propone instaurar en Siracusaunautópicarepúblicadirigidapor filósofos. CrealaAcademiade Atenas que no erasolo unainstitución filosófica, sino centro de formación políticaparajóvenes aristócratas. Según algunos especialistas, Platón edificasu teoríadelconocimiento con elfin de justificar elpoderemergente delafiguradelfilósofo. Sostiene laexistenciade dosmundos -elmundo delas ideasy el de mundo físico de los objetos. Según Platón,lo concreto se percibe en función de lo abstracto y por tanto el mundo sensible existegracias al mundo delas ideas. Platónescoge el formato diálogo como formade transmisión delpensamiento.  Aristóteles Los tratados de lógicade Aristóteles, 384aC - 332 aC, conocidos como Organón, contienen el primer tratado sistemático de las leyes de pensamiento paralaadquisición de conocimiento. Representan elprimerintento serio quefundalalógicacomo ciencia. Aristótelesno hace de lalógicaunadisciplinametafísicasino queestablece correspondencias recíprocas entre pensamiento lógico y estructuraontológica. El silogismofue adoptado por losescolásticos querepresentan el sistema teológico-filosófico,característico de laEdad Media. Laescolástica, sin embargo, acabó por sobrecargar lateoríadel silogismo, lo que acarreó sudescrédito apartir delRenacimiento. Los lógicos delaedad modernacomo Ramée,Arnauld, Nicole, Leibniz, Euler, y Lambert procuraron simplificarlaal máximo, y su tratamiento matemático se completó hasta principios del siglo XX con Boole, De Morgan,Frege y Russell.Desde entonces el silogismoseincluyeen lalógicade predicados de primer orden y en lalógicade clases,y ocupaen laciencialógicaun papelmuchomenor que en otros tiempos.  Euclides Matemático alejandrino autor de launiversal obra, loscélebres Elementos. Uno delostextos matemáticos másrelevantes de lahistoriadel pensamiento científico hastadel siglo XIX. Los Elementos están divididos en XIII Libros y constituyen la recopilación más exhaustivade las matemáticas conocidasen elaño 300 aC. Su valor universal lo propagaeluso riguroso del método deductivo que distingueentreprincipios -definiciones, axiomas y postulados-, y teoremas, quesedemuestran apartir de los principios. A lo largo de lahistoriase mantuvo lasospechade queel quinto postulado erademostrable apartir de los anteriores. El deseo deresolver tal hipótesis ocupahastaelsiglo XIX con laconstrucción delas geometrías no euclidianas y se deduce con ellaslaimposibilidad de demostrar el quinto postulado.  Apolonio de Perga
  6. 6. La obrasobre curvas cónicas de Apolonio de Perga, ungeómetrade laépocahelenística, inicialmentedirigido aeuclidianos exquisitos, se convirtió en manual parabalísticos del Renacimiento como Tartagliay, poco después, en baseinmediatade la dinámica newtoniana.  La ciencia matemática Ante el retroceso delaescuelaclásicade los griegos sepresentan periodosde autoridad religiosa. ElRenacimiento es elinicio de unanuevarevolución que revive lacienciay las matemáticas. Los representantes másdestacados son Descartes, Newton y Leibniz. Este periodo abarcadel año 1500dC al 1800 DC.  René Descartes Filósofo y matemático francés, 1596-1650, parte deladudauniversal como principio y prescinde decualquier conocimiento previo que no quede demostrado por laevidenciacon quehade manifestarseelespíritu.Descartesdudade todaenseñanza recibida, de todo conocimiento adquirido, del testimonio de lossentidos eincluso de lasverdadesde orden racional.Llegado a este punto, hallaunaverdad de laqueno puededudar: laevidenciainterior quese manifiestaen su propio sujeto («pienso, luego existo»). Como científico,se debe aDescartes, entreotras aportacionesde considerable importancia, lacreación de la geometríaanalíticaalavez que aportaun corpus cuantitativo al asunto y permite elusode métodos algebraicos.La geometríaexige sercuantitativaparaser usadaen cienciae ingeniería, y los métodosalgebraicos permiten el desarrollo más rápido que los métodos sistemáticos -asuvez más rigurosos- requeridospor elenfoque axiomático de lageometríaclásica. Ubi dubium ibi libertas, donde hay dudahay libertad.  Isacc Newton A Isacc Newton 1642-1727, se ledebeeldescubrimiento de lagravitación universal, eldesarrollo del cálculo infinitesimal e importantes descubrimientos sobre óptica, asícomo lasleyesque rigenlamecánicaclásicaque alimentaríael nacimiento dela mecánicacuántica. Su obrafundamental, Principios matemáticos de la filosofía natural (1686).  Gottfried W. Leibniz Filósofo y matemático alemán, 1646-1716; fundó laAcademiade Ciencias de Berlín, 1700.En Discurso sobre el arte combinatorio enuncialanecesidad de un lenguaje riguroso,exacto y universalpuramente formal. Como matemático, su principal trabajo publicado en 1684 es lamemoria Nuevo método paraladeterminación delos máximos y losmínimos, en la que expone las ideas fundamentales del cálculo infinitesimal, anticipándoseunos añosaNewton. Lanotación que empleó es particularmente cómoday se sigue utilizando conalgunasmodificaciones; introdujo elsímbolo de integral y de diferencial de unavariable. En el áreade lógicamatemáticapublica Generalesinquisitionesde analysinotionum et veritatum y Fundamenta calculi logici.  Georg Wilhelm Friedrich Hegel Filósofo alemán, 1770-1831; fascinado por laobrade Kant y de Rousseau.Autorde Ciencia de la lógica se le atribuyecon este trabajo laconstitución de la lógica dialéctica entendidacomo principio motor delconcepto que disuelve y produce las particularidades de lo universal.
