SlideShare una empresa de Scribd logo
1 de 82
Descargar para leer sin conexión
MANUFACTURING TECHNOLOGIES
CNC
by Endika Gandarias
BACHELOR OF ENGINEERING
2by Endika Gandarias
Dr. ENDIKA GANDARIAS MINTEGI
Mechanical and Manufacturing department
Mondragon Unibertsitatea - www.mondragon.edu
(Basque Country)
www.linkedin.com/in/endika-gandarias-mintegi-91174653
Further presentations: www.symbaloo.com/mix/manufacturingtechnology
3
CONTENTS
 BIBLIOGRAPHY
 INTRODUCTION
 REFERENCE SYSTEMS
 BASIC ISO PROGRAMMING
 FIXED CANNED CYCLES
 EXERCISES
 FAGOR SIMULATOR
 GLOSSARY
by Endika Gandarias
4
BIBLIOGRAPHY
BIBLIOGRAPHY
by Endika Gandarias
5
The author would like to thank all the bibliographic references and videos that
have contributed to the elaboration of these presentations.
For bibliographic references, please refer to:
• http://www.slideshare.net/endika55/bibliography-71763364 (PDF file)
• http://www.slideshare.net/endika55/bibliography-71763366 (PPT file)
For videos, please refer to:
• www.symbaloo.com/mix/manufacturingtechnology
BIBLIOGRAPHY
by Endika Gandarias
6
INTRODUCTION
INTRODUCTION
by Endika Gandarias
7
1942 Bendix Corporation, a USA helicopter blade manufacturing company,
needs three-dimensional cam parts.
 Coordination of movements is necessary.
1947 John Parson (a Bendix corporation worker) using punched tapes
is able to control simultaneously axes movements of a machine
 MIT collaborates
1953 Numerical Control (NC) term appears at M.I.T.
1960 Adaptative Control term appears at M.I.T.
1970 Computer Numerical Control (CNC) is created
 Microprocessors origin.
1980 Direct Numerical Control (DNC) is possible.
A large number of machines are controlled by a computer.
INTRODUCTION
by Endika Gandarias
Brief history
Definition
 CNC (Computer Numerical Control (CNC) refers to the method of controlling a machine tool or
the machining process by means of a computer.
 Coded numerical instructions are inserted into the CNC  PROGRAMMING LANGUAGE
NC Punched Tape
8
Machine control feedback: position & velocity
CNC block diagram
INTRODUCTION
by Endika Gandarias
Velocity
Feedback
Position
Feedback
VIDEO
VIDEO
CNC machine tool description Loop control types
OPEN LOOP
CLOSED LOOP
9
 Every position of an absolute device is unique.
 The disk has many circular tracks, the higher the
number of tracks the higher the resolution.
 These devices do not lose position when power
is removed (homing sequence not needed on
startup).
 They do not accumulate errors (not affected by
noise signal).
 They are more complex and expensive.
INTRODUCTION
by Endika Gandarias
CNC machine tool description
Feedback devices
ABSOLUTE ROTARY ENCODER INCREMENTAL ROTARY ENCODER
 The feedback signal is always referenced to a start
or home position. They need an external processing
of signals.
 In the event of a power failure, it must be
reinitialized.
 They are susceptible to noise, thus, errors.
 They are simpler and cheaper.
An encoder is a sensor for converting rotary
motion or position to analog/digital signal.
VIDEO VIDEO
VIDEO
10
 It measures directly the position of linear axes.
 High positioning accuracy.
 High permissible traversing speed.
 It can correct next errors:
 Positioning error due to thermal behavior of the recirculating ball screw.
 Reversal error.
 Kinematics error through ball-screw pitch error.
INTRODUCTION
by Endika Gandarias
CNC machine tool description
Feedback devices
LINEAR GLASS SCALE ENCODER
VIDEO
VIDEO
Absolute glass scale
Incremental glass scale
VIDEO
11
INTRODUCTION
Advantages
 High Repeatability + High Trueness = High Accuracy.
 More complex 3-dimensional geometries.
 Better quality.
 Higher productivity.
 Greater safety and lower operator qualification.
 Greater flexibility to part changes.
 Minimizes human errors.
Disadvantages
 Higher investment cost.
 Higher maintenance cost.
 Time consuming set-up.
 Training is needed for CNC programming.
Increasing Repeatability
IncreasingTrueness
by Endika Gandarias
CNC FAGOR - USER MANUAL
www.fagorautomation.com/download/
12
Type of machines
 Turning Centers
 Milling Centers
 Machining Centers
 Drilling Machines
CNC manufacturers
INTRODUCTION
by Endika Gandarias
 Grinding Machines
 EDM Machines
 Laser-Cutting Machines
 …
13by Endika Gandarias
The axes are named
according to DIN 66217.
Axis nomenclature
VIDEO
Three-axes milling machine
Six-axis milling machine
Turning machine
VIDEO
A+
C+
B+
INTRODUCTION
14
Reference systems
by Endika Gandarias
INTRODUCTION
VIDEO
15
 M  Machine Zero or home: This is set by the manufacturer as the origin of the coordinate
system of the machine.
 W  Part zero or point of origin of the part: This is the origin point that is set for
programming the measurements of the part. It can be freely selected by the programmer.
 R  Machine Reference point. This is a point on the machine established by the
manufacturer around which the synchronization of the system is done. The control positions
the axis on this point.
by Endika Gandarias
INTRODUCTION
Reference systems
16
Pre-Start
Power ON
Find Machine Zero or Home (M)
Load Tools
Set Machine Reference (R)
Set Part zero (W)
Load CNC program
Run Program
Power OFF
 Define Tool Length & Radius Offsets
 Check coolant and air supply levels,
ensure work area is clean, …
INTRODUCTION
CNC machine setup and operation
 Fill the tool carousel.
 Once he workholding device is properly
installed and aligned, set part X,Y&Z zero
datum.
by Endika Gandarias
1
2
3
4
5
6
7
8
9
17
REFERENCE SYSTEMS
REFERENCE SYSTEMS
by Endika Gandarias
18
Machine Reference (R) setting
TOOL LENGTH
COMPENSATION OFF
G44
TOOL LENGTH
COMPENSATION ON
G43
REFERENCE SYSTEMS
by Endika Gandarias
RRRR
T1
L1 L2 L3 L4
RRRR
T2 T3 T4
TOOL
TOOL
OFFSET
RADIUS LENGTH
T1 D1 55.234
T2 D1 72.345
T3 D1 61.098
T4 D1 66.683
… … ... …
OFFSET TABLE
19
Tool presetting machine
REFERENCE SYSTEMS
Machine Reference (R) setting
1
by Endika Gandarias
 High accuracy.
 Based on camera images (contact methods were used in
the past).
 Tool length (L) and radius (R) values are measured.
 Minimizes tool setting times.
 Used at high production runs.
TOOL LENGTH MEASUREMENT
TOOL RADIUS MEASUREMENT
X
Z
VIDEO
20
Tool on the workpiece
REFERENCE SYSTEMS
Machine Reference (R) setting
2
by Endika Gandarias
 Low accuracy.
 Time consuming method.
 Only tool length (L) values are measured.
 Tool is rotating and thus, part or referencing block gets marked.
TOOL LENGTH MEASUREMENT
W
T1 T2 T3 T4
L4 = 0L3 < 0
L2 > 0
L1 < 0
W
RRRR
21
3
REFERENCE SYSTEMS
Machine Reference (R) setting
by Endika Gandarias
Using a tool length setter gauge
TOOL LENGTH MEASUREMENT
 Good accuracy.
 Time consuming method.
 Only tool length (L) values are measured.
 Part or referencing block does not get marked.
W
L2<0L1=0
RR
L1
M
50
z1
z2
L2
50
L1= z1-50 L2= z2-50
R
R
BASEDONAREF.TOOLBASEDONMACHINEDATUM
VIDEO
22
REFERENCE SYSTEMS
Machine Reference (R) setting
Using a touch probe4
by Endika Gandarias
 High accuracy.
 Fast method.
 Tool length (L) and radius (R) values are measured.
 Tool rotates counterclockwise not to mark the probe at low RPM.
Additional applications
Low RPM
TOOL LENGTH MEASUREMENT
TOOL RADIUS MEASUREMENT
VIDEO
23
REFERENCE SYSTEMS
Machine Reference (R) setting
Using a laser beam5 Additional applications
 Highest accuracy.
 Fast method.
 Tool length (L) and radius (R) values are measured.
 Tool rotates at working conditions. TOOL LENGTH MEASUREMENT
TOOL RADIUS MEASUREMENT
by Endika Gandarias
VIDEOVIDEO
24
Part zero (W) setting
 Prior to defining part zero, procedure should be:
1. Study how the drawing is dimensioned.
2. Decide on the workholding device type and part zero (W) definition.
 Machine operator defines part zero (W) position anywhere.
 Most common positions:
o Left lower side of the part (all data position values are positive).
o Part symmetry axis.
o CLAMP CASE  Centering pins side.
o VISE CASE  Stationary chuck & vise stop side.
REFERENCE SYSTEMS
by Endika Gandarias
Clamps (with or without centering pins) Vise (with or without vise stop)
Movable chuck
Stationary chuck
Vise stop
Centering pinsClamps
25
X
Z
Y
Symmetry
X
Y
Z
Y
Part zero (W) setting
X
Z
Y
X
Y
Z
Y
Stationary chuck & Y axis part symmetryX-Y axis part symmetry
REFERENCE SYSTEMS
by Endika Gandarias
VISE VISE
26
Part zero (W) setting
Stationary chuck & left lower part
REFERENCE SYSTEMS
by Endika Gandarias
X
Y
Z
X
X
Z
Y
VISE CLAMP
Stationary chuck & Y axis part symmetry
X
Y
Z
X
27
Part zero (W) setting
VIDEO
Using the tool
 Low accuracy.
 Tool is rotating and thus, part gets
marked.
REFERENCE SYSTEMS
by Endika Gandarias
Using a mechanical edge finder1 2
 Low accuracy.
X
Y
DATUM SETTING
X
Y
Z
DATUM SETTING
Optical edge finder  similar
VIDEO
28
3
Part zero (W) setting
VIDEO
REFERENCE SYSTEMS
by Endika Gandarias
Using a touch probe
 High accuracy.
X
Y
Z
DATUM SETTING
VIDEO
29by Endika Gandarias
VIDEO
2 types:
1. Touch-trigger probes
2. Scanning probes (continuous measuring)
PRO & CON:
Almost any machined geometry may be measured in-situ.
Reduced machine downtime.
Part unclamping for measuring is avoided.
It cannot consider possible machine axes errors.
Touch probe stylus tips
3
Part zero (W) setting
REFERENCE SYSTEMS
Using a touch probe
30
BASIC ISO PROGRAMMING
FAGOR 8055-M
by Endika Gandarias
BASIC ISO PROGRAMMING
31
BASIC ISO PROGRAMMING
by Endika Gandarias
Block identification
Identifies the block of information.
/ N**** G** X****.*** Y****.*** Z****.*** A****.*** B****.*** C****.*** F****.** S****.**
Preparatory
functions
or G-codes
Linear and angular
positioning data Feed function
Speed function
Block structure
T** D** M** N** ;*****
Tool number
Tool offset number
Miscellaneous or auxiliary functions
Block skip condition
Number of block repetitions
Block comment
Not ISO,
corresponds to
FAGOR 8055M
=
32by Endika Gandarias
Feed function (F) Speed function (S)
 The feed function F is the speed at which the tool
center point moves.
 The programmed F is effective working in linear
(G01) or circular (G02, G03).
 The maximum F value is limited by the machine
parameters.
 The speed function S is the speed at which the
tool (in milling) or part (in turning) rotates.
 The maximum S value is limited by the machine
parameters.
BASIC ISO PROGRAMMING
33by Endika Gandarias
Tool number (T)
The "T" code identifies the tool position in the tool magazine.
Tool offset number (D)
The tool offset contains the tool dimensions.
Each tool may have several offsets associated with it.
TOOL
TOOL
OFFSET
RADIUS LENGTH …
T1
D1 8.002 55.234 …
D2 7.502 55.234 …
D3 8.002 55.026 …
… … … …
TOOL
TOOL
OFFSET
RADIUS LENGTH …
T2
D1 4.000 72.345 …
D2 11.990 60.036 …
D3 7.500 33.110 …
… … … …
…
BASIC ISO PROGRAMMING
34
M functions DESCRIPTION
M00 Program STOP / Spindle STOP / Coolant OFF
M03 Spindle ON clockwise
M04 Spindle ON counterclockwise
M05 Spindle STOP
M06 Tool change
M08 Coolant ON
M09 Coolant OFF
M30 End of program
BASIC ISO PROGRAMMING
Auxiliary or Miscellaneous (M) functions
by Endika Gandarias
35
M functions MODAL DESCRIPTION
G00 * Rapid traverse
G01 * Linear interpolation
G02 * Clockwise circular interpolation
G03 * Counterclockwise circular interpolation
G05 * Controlled corner rounding
G07 * Square corner
G36 Automatic radius blend
G39 Chamfer
G37 Tangential entry
G38 Tangential exit
G40 * Cancellation of tool radius compensation
G41 * Left-hand tool radius compensation
G42 * Right-hand tool radius compensation
G43 * Tool length compensation
G44 * Cancellation of tool length compensation
G90 * Absolute programming
G91 * Incremental programming
… … …
BASIC ISO PROGRAMMING
Preparatory functions or G-codes
by Endika Gandarias
MODAL = Once programmed, it remains active until
another incompatible G function is
programmed or until M30 / EMERGENCY
or RESET.
36
 It is a positioning linear movement at maximum
F value defined in the machine parameters.
 Not valid for cutting.
 It can be programmed as G00, G0 or G.
by Endika Gandarias
BASIC ISO PROGRAMMING
Preparatory functions or G-codes
Rapid traverse (G00) Linear interpolation (G01)
 It is a working linear movement at the
programmed F value.
 It can be programmed as G01 or G1.
…
N80 G00 X500 Y300
…
…
N120 G01 X500 Y300 F400
…
(TP)
(SP)
(TP)
(SP)
G00 X___ Y___
TP
G01 X___ Y___
TP
37by Endika Gandarias
BASIC ISO PROGRAMMING
Preparatory functions or G-codes
Rapid traverse (G00) Linear interpolation (G01)
EXERCISE 1
w
= SP
38
I
J
SP
TP
CC
I
J
SP
TP
CC
 It is a working circular movement at the programmed F value.
 It can be programmed as G02 or G2 / G03 or G3.
by Endika Gandarias
BASIC ISO PROGRAMMING
Preparatory functions or G-codes
Clockwise circular interpolation (G02)
Counterclockwise circular interpolation (G03)
…
N60 G02 X300 Y300 I200 J0
…
CARTESIANCOORDINATES
WITHARCCENTER
G02 X___ Y___ I___ J___
Distance from the SP to
the Circle Center (CC).
TP
…
N60 G03 X300 Y300 I0 J200
…
G03 X___ Y___ I___ J___
Distance from the SP to
the Circle Center (CC).
TP
39
SP
TP
SP
TP
by Endika Gandarias
BASIC ISO PROGRAMMING
Preparatory functions or G-codes
…
N40 G02 X400 Y150 R150
…
Clockwise circular interpolation (G02)
Counterclockwise circular interpolation (G03)
CARTESIANCOORDINATES
WITHARCRADIUS
G02 X___ Y___ R___
R + : Arc < 180º
R ˗̶ : Arc > 180º
TP
 A complete circle cannot be programmed.
…
N40 G02 X400 Y150 R-150
…
R+
R ˗̶
…
N40 G03 X400 Y300 R150
…
…
N40 G03 X400 Y300 R-150
…
R+
R ˗̶
G03 X___ Y___ R___
R + : Arc < 180º
R ˗̶ : Arc > 180º
TP
40by Endika Gandarias
BASIC ISO PROGRAMMING
Preparatory functions or G-codes
Clockwise circular interpolation (G02)
Counterclockwise circular interpolation (G03)
EXERCISE 2 EXERCISE 3
EXERCISE 4 EXERCISE 5
w w
w w
SP SP
SP SP
41by Endika Gandarias
BASIC ISO PROGRAMMING
Preparatory functions or G-codes
Clockwise circular interpolation (G02)
Counterclockwise circular interpolation (G03)
EXERCISE 6
w
SP
42
BASIC ISO PROGRAMMING
by Endika Gandarias
Preparatory functions or G-codes
Absolute programming (G90)
Incremental programming (G91)
G90: The positioning data refers to the part zero (default).
G91: The positioning data corresponds to the distance to be travelled from the point
where the tool is situated.
w
…
N70 G01 G90 X70 Y15 F350 ; P2
N80 G01 X70 Y30 ; P3
N90 G01 X45 Y45 ; P4
N100 G01 X20 Y45 ; P5
N110 G01 X20 Y15 ; P6
…
Absolute programming (G90)
…
N70 G01 G91 X50 Y0 F350; P2
N80 G01 X0 Y15 ; P3
N90 G01 X-25 Y15 ; P4
N100 G01 X-25 Y0 ; P5
N110 G01 X0 Y-30 ; P6
…
Incremental programming (G91)
= SP
43
BASIC ISO PROGRAMMING
by Endika Gandarias
Preparatory functions or G-codes
Absolute programming (G90)
Incremental programming (G91)
EXERCISE 7
w
EXERCISE 8
SP
SP
44
BASIC ISO PROGRAMMING
by Endika Gandarias
Other functions
REPEAT
(RPT N___ ,N___)N___
Number of
repetitions
From
block
To
block
EXERCISE 9
100 275 450 600 775 950 1100 1275 1450
SP
45
Pocket Milling
Engraving
by Endika Gandarias
Profile Milling
Face Milling Slot Milling
BASIC ISO PROGRAMMING
Pecking / Drilling /
Threading / Reaming
46
Face milling
by Endika Gandarias
N00 T1 D1 ; Ø28mm end-mill, assign tool 1 value D1
N10 M06 ; Tool change action
N20 G00 G43 X14 Y40 Z100 F400 S1500 M03
N30 G00 Z58
N40 G01 X116 Y40
N50 G00 X116 Y54
N60 G01 X14 Y54
N70 G00 X14 Y68
N80 G01 X116 Y68
N90 G00 X116 Y82
N100 G01 X14 Y82
N110 G00 X14 Y96
N120 G01 X116 Y96
N130 G00 Z100
N130 M30 ; End of program
SP
60
70
20 40 60 80 100
100
80
60
40
20 Security
distance ~ 2 mm
For exercises consider:
ae = 50% of tool Ø
BASIC ISO PROGRAMMING
47by Endika Gandarias
Face milling
EXERCISE 10
Tool: Ø50mm HSS end-mill, z=4
Material: Aluminium
• CASE A  apTOTAL=5mm; ap=5mm
• CASE B  apTOTAL=5mm; ap=2.5mm  RPT
• CASE C  apTOTAL=5mm; ap=1mm  RPT & G91
BASIC ISO PROGRAMMING
48
BASIC ISO PROGRAMMING
by Endika Gandarias
Preparatory functions or G-codes
Square corner (G07) Round corner (G05)
 The CNC starts executing the following block as
soon as the position programmed in the current
block has reached the dead band (default) 
Sharp edges, Machining time ↑, Shocks ↑.
 To be used with G00: face milling, canned
cycles, …
 The CNC starts executing the following block as
soon as deceleration of the currently executing
axes start (“?” distance depends on the feedrate
F value)  Rounded edges, Machining time ↓
 NOT to be used with G00: slot milling,
engraving, contouring,…
…
N60 G01 G07 X50 Y100 F400
N70 G01 X140 Y100 F300
…
…
N60 G01 G05 X50 Y100 F400
N70 G01 X140 Y100 F300
…
w
t
Fy
t
Fx
w
DEAD BAND: The range
through which an input can be
varied without initiating response
t
Fy
t
Fx
Acceleration
Constant feed
Deceleration
49
Pocket Milling
Engraving
by Endika Gandarias
Profile Milling
Face Milling Slot Milling
BASIC ISO PROGRAMMING
Pecking / Drilling /
Threading / Reaming
50
Slot milling
by Endika Gandarias
SP
20 60 85
20 Security
distance
~ 2 mm
70
95
45
N00 T7 D1 ; Ø10mm end-mill
N10 M06
N20 G00 G43 X85 Y13 Z100 F400 S3500 M03
N30 G00 Z20
N40 G00 G91 Z-2
N50 G01 G90 G05 X85 Y45
N60 G01 X60 Y70
N70 G01 X60 Y95
N80 G01 G07 X3 Y95
N90 G00 G91 Z10
N100 G00 G90 X85 Y13
N110 G00 G91 Z-10
N120 (RPT N40,N110)N1 ; Repeat
N130 (RPT N40,N80)N1 ; Repeat
N140 G00 Z100
N150 M30
20 40 60 80 100
60
40
20 6
+Z
•
•
•
•
Tool: Ø10mm H.S.S. end-mill
ap TOTAL = 6mm ; ap = 2mm
BASIC ISO PROGRAMMING
51
35
100
40
SP
85
65
6555
•
••
•
•
85
Slot milling
by Endika Gandarias
EXERCISE 11
60
40
20
5
+Z
Tool: Ø16mm H.M. end-mill, z=3
Material: Steel
ap TOTAL = 5mm ; ap = 2.5mm
BASIC ISO PROGRAMMING
52
Engraving
by Endika Gandarias
EXERCISE 12 Tool: Ø12mm HSS engraving tool, z=1
Material: Steel
ap TOTAL = 2mm ; ap = 2mm
H.S.S.
engraving tool
H.M.
engraving tool
60
40
20 2
+Z
20 40 60 80 100
100
20
20
45
60
70
35 45 55 70 85 100
52.5
BASIC ISO PROGRAMMING
53
BASIC ISO PROGRAMMING
by Endika Gandarias
Preparatory functions or G-codes
Cancellation of tool radius compensation (G40)
Left-hand tool radius compensation (G41)
Right-hand tool radius compensation (G42)
 The CNC automatically calculates the path the tool should follow based on the contour of the part
and the tool radius value stored in the tool offset table.
G41 - CLIMB CUTTING G42 - CONVENTIONAL CUTTING
54
BASIC ISO PROGRAMMING
by Endika Gandarias
Preparatory functions or G-codes
Cancellation of tool radius compensation (G40)
Left-hand tool radius compensation (G41)
Right-hand tool radius compensation (G42)
…
N50 G01 G41 G05 X77.5 Y70 F400
N60 G01 X100 Y70
N70 G01 X100 Y60
N80 G03 X85 Y45 I0 J-15
N90 G02 X70 Y30 I-15 J0
N100 G01 X50 Y30
N110 G01 X20 Y20
N120 G01 X25 Y70
N130 G03 X55 Y70 I15 J0
N140 G01 X77.5 Y70
N150 G01 G40 G07 X77.5 Y100
…
G41
 Tool entry & exit should always be perpendicular to the workpiece contour.
 Tool entry & exit should be avoided to be from a workpiece edge  may produce burr.
20 25 50 55 70 85 100
20
45
60
70
30
SP
•
22.5
30
55
Pocket Milling
Engraving
by Endika Gandarias
Profile Milling
Face Milling Slot Milling
BASIC ISO PROGRAMMING
Pecking / Drilling /
Threading / Reaming
56
BASIC ISO PROGRAMMING
by Endika Gandarias
Roughing operation
Tool: Ø8mm H.M. end-mill, z=3
Material: Aluminium
ap TOTAL = 10mm ; ap = 2.5mm
+Z
30 60 90 120 150
30
60
30 60 90 120 150
30
60
90
25
SP
•
Profile milling
EXERCISE 13
57
BASIC ISO PROGRAMMING
by Endika Gandarias
Preparatory functions or G-codes
Automatic radius blend (G36) Chamfer (G39)
 It rounds a corner with a determined radius,
without having to calculate the center nor the
start and end points of the arc.
 Function G36 is not modal.
…
N60 G01 G36 R5 X250 Y450 F400
N70 G01 X400 Y0
…
…
N60 G01 G39 R15 X350 Y600 F400
N70 G01 X500 Y0
…
G36 R___
 It chamfers corners between two straight lines,
without having to calculate intersection points.
 Function G39 is not modal.
G39 R___
58
BASIC ISO PROGRAMMING
by Endika Gandarias
Preparatory functions or G-codes
Tangential entry (G37 RENTRY) Tangential exit (G38 REXIT)
 It is used to create a tangential entry in Finishing
operations so tool entry mark can be unnoticeable
(not necessary for roughing).
 It is used to create a tangential entry in Finishing
operations so tool exit mark can be unnoticeable
(not necessary for roughing).
…
N60 G01 G05 G41 G37 R12 X25 Y30 ; Tool Ø 22mm
N70 G01 X10 Y30
…
…
N60 G01 G38 R12 X25 Y30 ; Tool Ø 22mm
N70 G01 G07 G40 X25 Y5
…
RENTRY > RTOOL-OFFSET
LENTRY ≥ 2 * RENTRY
RENTRY
LENTRY
REXIT > RTOOL-OFFSET
LEXIT ≥ 2 * REXIT
12 ≥ 11
25 ≥ 2 * 12
12 ≥ 11
25 ≥ 2 * 12
REXIT
LEXIT
NOT MODAL FUNCTION NOT MODAL FUNCTION
G38 REXIT
G37RENTRY
59
G01
G05
G41
G37 RENTRY
G00
G43
G01
G07
G40
RENTRY = REXIT
G38 REXIT
1
2
3 4
5
0
WORKPIECE
LENTRY = LEXIT
TOOL
BASIC ISO PROGRAMMING
Preparatory functions or G-codes
Summary for profile milling operations
by Endika Gandarias
NOTE:
- G37 & G38 only for finishing operations.
RENTRY > RTOOL-OFFSET
LENTRY ≥ 2 * RENTRY
60
Pocket Milling
Engraving
by Endika Gandarias
Profile Milling
Face Milling Slot Milling
BASIC ISO PROGRAMMING
Pecking / Drilling /
Threading / Reaming
61
SP
Profile milling
by Endika Gandarias
Roughing operation:
Tool: Ø20mm H.M. end-mill, z=3
Stock: 0.4mm
Finishing operation:
Tool: Ø20mm H.M. end-mill, z=3
Stock: 0mm
Material: Steel
ap TOTAL = 5mm ; ap = 2.5mm
(Use G36 R__ and G39 R__)
BASIC ISO PROGRAMMING
+X
+Y
+X
+Z
•
EXERCISE 14
• CASE A  Same tool
• CASE B  Different tool
62
 Cycles are referred to repetitive program sequences commonly used In machining operations
that makes easier programming.
 Canned cycles or Fixed cycles: They are an inbuilt feature of the CNC usually
permanently stored as a pre-program and cannot be altered by the user (G80-G89)
 User-defined cycles or Sub-routines: They are created when the necessary fixed
cycle is not available.
FIXED CYCLES OR CANNED CYCLES
by Endika Gandarias
CANNED
CYCLE
NUMBER
DESCRIPTION
G80 Canned cycle cancellation
G81 Drilling cycle
G69 Deep hole drilling cycle with variable peck
G84 Tapping cycle
G85 Reaming cycle
G87 Rectangular pocket cycle
G88 Circular pocket cycle
63
G81 G98/G99 X___ Y___ Z___ I___ K___
G81: Drilling cycle
FIXED CYCLES OR CANNED CYCLES
by Endika Gandarias
 Valid for drilling depth
≤ 3*Ø
 Valid for pecking cycle
N0 T1 D1 ; Ø8mm drill
N10 M06
N20 G00 G43 X30 Y20 Z100 F300 S1400 M03
N30 G81 G98 X30 Y20 Z2 I-15 K100 ; P1
N40 G80
N50 M30
Only one drill machining
N0 T1 D1 ; Ø8mm drill
N10 M06
N20 G00 G43 X30 Y20 Z100 F300 S1400 M03
N30 G81 G99 X30 Y20 Z2 I-15 K100 ; P1
N40 G00 X80 Y20 ; P2
N50 G00 X80 Y50 ; P3
N60 G00 G98 X30 Y50 ; P4
N70 G80
N80 M30
Four drills machining
Dwell time
(1/100s)
I.P. R.P.
Distance from
w to the
drilling depth
Distance from
w to the R.P.
Machining
coordinates
Withdrawal
planes
Z
I
Reference Plane (R.P.) - G99
Initial Plane (I.P.) - G98
W
15
8
4 3
1 2
64
G81 G98/G99 X___ Y___ Z___ I___ K___