  7. 7.  Nikolai I. Lobachevsky Matemático ruso, 1792-1856; fundalaGeometríaNo Euclidianay renuevapor ello los fundamentos quehastaese momento cimentaban lacienciade laGeometría. Lobachevsky llevaacabo su revolución en elplanteamiento quehastaentonces había utilizado lacienciaMatemáticapara resolver elenigmadelquinto postulado deEuclidesque asu vez sirve de puertaa Lobachevsky paraadentrarse en los renovados camposde lo físico y lo real.  Formalización de las Matemáticas Estaetapase caracterizapor el resurgimiento de laformalización rigurosade las matemáticas, que en laetapaclásicagriega fué representativa. El uso de losinfenitesimalesfueunade las prácticas más notoriaen laépocarenacentista, paralacual no se ofrecíaunajustificación. Larigorización del análisis llegó con laeliminación de losinfinitesimalesy lapresenciade los límites como argumento. Eneste periodo se crealalógicasimbólica, laescuela formal,lalógicabooleana, elcálculo proposicional, lainducción matemática, el cálculo desecuentes,.... Personajes muy notablesde estaetapason:Peano, Hilbert, Frege, Boole, de Morgan, Gentzen, Russell, Gödel y Whitehead.A Rusell y Gödelse deben los planteamientos delas limitantes de lalógicay de lacienciaen general.  Guiseppe Peano La enunciación de los principios del italiano GuiseppePeano, 1858-1932, acercade lógicamatemáticay su aplicación práctica quedaron contenidos en suobra Formulaire de mathematiques. Los axiomas de Peano permiten definir el conjunto de los números naturales.  David Hilbert Matemático alemán, 1862-1943, aportagrandesavancesacampos fundamentales delarelatividad y lamecánicacuánticacon laTeoríade Invariantes y el concepto deEspaciode Hilbert. A partir de lasfuentesgriegas de Euclides, publicaen 1899su obra Fundamentos de Geometría, en laque formulasusprincipios de axiomatización de lageometría. Según susteorías, es necesario establecer unconjunto de postulados básicosantesde plantear de modo másdetallado cualquier tipo de problema físico o matemático. Estos principios debensersimbólicos, sin recurrir adibujos y representaciones gráficas, y esnecesario preveer lamayoríade las posibilidades con antelación.Su concepción reconocíatressistemas deentes geométricos,puntos, rectas y planos alos que pueden aplicarse axiomasdistribuidos en cinco categorías: pertenencia, orden, igualdad o congruencia, paralelismo y continuidad.  Friedrich G. Frege Junto con Boole y Peano, el matemático y lógico Friedrich G. Frege,1848-1925, partiendo delanálisis de los fundamentos dela matemáticallevaacabo lamás profundarenovación y desarrollo de lalógicaclásicahastaelmomento. Eselprimero en introducir los cuantificadores u operadoresy en elaborar unaTeoríade laCuantificación.  George Boole El lógico y matemático George Boole, 1815-1864 aplicaelcálculo matemático alalógica, fundando el álgebrade lalógica. En cierto modo realizael sueño deLeibniz de una characteristica universalis o cálculo delraciocinio. El empleo de símbolosy reglas operatorias adecuadospermiterepresentar conceptos, ideasy razonamientosmediantevariables y relaciones