G81: Drilling cycle
FIXED CYCLES OR CANNED CYCLES
by Endika Gandarias
 Valid for drilling depth
≤ 3*Ø
 Valid for pecking cycle
N0 T1 D1 ; Ø8mm drill
N10 M06
N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 ; Z100
N30 G81 G99 X30 Y20 Z2 I-15 K100 ; Z2
N40 G00 G98 X30 Y50 ; Z100
N50 G81 G99 X80 Y50 Z27 I10 K100 ; Z27
N60 G00 G98 X80 Y20 ; Z100
N70 G80
N80 M30
Dwell time
(1/100s)
I.P. R.P.
Distance from
w to the
drilling depth
Distance from
w to the R.P.
Machining
coordinates
Withdrawal
planes
Z
Z’R.P. - G99
Initial Plane (I.P.) - G98
W
15
Ref. Plane’ (R.P.) - G99’
I’
I
25
10
8
2 3
1 4
Four drills machining
65
G69: Deep hole drilling cycle
with variable peck
FIXED CYCLES OR CANNED CYCLES
by Endika Gandarias
 General drilling
cycle (≥ 3*Ø)
G69 G98/G99 X___ Y___ Z___ I___ B___ C___
Drilling
peck
I.P. R.P.
Distance from
w to the R.P.
Machining
coordinates
Withdrawal
planes
Distance from
w to the
drilling depth
D___ H___ J___ K___ L___ R___
Reduction factor
for drilling peck
Dwell time
(1/100s)
Minimum
drilling peck
Approach
to the
previous
drilling
Distance between R.P.
and working surface
(absolute value)
Withdrawal
after drilling
Num. pecks
before total
withdrawal
N0 T3 D3 ; Ø10mm drill
N10 M06
N20 G00 G43 X30 Y20 Z100 F300 S1400 M03
N30 G69 G99 X30 Y20 Z2 I-60 B4 C1 D2 H10 J5 K100 L2 R0.8 ; Z2
N40 G00 G98 X30 Y50 ; Z100
N50 G69 G99 X80 Y50 Z27 I-20 B4 C1 D2 H10 J5 K100 L2 R0.8 ; Z27
N60 G98 X80 Y20 ; Z100
N40 G80
N50 M30
8
2 3
1 4
Z
Z’R.P. - G99
Initial Plane (I.P.) - G98
W
60
Ref. Plane’ (R.P.) - G99’
I’
I
25
20
B
D
D’
66
G84: Tapping cycle
N0 T7 D7 ; M-10 tap
N10 M06
N20 G00 G43 X50 Y20 Z100 F600 S600 M03
N30 G84 G98 X50 Y20 Z2 I-60 R0
N40 G80
N50 M30
Z
I
Ref. Plane (R.P.) - G99
Initial Plane (I.P.) - G98
W
60
G84 G98/G99 X___ Y___ Z___ I___ K___ R___
Dwell time
(1/100s)
I.P. R.P.
Distance from
w to the thread
depth
Distance from
w to the R.P.
Machining
coordinates
Withdrawal
planes
FIXED CYCLES OR CANNED CYCLES
by Endika Gandarias
Type of tapping
R=0 Normal tapping
R=1 Rigid tapping
67
N0 T4 D4 ; Ø12H6 reamer
N10 M06
N20 G00 G43 X30 Y20 Z100 F500 S2500 M03
N30 G85 G99 X30 Y20 Z2 I-35 K100
N40 G00 G98 X30 Y50
N50 G85 G99 X80 Y50 Z22 I-15 K100
N60 G00 X80 Y20
N70 G80
N80 M30
G85 G98/G99 X___ Y___ Z___ I___ K___
Dwell time
(1/100s)
I.P. R.P.
Distance from
w to the
reaming depth
Distance from
w to the R.P.
Machining
coordinates
Withdrawal
planes
FIXED CYCLES OR CANNED CYCLES
by Endika Gandarias
G85: Reaming cycle
12
2 3
1 4
Z
Z’R.P. - G99
Initial Plane (I.P.) - G98
W
35
Ref. Plane’ (R.P.) - G99’
I’
I
20
15
68
Pocket MillingPecking / Drilling /
Tapping / Reaming
Engraving
by Endika Gandarias
Profile Milling
Face Milling Slot Milling
FIXED CYCLES OR CANNED CYCLES
69by Endika Gandarias
FIXED CYCLES OR CANNED CYCLES
Pecking / Drilling / Tapping / Reaming
EXERCISE 15
Tool:
 Ø12mm H.M. spot drill, z=2
 Ø7.75mm H.S.S. drill, z=2
 Ø8H7 H.M. reamer, z=5
Material: Steel
70by Endika Gandarias
FIXED CYCLES OR CANNED CYCLES
Pecking / Drilling / Tapping / Reaming
EXERCISE 16
Tool:
 Ø12mm H.M. spot drill, z=2
 Ø5mm H.S.S. drill, z=2
 M-6x1 H.M. tap
Material: Aluminium
71by Endika Gandarias
FIXED CYCLES OR CANNED CYCLES
Pecking / Drilling / Tapping / Reaming
EXERCISE 17
Tool:
 Ø16mm H.S.S. spot drill, z=2
 Ø5mm H.S.S. drill, z=2
 M-6x1 H.M. tap
Material: Steel
72
EXERCISES
EXERCISES
by Endika Gandarias
73by Endika Gandarias
EXERCISES
Face milling / Profile milling
EXERCISE 18
Material: Steel
74by Endika Gandarias
EXERCISES
Face milling / Profile milling
EXERCISE 19
Material: Aluminium
75
EXERCISES
by Endika Gandarias
Face milling / Grooving / Pecking / Drilling / Tapping / Reaming
EXERCISE 20
Material: Aluminium
76
FAGOR SIMULATOR
FAGOR SIMULATOR
by Endika Gandarias
77
FAGOR SIMULATOR
by Endika Gandarias
CNC FAGOR 8060/65 SIMULATOR
www.fagorautomation.com/download/
CHANGE LANGUAGE: https://www.youtube.com/watch?v=rFTlmvQJdk8 VIDEO
VIDEOVIDEO
78
GLOSSARY
GLOSSARY
by Endika Gandarias
79
GLOSSARY
by Endika Gandarias
ENGLISH SPANISH BASQUE
Accuracy Exactitud Zehaztasun
Adaptative control Control adaptativo Kontrol moldagarri
Blade Hélice Helize
Burr Rebaba Bizar
Cam Leva Espeka
Carousel Carrusel Karrusel
Chamfer Chaflán Alaka
Clamp Brida Brida
Climb cutting Corte en concordancia Konkordantzia ebaketa
Clockwise Sentido horario Erlojuaren norantza
Closed loop Lazo cerrado Lotura itxia
Conventional cutting Corte en contraposición Kontraposizio ebaketa
Coolant Regfrigerante Hozkarri
Counterclockwise Sentido anti-horario Erlojuaren aurkako norantza
Dead band Banda muerta Tarte hila
Deep hole drilling Taladrado profundo Zulaketa sakona
Downtime Tiempo de inactividad Aktibitate gabeko denbora
Drill Broca Barauts
Drilling Taladrado Zulaketa
Driving system Sistema de regulación Erregulazio sistema
Dwell time Tiempo de espera Itxaron denbora
Edge finder Centrador Zentratzaile
EDM Electroerosión Elektrohigadura
Encoder Encoder Encoder
End mill Fresa plana Fresa planua
Engraving Grabado Grabaketa
Face milling Planeado Planeaketa
Feed Avance por minuto Aitzinamendua minutuko
80
GLOSSARY
by Endika Gandarias
ENGLISH SPANISH BASQUE
Finishing Acabado Akabera
Fixed canned cycle Ciclo fijo Ziklo fijoa
Glass scale Regla óptica Erregela optiko
Grinding Rectificado Artezketa
Grooving Ranurado Artekaketa
Homing Búsqueda de cero máquina Zero makina bilatzea
HSS Acero rápido Altzairu laster
Investment Inversión Inbertsio
Left-hand tool Herramienta a izquierdas Ezkerretarako erraminta
Load Cargar Kargatu
Loop Lazo Lotura
Machine zero Cero máquina Zero makina bilatzea
Machining centre Centro de mecanizado Mekanizatu zentru
Modal Modal Modal
Noise Ruido Zarata
Offset Corrector Zuzentzaile
Offset table Tabla de correctores Taula zuzentzaile
Open loop Lazo abierto Lotura irekia
Part zero Cero pieza Zero pieza
Peck Picada Ziztada
Pecking Punteado Punteaketa
Pin Pasador Ziri
Pocket Cajera Kajera
Power failure Fallo de alimentación eléctrica Elikadura elektriko gabezia
Profiling Perfilado / Contorneado Perfilaketa / Kontorneaketa
Punched tape Tarjeta perforada Tarjeta perforatu
Rapid traverse Recorrido rápido Ibilbide azkar
Reamer Escariador Otxabu
81
GLOSSARY
by Endika Gandarias
ENGLISH SPANISH BASQUE
Reaming Escariado Otxabuketa
Reference system Sistema de referencias Erreferentzi sistema
Referencing block Bloque de referencia Erreferentzi bloke
Repeatability Repetibilidad Errepikagarritasun
Rigth-hand tool Herramienta a derechas Eskuinetarako erraminta
Roughing Desbaste Arbastaketa
Round corner Arista matada Ertz hila
Setter gauge Calibre de alturas Altuera kalibratzailea
Set-up Puesta a punto Prestaketa
Skip Salto Jauzi
Slot Ranura Arteka
Speed Velocidad de giro Biraketa abiadura
Spot drill Broca de puntear Punteatzaile
Square corner Arista viva Ertz bizia
Stationary chuck Parte no movil Atal ez higikor
Stylus Estilete Estilete
Tap Macho de roscar Hariztatze ardatz
Tapping Roscado (con macho de roscar) Hariztaketa (hariztatze ardatzarekin)
Target position Posición objetivo Jomuga posizio
Thermal growth Alargamiento térmico Luzapen termikoa
Threading Roscado Hariztaketa
Tip Punta Punta
Tool magazine Cambiador de herramienta Erraminta aldatzaile
Tool presetting machine Máquina de pre-reglaje Doikuntza makina
Touch probe Palpador Haztagailu
Track Pista Pista
Trueness Veracidad Egiatasun
Unnoticeable Imperceptible Hauteman ezin
82
GLOSSARY
by Endika Gandarias
ENGLISH SPANISH BASQUE
Vise Mordaza Baraila
Wear Desgaste Higadura
Withdrawal planes Planos de salida Irteera planu
Workholding Sistema de amarre de pieza Pieza lotze sistema

Más contenido relacionado

La actualidad más candente

Chapter 3 CNC turning and machining centers
Chapter 3 CNC turning and machining centersChapter 3 CNC turning and machining centers
Chapter 3 CNC turning and machining centersRAHUL THAKER
 
CNC part programming
CNC part programmingCNC part programming
CNC part programmingjntuhcej
 
Cnc part programming 4 unit
Cnc part programming 4 unitCnc part programming 4 unit
Cnc part programming 4 unitpalanivendhan
 
CNC Turning and Milling centres
CNC Turning and Milling centresCNC Turning and Milling centres
CNC Turning and Milling centresAchyuth Padmanabh
 
Recent Advancement of CNC Technology
Recent Advancement of CNC TechnologyRecent Advancement of CNC Technology
Recent Advancement of CNC TechnologyDebiprasad Sena
 
Computer numerical control (CNC)
Computer numerical control (CNC)Computer numerical control (CNC)
Computer numerical control (CNC)Sudip Phuyal
 
Machining fundamentals
Machining fundamentalsMachining fundamentals
Machining fundamentalsendika55
 
CNC machining
CNC machiningCNC machining
CNC machiningnitigga92
 
Introduction to CNC machine and Hardware.
Introduction to CNC machine and Hardware. Introduction to CNC machine and Hardware.
Introduction to CNC machine and Hardware. aman1312
 
Cncpresentation CNC lathe machine
Cncpresentation CNC lathe machineCncpresentation CNC lathe machine
Cncpresentation CNC lathe machineHaseeb Butt
 
Jigs and fixtures
Jigs and fixturesJigs and fixtures
Jigs and fixturesLokesh B N
 

La actualidad más candente (20)