  8. 8. (ecuaciones) entreellas.Boole dio un método generalparaformalizar lainferenciadeductiva, representando complicados raciocinios mediante sencillossistemas deecuaciones.Así, laconclusión de un silogismo se encuentraeliminando eltérmino medio de un sistemade tresecuaciones,conforme alas reglasdelálgebracomún, Laformalización de lalógica, iniciadapor Boole, hacontribuido poderosamenteaaclarar laestructurade losobjetos lógicos,en contraposición alos materialesy aun en contraposición alos matemáticos, pese alas analogías formalesentrelamatemáticay lalógica, que Boole señaló. Suobra principal es Investigación de las leyes del pensamiento en las quese fundan las teorías matemáticas de lalógicay la probabilidad, 1854, que aún hoy se lee condeleite.  Augustus De Morgan La mayor contribución de Augustus DeMorgan (1806-1871) en el estudio delalógicaincluyelaformulación de las Leyes de Morgan y su trabajo fundamentalateoríadel desarrollo delas relaciones y lamatemáticasimbólicamodernao lógica matemática. De Morgan es autor de lamayor contribución como reformador de lalógica.  Georg F. Cantor Al matemático alemán Georg F. Cantor,1845-1918, sedebelaideadelinfinitocontinuo, esdecir, laposibilidad de considerar conjuntos infinitos dados simultáneamente. Se leconsideraelcreador delateoríade losnúmerosirracionalesy de los conjuntos.  Gentzen El alemán Gentzen(1909-1945) formuló lapruebade laconsistenciade un sistemade aritméticaclásicaen elcual elmétodo no elemental esunaextensión de inducción matemáticaapartir de unasecuenciade númerosnaturalesaun cierto segmento de números ordinalestransfinitos.  Bertrand Rusell Bertrand Rusell(1872-1970) esuno de los creadoresde lalogísticay uno de lospensadores demayor influenciaen lafilosofía científicacontemporánea. Lo fundamental en su obraes su aportación alalógica. Antiaristotélico por excelenciallegó a afirmar que parainiciarse en lógica lo básico erano estudiar lalógicade Aristóteles. Conociendo lostrabajos de Cantor descubre en la Teoríade Conjuntos varias paradojas que resuelvemediantelaTeoríade los Tipos. Añosmás tardeestablece unateoríasimilar, -lade lajerarquíade los lenguajes- paraeliminar lasparadojas semánticas. Siguiendo ademásde lostrabajos de Cantor, aPeano y Frege, Rusellse propone fundamentar y axiomatizar lamatemáticaapartir de conceptoslógicos. Este empeño culminacon lapublicación (1910-1913) de losmonumentalesPrincipia Mathematica -encolaboración con Whitehead-, obraque, además, sientalas bases de lamodernalógicaformal.  Kurt Gödel Kurt Gödel (1906-1978) aportamúltiples contribucionesalalógicamatemática, destacando lademostración de laconsistencia de la hipótesis cantoriana delcontinuo y elteorema y prueba de incompletez semántica. En Sobre las proposiciones indecidibles de los sistemas de matemática formal establece queesimposibleconstruir un sistemadecálculo lógico suficientementerico en el que todos susteoremas y enunciados sean decidiblesdentro delsistema. Con esteteoremasedemostró definitivamente que eraimposiblellevar acabo el programade laaxiomatización completade lamatemáticapropugnado por Hilbert y otros, yaque, según él, no puede existir unasistematización coherente delamismatal quetodo enunciado matemático verdadero admitademostración. Siemprehabráenunciadosque no son demostrablesnirefutables. Paraprobar estaaserción se sirvió de lamatematización de lasintaxis lógica.