Chapter 3 CNC turning and machining centers
Chapter 3 CNC turning and machining centersChapter 3 CNC turning and machining centers
Chapter 3 CNC turning and machining centers
 
CNC part programming
CNC part programmingCNC part programming
CNC part programming
 
Cnc part programming 4 unit
Cnc part programming 4 unitCnc part programming 4 unit
Cnc part programming 4 unit
 
Cnc milling turning
Cnc milling turning Cnc milling turning
Cnc milling turning
 
CNC Turning and Milling centres
CNC Turning and Milling centresCNC Turning and Milling centres
CNC Turning and Milling centres
 
Recent Advancement of CNC Technology
Recent Advancement of CNC TechnologyRecent Advancement of CNC Technology
Recent Advancement of CNC Technology
 
CNC
CNCCNC
CNC
 
Computer numerical control (CNC)
Computer numerical control (CNC)Computer numerical control (CNC)
Computer numerical control (CNC)
 
Cnc machine centre
Cnc machine centreCnc machine centre
Cnc machine centre
 
Machining fundamentals
Machining fundamentalsMachining fundamentals
Machining fundamentals
 
CNC machining
CNC machiningCNC machining
CNC machining
 
CNC MACHINE
CNC MACHINECNC MACHINE
CNC MACHINE
 
CNC MILLING Operations
CNC MILLING OperationsCNC MILLING Operations
CNC MILLING Operations
 
Cnc Milling
Cnc MillingCnc Milling
Cnc Milling
 
5 g-code
5   g-code5   g-code
5 g-code
 
Introduction to CNC machine and Hardware.
Introduction to CNC machine and Hardware. Introduction to CNC machine and Hardware.
Introduction to CNC machine and Hardware.
 
Cncpresentation CNC lathe machine
Cncpresentation CNC lathe machineCncpresentation CNC lathe machine
Cncpresentation CNC lathe machine
 
Jigs and Fixture
Jigs and FixtureJigs and Fixture
Jigs and Fixture
 
Cnc milling
Cnc millingCnc milling
Cnc milling
 
Jigs and fixtures
Jigs and fixturesJigs and fixtures
Jigs and fixtures
 

Similar a CNC Milling

Cutting conditions
Cutting conditionsCutting conditions
Cutting conditionsendika55
 
Cutting conditions
Cutting conditionsCutting conditions
Cutting conditionsendika55
 
Kraus &amp; naimer push buttons and pilot lights, ø 22,5 mm kn302 gb1215-dien...
Kraus &amp; naimer push buttons and pilot lights, ø 22,5 mm kn302 gb1215-dien...Kraus &amp; naimer push buttons and pilot lights, ø 22,5 mm kn302 gb1215-dien...
Kraus &amp; naimer push buttons and pilot lights, ø 22,5 mm kn302 gb1215-dien...Dien Ha The
 
Microcontroller based Ultrasonic Radar (Microprocessors and Embedded Systems ...
Microcontroller based Ultrasonic Radar (Microprocessors and Embedded Systems ...Microcontroller based Ultrasonic Radar (Microprocessors and Embedded Systems ...
Microcontroller based Ultrasonic Radar (Microprocessors and Embedded Systems ...Tawsif Rahman Chowdhury
 
Beijer inverter e2_brochure
Beijer inverter e2_brochureBeijer inverter e2_brochure
Beijer inverter e2_brochureElectromate
 
Zelio Time Electronic Relay Briefing
Zelio Time Electronic Relay BriefingZelio Time Electronic Relay Briefing
Zelio Time Electronic Relay BriefingSchneider Electric
 
Sino SDS6 Digital Readouts
Sino SDS6 Digital ReadoutsSino SDS6 Digital Readouts
Sino SDS6 Digital ReadoutsTunNht3
 
Identifying noise in daq webinar rp3 171027 (1)
Identifying noise in daq webinar rp3 171027 (1)Identifying noise in daq webinar rp3 171027 (1)
Identifying noise in daq webinar rp3 171027 (1)Kristin Allen
 
nilco_Generalprogramme_2016_2017
nilco_Generalprogramme_2016_2017nilco_Generalprogramme_2016_2017
nilco_Generalprogramme_2016_2017Mohiuddin Khan
 
Heidenhain general catalog-linear encoders
Heidenhain general catalog-linear encodersHeidenhain general catalog-linear encoders
Heidenhain general catalog-linear encoderssainothanjames
 
Heidenhain General Catalog Linear Encoders
Heidenhain General Catalog Linear EncodersHeidenhain General Catalog Linear Encoders
Heidenhain General Catalog Linear Encoderssainothanjames
 
Datasheet Ad633
Datasheet Ad633Datasheet Ad633
Datasheet Ad633saragbr
 
Process Control Instruments India - Canopus Instruments
Process Control Instruments India - Canopus InstrumentsProcess Control Instruments India - Canopus Instruments
Process Control Instruments India - Canopus Instrumentssmita_kale
 

Similar a CNC Milling (20)

Cutting conditions
Cutting conditionsCutting conditions
Cutting conditions
 
Cutting conditions
Cutting conditionsCutting conditions
Cutting conditions
 
Encoder
EncoderEncoder
Encoder
 
Turning
TurningTurning
Turning
 
Optical Encoders
Optical EncodersOptical Encoders
Optical Encoders
 
Kraus &amp; naimer push buttons and pilot lights, ø 22,5 mm kn302 gb1215-dien...
Kraus &amp; naimer push buttons and pilot lights, ø 22,5 mm kn302 gb1215-dien...Kraus &amp; naimer push buttons and pilot lights, ø 22,5 mm kn302 gb1215-dien...
Kraus &amp; naimer push buttons and pilot lights, ø 22,5 mm kn302 gb1215-dien...
 
Microcontroller based Ultrasonic Radar (Microprocessors and Embedded Systems ...
Microcontroller based Ultrasonic Radar (Microprocessors and Embedded Systems ...Microcontroller based Ultrasonic Radar (Microprocessors and Embedded Systems ...
Microcontroller based Ultrasonic Radar (Microprocessors and Embedded Systems ...
 
Nidec asi silcovert tn
Nidec asi silcovert tnNidec asi silcovert tn
Nidec asi silcovert tn
 
Beijer inverter e2_brochure
Beijer inverter e2_brochureBeijer inverter e2_brochure
Beijer inverter e2_brochure
 
Ie550nc
Ie550ncIe550nc
Ie550nc
 
Zelio Time Electronic Relay Briefing
Zelio Time Electronic Relay BriefingZelio Time Electronic Relay Briefing
Zelio Time Electronic Relay Briefing
 
Sino SDS6 Digital Readouts
Sino SDS6 Digital ReadoutsSino SDS6 Digital Readouts
Sino SDS6 Digital Readouts
 
Identifying noise in daq webinar rp3 171027 (1)
Identifying noise in daq webinar rp3 171027 (1)Identifying noise in daq webinar rp3 171027 (1)
Identifying noise in daq webinar rp3 171027 (1)
 
nilco_Generalprogramme_2016_2017
nilco_Generalprogramme_2016_2017nilco_Generalprogramme_2016_2017
nilco_Generalprogramme_2016_2017
 
Heidenhain general catalog-linear encoders
Heidenhain general catalog-linear encodersHeidenhain general catalog-linear encoders
Heidenhain general catalog-linear encoders
 
Heidenhain General Catalog Linear Encoders
Heidenhain General Catalog Linear EncodersHeidenhain General Catalog Linear Encoders
Heidenhain General Catalog Linear Encoders
 
Datasheet Ad633
Datasheet Ad633Datasheet Ad633
Datasheet Ad633
 
Process Control Instruments India - Canopus Instruments
Process Control Instruments India - Canopus InstrumentsProcess Control Instruments India - Canopus Instruments
Process Control Instruments India - Canopus Instruments
 
Sookia dt 740,
Sookia dt 740, Sookia dt 740,
Sookia dt 740,
 
Sookia dt 740,
Sookia dt 740, Sookia dt 740,
Sookia dt 740,
 

Más de endika55

Introducción
IntroducciónIntroducción
Introducciónendika55
 
Introducción
IntroducciónIntroducción
Introducciónendika55
 
Bibliografía
BibliografíaBibliografía
Bibliografíaendika55
 
Bibliografía
BibliografíaBibliografía
Bibliografíaendika55
 
Microtechnologies: past, present and future
Microtechnologies: past, present and futureMicrotechnologies: past, present and future
Microtechnologies: past, present and futureendika55
 
Microtechnologies: Past, present and future
Microtechnologies: Past, present and futureMicrotechnologies: Past, present and future
Microtechnologies: Past, present and futureendika55
 
Micromilling technology: a global review
Micromilling technology: a global reviewMicromilling technology: a global review
Micromilling technology: a global reviewendika55
 
Micromilling technology: a global review
Micromilling technology: a global reviewMicromilling technology: a global review
Micromilling technology: a global reviewendika55
 
HSMWORKS manual
HSMWORKS manualHSMWORKS manual
HSMWORKS manualendika55
 
HSMWORKS manual
HSMWORKS manualHSMWORKS manual
HSMWORKS manualendika55
 
Linear cutting processes
Linear cutting processesLinear cutting processes
Linear cutting processesendika55
 
Linear cutting processes
Linear cutting processesLinear cutting processes
Linear cutting processesendika55
 
Non traditional technologies
Non traditional technologiesNon traditional technologies
Non traditional technologiesendika55
 
Non traditional technologies
Non traditional technologiesNon traditional technologies
Non traditional technologiesendika55
 
Abrasive technologies
Abrasive technologiesAbrasive technologies
Abrasive technologiesendika55
 
Abrasive technologies
Abrasive technologiesAbrasive technologies
Abrasive technologiesendika55
 
Machining time and costs
Machining time and costsMachining time and costs
Machining time and costsendika55
 
Machining time and costs
Machining time and costsMachining time and costs
Machining time and costsendika55
 

Más de endika55 (20)

Torneado
TorneadoTorneado
Torneado
 
Torneado
TorneadoTorneado
Torneado
 
Introducción
IntroducciónIntroducción
Introducción
 
Introducción
IntroducciónIntroducción
Introducción
 
Bibliografía
BibliografíaBibliografía
Bibliografía
 
Bibliografía
BibliografíaBibliografía
Bibliografía
 
Microtechnologies: past, present and future
Microtechnologies: past, present and futureMicrotechnologies: past, present and future
Microtechnologies: past, present and future
 
Microtechnologies: Past, present and future
Microtechnologies: Past, present and futureMicrotechnologies: Past, present and future
Microtechnologies: Past, present and future
 
Micromilling technology: a global review
Micromilling technology: a global reviewMicromilling technology: a global review
Micromilling technology: a global review
 
Micromilling technology: a global review
Micromilling technology: a global reviewMicromilling technology: a global review
Micromilling technology: a global review
 
HSMWORKS manual
HSMWORKS manualHSMWORKS manual
HSMWORKS manual
 
HSMWORKS manual
HSMWORKS manualHSMWORKS manual
HSMWORKS manual
 
Linear cutting processes
Linear cutting processesLinear cutting processes
Linear cutting processes
 
Linear cutting processes
Linear cutting processesLinear cutting processes
Linear cutting processes
 
Non traditional technologies
Non traditional technologiesNon traditional technologies
Non traditional technologies
 
Non traditional technologies
Non traditional technologiesNon traditional technologies
Non traditional technologies
 
Abrasive technologies
Abrasive technologiesAbrasive technologies
Abrasive technologies
 
Abrasive technologies
Abrasive technologiesAbrasive technologies
Abrasive technologies
 
Machining time and costs
Machining time and costsMachining time and costs
Machining time and costs
 
Machining time and costs
Machining time and costsMachining time and costs
Machining time and costs
 

Último

Detection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackingDetection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackinghadarpinhas1
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Amil baba
 
ADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studyADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studydhruvamdhruvil123
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
AntColonyOptimizationManetNetworkAODV.pptx
AntColonyOptimizationManetNetworkAODV.pptxAntColonyOptimizationManetNetworkAODV.pptx
AntColonyOptimizationManetNetworkAODV.pptxLina Kadam
 
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...shreenathji26
 
The Satellite applications in telecommunication
The Satellite applications in telecommunicationThe Satellite applications in telecommunication
The Satellite applications in telecommunicationnovrain7111
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...KrishnaveniKrishnara1
 
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliStructural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliNimot Muili
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier Fernández Muñoz
 

Último (20)

Detection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackingDetection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and tracking
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
Versatile Engineering Construction Firms
Versatile Engineering Construction FirmsVersatile Engineering Construction Firms
Versatile Engineering Construction Firms
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
 
ADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studyADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain study
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
AntColonyOptimizationManetNetworkAODV.pptx
AntColonyOptimizationManetNetworkAODV.pptxAntColonyOptimizationManetNetworkAODV.pptx
AntColonyOptimizationManetNetworkAODV.pptx
 
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
 
The Satellite applications in telecommunication
The Satellite applications in telecommunicationThe Satellite applications in telecommunication
The Satellite applications in telecommunication
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
 
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliStructural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
ASME-B31.4-2019-estandar para diseño de ductos
ASME-B31.4-2019-estandar para diseño de ductosASME-B31.4-2019-estandar para diseño de ductos
ASME-B31.4-2019-estandar para diseño de ductos
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptx
 