  9. 9.  La Revolución Digital Estarevolución se iniciacon lainvención de lacomputadoradigital y elacceso universal alas redes dealtavelocidad. Turing relacionalógicay computación antes que cualquier computadoraprocese datos. Weiner fundalacienciade laCibernética. En las Escuelas modernasde Computación están presentes Lógicosque han permitido avances importantes como Hoare que presentaun sistemaaxiomático de los sistemas de programación y Dijkstra con un sistemade verificación y deducción de programas apartir de especificaciones.  Alan Turing Matemático y Lógico pionero en Teoríade laComputación que contribuye aimportantes análisislógicosde losprocesos computacionales. Las especificacionesparalacomputadoraabstractaqueél idea -conocidacomo Máquina de Turing-, resulta ser unade sus más importantes contribucionesalaTeoríade laComputación. Turing ademáspruebaquees posibleconstruir unamáquinauniversal con unaprogramación adecuadacapaz de hacer el trabajo de cualquier máquinadiseñadapara resolver problemas específicos. LaMáquinade Turing es un intento paradeterminar silamatemáticasepuedereducir aalgún tipo simple de computación. Su objetivo fuédesarrollar lamáquinamás simple posible capaz de realizar computación. La máquinapropuestapor Turing es un dispositivo relativamente simple, pero capaz de realizar cualquier operación matemática. Turing se ilusionó con laideade que su máquinapodíarealizar cualquier proceso delcerebro humano, inclusive la capacidad de producir concienciade uno mismo.  Norbert Weiner El científico norteaméricano NorbertWeiner (1894-1964) en1947 publicasu libro más famoso: Cibernética, o control y comunicación en el animaly la máquina; endonde se utilizapor primeravez lapalabraCibernética. Existenmuchasdefiniciones de Cibernética -del griego kybernetes, piloto-,y Norbert Weiner davidaalapalabracon unadefinición simple: La Cibernética es la ciencia que estudia la traducción de procesos biológicos a procesos que reproduce una máquina. Desde los inicios la Cibernéticase relacionadirectamentecon ciencias como Neurología, Biología, Biosociología, Robóticae InteligenciaArtificial.  Luitzen Egbertus Jan Brouwer Matemático y lógico alemán (1881-1966) conocido como LEJ Brouwery fundador delaescuelade laLógicaintuicionista contrarrestando definitivamenteelformalismo de Hilbert.Miembro delSignificsGroup son significativos sus trabajos Life, Art and Mysticism (1905) y Sobre la infiabilidadde los principios lógicos.  Alfred Tarski Matemático y lógico y filósofo polaco (1902-1983).Emérito profesor delaUniversity of California, Berkeley,realiza importantes estudios sobre álgebraengeneral,teoríade mediciones,lógicamatemática, teoríade conjuntos, y metamatemáticas. El trabajo de Tarski5 incluyerespuestasala paradojade Banach-Tarski, elteorema de laindefinibilidad de laverdad, las nociones de cardinal, ordinal, relación y es inductor de las álgebras cilíndricas.  Benoit Mandelbrot
  10. 10. El gran impulsor de lamatemáticacontemporáneay pionero de lageometríafractal6 aquien lacomputación purarevelala moderna Geometría de la Naturaleza. Fractal y geometríafractal son el corpus principal de susinvestigaciones además de los sistemas irreversibles. A laprácticatotalidad de disciplinas seaplican hoy susprincipios dando por sentado paradigmas como laTeoríadel Caos que afinales delsiglo XX yacontemplabael estudio de sistemas dinámicos, irreversibles,caóticos.  La siguiente revolución lógica La siguiente Revolución Lógicaincorporalafusión entre matemáticas y computación.Las computadorastiendenaexplorar datos inteligentemente transfiriendo información de lasbasesde datos alas basesde conocimiento interconectadas através de laRed a escalainfinitesimal. La lógicaevolucionapues como un genhacialaculminación delconocimiento libre quenace delrigor formal de laMatemática griega; emerge renovadamentede etapas de persecución tan oscuras como laEdad Mediay otros intentosmás recientes;hastael intercambio constante y continuo de datos enlamodernaerade estructurade redesqueInternet proporcionaamodo neuronala laHumanidad.
  11. 11. La programación lógica consiste enla aplicación del corpus de conocimiento sobre lógica para el diseño de lenguajes de programación; no debe confundirse con la disciplina de la lógica computacional. La programación lógica comprende dos paradigmas de programación: la programación declarativa y la programación funcional. La programación declarativa gira en torno al concepto de predicado, o relación entre elementos. La programación funcional se basa enel conceptode función (que no es más queuna evolución de los predicados), de corte más matemático. ADEMAS . . . Junto con la funcional, forma parte de lo que se conoce como programación declarativa. En los lenguajes tradicionales, la programación consiste en indicar cómo resolver un roblema mediante sentencias; en la programación lógica, se trabaja de una forma descriptiva, estableciendo relaciones entre entidades,indicando no cómo, sino qué hacer. La ecuación de Robert Kowalski (Universidad de Edimburgo) establece la idea esencial de la programación lógica: algoritmos = lógica + control.Es decir, un algoritmo se construye especificando conocimiento en un lenguaje formal (lógica de primer orden), y el problema se resuelve mediante un mecanismo de inferencia (control) que actúa sobre aquél. SU PRIMER REPRSENTANTE ES “PROLOG” (Ejemplos & Definiciones) Prolog El lenguaje Prolog, principal representante del paradigma, se basa en un subconjunto de la lógica de primer orden (restricción de la forma clausal de la lógica denominada cláusulas de Horn). Philippe Roussel y Alain Colmerauer (Universidad de Aix-Marseille)lo crearon en 1972, y su base teórica se debe en gran parte a Kowalski. Estructuras básicas Prologcuenta con dos tipos de estructuras: términos y sentencias. Los términos pueden ser constantes, variables o functores:
  12. 12. > Las constantes, representadas poruna cadena de caracteres, pueden ser números o cualquier cadena que comience en minúscula. > Las variables son cadenas que comienzan con una letra mayúscula. > Los functores son identificadores que empiezan con minúscula, seguidos de una lista de parámetros (términos) entre paréntesis, separados porcomas. Las sentencias son reglas o cláusulas. Hay hechos, reglas con cabeza y cola, y consultas. > Un hecho establece una relación entre objetos, y es la forma más sencilla de sentencia. Porejemplo: humano (socrates). ama (juan,maría) Se establece que Sócrates es humano y que Juan ama a María. > Una regla permite definirnuevas relaciones a partir de otras ya existentes. Si queremos establecer que todo humano es mortal, en lógica estándar escribiríamos V(x)(humano(x)=>mortal(x)), mientras que en Prolog escribimos: mortal(X):-humano(X). Esto se lee: X (variable)es mortal si X es humano. El símbolo :- significa “si” o, si lo leemos de derecha a izquierda, entonces o implica. En esta regla, mortal(X) es la cabeza, y humano(X) es el cuerpo. > Para entenderel concepto de consulta, veamos un ejemplo. En lógica estándar: > V(x)(humano(x)=>mortal(x)) > humano(socrates) > entonces mortal (socrates) > Partiendo de que los humanos son mortales y de que Sócrates es humano, deducimos que Sócrates es mortal. Para realizar esa deducción en Prolog, hay que preguntar si es mortal Sócrates, o quién es mortal. Si del programa lógico (conjunto de hechos y reglas) se deduce que Sócrates es mortal, entonces ésa será la respuesta que obtendremos. OPERADORES ARITMETICOS: / División (retorna siempre en punto flotante) // División entera (trunca) mod Resto de división ** Potenciación RELACIONALES > Mayor que < Menor que >= Mayor o igual que =< Menor o igual que =:= Aritméticamente igual == Aritméticamente diferente Ejemplo: Java y Prolog: Veamos un caso real de utilización de Prolog en una aplicación Java: se trata de una compañía que brinda servicios para manejar el financiamiento de propiedades. El centro de sus servicios es una aplicación web que permite a sus clientes buscar la mejor solución para un préstamo hipotecario. El módulo de cotizaciones fue desarrollado utilizando 5000 líneas de código Java y varias tablas de una base de datos; es el más crítico y el que soporta el mayor peso de las reglas de negocio. Era necesario cambiarlo todo el tiempo para adaptarse a nuevas reglas y factores de tasación. A esto se agregaba un largo ciclo de afirmación de calidad, dado que la modificación de código procedural para realizar las adaptaciones era proclive a producir errores nuevos. Se precisaba una solución con menos errores y que
  13. 13. permitiera una rápida adaptación a nuevas reglas: se reemplazó el módulo de tasaciones, construyendo un módulo lógico con Amzi!, y en dos meses las 5000 líneas Java y las 18tablas de la base habían dado lugar a sólo 500 líneas Prolog. La base lógica resultante estaba casi libre de errores, y el ciclo de modificación/prueba se redujo en gran forma. El resto de la aplicación sigue en Java, aunque se planea migrar módulos particularmente complejos.  SU EVOLUCION: La mayoría de los lenguajes de programación lógica se basan en la teoría lógica de primer orden, aunque también incorporan algunos comportamientos de orden superior. En este sentido, destacan los lenguajes funcionales, ya que se basan enel cálculo lambda, que es la única teoría lógica de orden superior que es demostradamente computable (hasta el momento). Gorge Boole fue el que logro aplicarel cálculo matemático a la lógica, fundando el álgebra de la lógica. En cierto modo realiza el sueño de Leibnizde una characteristica universalis o cálculo del raciocinio. El empleo de símbolos y reglas operatorias adecuados permite representar conceptos, ideas y razonamientos mediante variables y relaciones (ecuaciones) entre ellas. En este caso, los conjuntos serian lo que quedan definidos poruna palabra, es decir, serian conjuntos definidos por intensión, así, a partirde diferentes palabras se definen conjuntos de páginas agrupadas porel hecho de incluir(o no)esa determinada palabra. Estos conjuntos tendrán, entre si, elementos en común, y elementos que no. Una manera de precisar o afinar nuestra búsqueda consistirá en utilizar estos operadores booleanos para precisarel campo de nuestro interés. Las principales opciones son: OR - se suman los conjuntos definidos pordos palabras, es decir, la respuesta sera todas aquellas referencias donde aparezcan, indistintamente, UNAU OTRA de las palabras indicadas para busqueda. AND - se trata de la intersección de los conjuntos definidos porlas dos palabras, es decir, solo aquellas referencias que contengan AMBAS palabras a la vez NOT - en este caso, aquellas referencias que tengan la primerpalabra y no la segunda, es decir, un primerconjunto, amputado de su parte común con otro. NEAR - como el AND pero con la exigencia suplementaria de una cercania entre las palabras Es de suponer que las utilidades OR y AND son bastante obvias. Si hay dudas pueden escribirnos para preguntarnos. Les daremos, en cambio, algunos ejemplos sobre el uso de las otras opciones, que podrian no sertan obvias. Boole dio un método general para formalizarla inferencia deductiva, representando complicados raciocinios mediante sencillos sistemas de ecuaciones.
  14. 14. Así, la conclusión de un silogismo se encuentra eliminando el término medio de un sistema de tres ecuaciones, conforme a las reglas del álgebra común. La formalización de la lógica, iniciada porBoole, ha contribuido poderosamente a aclararla estructura de los objetos lógicos, en contraposición a los materiales y aun en contraposición a los matemáticos, pese a las analogías formales entre la matemática y la lógica, que Boole señaló. Su obra principal es Investigaciónde las leyes del pensamiento en las que se fundan las teorías matemáticas de la lógica y la probabilidad (1854) que aún hoy se lee con satisfacción y agrado. Algunasaplicaciones de la lógica, es por ejemplo en circuitos lógicos Binarios ( o también llamados Binary Gates): AND: 1 AND 1 = 1; 1 AND 0 = 0 OR: 1 OR 1 = 1; 1 OR 0 = 1; 0 OR 0 = 0 Exclussive OR: 1 XOR 1 = 0; 1 XOR 0 =1; 0 XOR 0 = 0 AND, OR, XOR son OperadoresLógicos. Hay otros como NOR y NAND. Aplicando teoremas de lógica se pueden transformarpor ejemplo de AND a OR. Tambien se puede usar lógica por ejemplo analizando unaoración, ya que de esta manera es mas fácil y notorio ver el como se utiliza el razonamiento lógico para llegara conclusiones o resolverproblemas logicos: En la oración: Si no llueveiré jugar afuera. 1) Llueve,entonces no iré (cierto). 2) No llueve,entonces no iré (falso).
  15. 15. La lógica se ocupa de la validez de los racionamientos y no de la verdad de los enunciados que los constituyen (le verdad es cuestión de las ciencias o del sentido común). Lo que interesa a la lógica es el estudio de las relaciones formales entre los enunciados. Un argumento, racionamiento, inferencia es formalmente valida cuando de la verdad de las premisas se sigue necesariamente la verdad de la conclusión o lo que es lo mismo un razonamiento es valido cuando es imposible que las premisas sean verdaderas y que la conclusión sea falsa. Ejemplo de razonamiento formalmente valido: Ejemplo #1 : -Todo número entero positivo es divisible por uno. *Siete es un número entero. *Siete es divisible por uno.
  16. 16. Ejemplo #2 -Si las matemáticas es una ciencia inexacta, entonces dos mas dos no siempre es cuatro. Es así que las matemáticas es una ciencia inexacta. *En este caso el razonamiento es valido pero los enunciados que lo integran son falsos, por tanto comprobamos que la capacidad lógica no tiene nada que ver con la verdad material de los enunciados. *Lo básico y lo fundamental en todo razonamiento es la necesidad que se establece entre las premisas y la conclusión, de modo que la verdad de las primeras lleva inevitablemente a la verdad de la conclusión.

×