CNC Milling

  • 1. MANUFACTURING TECHNOLOGIES CNC by Endika Gandarias BACHELOR OF ENGINEERING
  • 2. 2by Endika Gandarias Dr. ENDIKA GANDARIAS MINTEGI Mechanical and Manufacturing department Mondragon Unibertsitatea - www.mondragon.edu (Basque Country) www.linkedin.com/in/endika-gandarias-mintegi-91174653 Further presentations: www.symbaloo.com/mix/manufacturingtechnology
  • 3. 3 CONTENTS  BIBLIOGRAPHY  INTRODUCTION  REFERENCE SYSTEMS  BASIC ISO PROGRAMMING  FIXED CANNED CYCLES  EXERCISES  FAGOR SIMULATOR  GLOSSARY by Endika Gandarias
  • 5. 5 The author would like to thank all the bibliographic references and videos that have contributed to the elaboration of these presentations. For bibliographic references, please refer to: • http://www.slideshare.net/endika55/bibliography-71763364 (PDF file) • http://www.slideshare.net/endika55/bibliography-71763366 (PPT file) For videos, please refer to: • www.symbaloo.com/mix/manufacturingtechnology BIBLIOGRAPHY by Endika Gandarias
  • 7. 7 1942 Bendix Corporation, a USA helicopter blade manufacturing company, needs three-dimensional cam parts.  Coordination of movements is necessary. 1947 John Parson (a Bendix corporation worker) using punched tapes is able to control simultaneously axes movements of a machine  MIT collaborates 1953 Numerical Control (NC) term appears at M.I.T. 1960 Adaptative Control term appears at M.I.T. 1970 Computer Numerical Control (CNC) is created  Microprocessors origin. 1980 Direct Numerical Control (DNC) is possible. A large number of machines are controlled by a computer. INTRODUCTION by Endika Gandarias Brief history Definition  CNC (Computer Numerical Control (CNC) refers to the method of controlling a machine tool or the machining process by means of a computer.  Coded numerical instructions are inserted into the CNC  PROGRAMMING LANGUAGE NC Punched Tape
  • 8. 8 Machine control feedback: position & velocity CNC block diagram INTRODUCTION by Endika Gandarias Velocity Feedback Position Feedback VIDEO VIDEO CNC machine tool description Loop control types OPEN LOOP CLOSED LOOP
  • 9. 9  Every position of an absolute device is unique.  The disk has many circular tracks, the higher the number of tracks the higher the resolution.  These devices do not lose position when power is removed (homing sequence not needed on startup).  They do not accumulate errors (not affected by noise signal).  They are more complex and expensive. INTRODUCTION by Endika Gandarias CNC machine tool description Feedback devices ABSOLUTE ROTARY ENCODER INCREMENTAL ROTARY ENCODER  The feedback signal is always referenced to a start or home position. They need an external processing of signals.  In the event of a power failure, it must be reinitialized.  They are susceptible to noise, thus, errors.  They are simpler and cheaper. An encoder is a sensor for converting rotary motion or position to analog/digital signal. VIDEO VIDEO VIDEO
  • 10. 10  It measures directly the position of linear axes.  High positioning accuracy.  High permissible traversing speed.  It can correct next errors:  Positioning error due to thermal behavior of the recirculating ball screw.  Reversal error.  Kinematics error through ball-screw pitch error. INTRODUCTION by Endika Gandarias CNC machine tool description Feedback devices LINEAR GLASS SCALE ENCODER VIDEO VIDEO Absolute glass scale Incremental glass scale VIDEO
  • 11. 11 INTRODUCTION Advantages  High Repeatability + High Trueness = High Accuracy.  More complex 3-dimensional geometries.  Better quality.  Higher productivity.  Greater safety and lower operator qualification.  Greater flexibility to part changes.  Minimizes human errors. Disadvantages  Higher investment cost.  Higher maintenance cost.  Time consuming set-up.  Training is needed for CNC programming. Increasing Repeatability IncreasingTrueness by Endika Gandarias CNC FAGOR - USER MANUAL www.fagorautomation.com/download/
  • 12. 12 Type of machines  Turning Centers  Milling Centers  Machining Centers  Drilling Machines CNC manufacturers INTRODUCTION by Endika Gandarias  Grinding Machines  EDM Machines  Laser-Cutting Machines  …
  • 13. 13by Endika Gandarias The axes are named according to DIN 66217. Axis nomenclature VIDEO Three-axes milling machine Six-axis milling machine Turning machine VIDEO A+ C+ B+ INTRODUCTION
  • 14. 14 Reference systems by Endika Gandarias INTRODUCTION VIDEO
  • 15. 15  M  Machine Zero or home: This is set by the manufacturer as the origin of the coordinate system of the machine.  W  Part zero or point of origin of the part: This is the origin point that is set for programming the measurements of the part. It can be freely selected by the programmer.  R  Machine Reference point. This is a point on the machine established by the manufacturer around which the synchronization of the system is done. The control positions the axis on this point. by Endika Gandarias INTRODUCTION Reference systems
  • 16. 16 Pre-Start Power ON Find Machine Zero or Home (M) Load Tools Set Machine Reference (R) Set Part zero (W) Load CNC program Run Program Power OFF  Define Tool Length & Radius Offsets  Check coolant and air supply levels, ensure work area is clean, … INTRODUCTION CNC machine setup and operation  Fill the tool carousel.  Once he workholding device is properly installed and aligned, set part X,Y&Z zero datum. by Endika Gandarias 1 2 3 4 5 6 7 8 9
  • 18. 18 Machine Reference (R) setting TOOL LENGTH COMPENSATION OFF G44 TOOL LENGTH COMPENSATION ON G43 REFERENCE SYSTEMS by Endika Gandarias RRRR T1 L1 L2 L3 L4 RRRR T2 T3 T4 TOOL TOOL OFFSET RADIUS LENGTH T1 D1 55.234 T2 D1 72.345 T3 D1 61.098 T4 D1 66.683 … … ... … OFFSET TABLE
  • 19. 19 Tool presetting machine REFERENCE SYSTEMS Machine Reference (R) setting 1 by Endika Gandarias  High accuracy.  Based on camera images (contact methods were used in the past).  Tool length (L) and radius (R) values are measured.  Minimizes tool setting times.  Used at high production runs. TOOL LENGTH MEASUREMENT TOOL RADIUS MEASUREMENT X Z VIDEO
  • 20. 20 Tool on the workpiece REFERENCE SYSTEMS Machine Reference (R) setting 2 by Endika Gandarias  Low accuracy.  Time consuming method.  Only tool length (L) values are measured.  Tool is rotating and thus, part or referencing block gets marked. TOOL LENGTH MEASUREMENT W T1 T2 T3 T4 L4 = 0L3 < 0 L2 > 0 L1 < 0 W RRRR
  • 21. 21 3 REFERENCE SYSTEMS Machine Reference (R) setting by Endika Gandarias Using a tool length setter gauge TOOL LENGTH MEASUREMENT  Good accuracy.  Time consuming method.  Only tool length (L) values are measured.  Part or referencing block does not get marked. W L2<0L1=0 RR L1 M 50 z1 z2 L2 50 L1= z1-50 L2= z2-50 R R BASEDONAREF.TOOLBASEDONMACHINEDATUM VIDEO
  • 22. 22 REFERENCE SYSTEMS Machine Reference (R) setting Using a touch probe4 by Endika Gandarias  High accuracy.  Fast method.  Tool length (L) and radius (R) values are measured.  Tool rotates counterclockwise not to mark the probe at low RPM. Additional applications Low RPM TOOL LENGTH MEASUREMENT TOOL RADIUS MEASUREMENT VIDEO
  • 23. 23 REFERENCE SYSTEMS Machine Reference (R) setting Using a laser beam5 Additional applications  Highest accuracy.  Fast method.  Tool length (L) and radius (R) values are measured.  Tool rotates at working conditions. TOOL LENGTH MEASUREMENT TOOL RADIUS MEASUREMENT by Endika Gandarias VIDEOVIDEO
  • 24. 24 Part zero (W) setting  Prior to defining part zero, procedure should be: 1. Study how the drawing is dimensioned. 2. Decide on the workholding device type and part zero (W) definition.  Machine operator defines part zero (W) position anywhere.  Most common positions: o Left lower side of the part (all data position values are positive). o Part symmetry axis. o CLAMP CASE  Centering pins side. o VISE CASE  Stationary chuck & vise stop side. REFERENCE SYSTEMS by Endika Gandarias Clamps (with or without centering pins) Vise (with or without vise stop) Movable chuck Stationary chuck Vise stop Centering pinsClamps
  • 25. 25 X Z Y Symmetry X Y Z Y Part zero (W) setting X Z Y X Y Z Y Stationary chuck & Y axis part symmetryX-Y axis part symmetry REFERENCE SYSTEMS by Endika Gandarias VISE VISE
  • 26. 26 Part zero (W) setting Stationary chuck & left lower part REFERENCE SYSTEMS by Endika Gandarias X Y Z X X Z Y VISE CLAMP Stationary chuck & Y axis part symmetry X Y Z X
  • 27. 27 Part zero (W) setting VIDEO Using the tool  Low accuracy.  Tool is rotating and thus, part gets marked. REFERENCE SYSTEMS by Endika Gandarias Using a mechanical edge finder1 2  Low accuracy. X Y DATUM SETTING X Y Z DATUM SETTING Optical edge finder  similar VIDEO
  • 28. 28 3 Part zero (W) setting VIDEO REFERENCE SYSTEMS by Endika Gandarias Using a touch probe  High accuracy. X Y Z DATUM SETTING VIDEO
  • 29. 29by Endika Gandarias VIDEO 2 types: 1. Touch-trigger probes 2. Scanning probes (continuous measuring) PRO & CON: Almost any machined geometry may be measured in-situ. Reduced machine downtime. Part unclamping for measuring is avoided. It cannot consider possible machine axes errors. Touch probe stylus tips 3 Part zero (W) setting REFERENCE SYSTEMS Using a touch probe
  • 30. 30 BASIC ISO PROGRAMMING FAGOR 8055-M by Endika Gandarias BASIC ISO PROGRAMMING
  • 31. 31 BASIC ISO PROGRAMMING by Endika Gandarias Block identification Identifies the block of information. / N**** G** X****.*** Y****.*** Z****.*** A****.*** B****.*** C****.*** F****.** S****.** Preparatory functions or G-codes Linear and angular positioning data Feed function Speed function Block structure T** D** M** N** ;***** Tool number Tool offset number Miscellaneous or auxiliary functions Block skip condition Number of block repetitions Block comment Not ISO, corresponds to FAGOR 8055M =
  • 32. 32by Endika Gandarias Feed function (F) Speed function (S)  The feed function F is the speed at which the tool center point moves.  The programmed F is effective working in linear (G01) or circular (G02, G03).  The maximum F value is limited by the machine parameters.  The speed function S is the speed at which the tool (in milling) or part (in turning) rotates.  The maximum S value is limited by the machine parameters. BASIC ISO PROGRAMMING
  • 33. 33by Endika Gandarias Tool number (T) The "T" code identifies the tool position in the tool magazine. Tool offset number (D) The tool offset contains the tool dimensions. Each tool may have several offsets associated with it. TOOL TOOL OFFSET RADIUS LENGTH … T1 D1 8.002 55.234 … D2 7.502 55.234 … D3 8.002 55.026 … … … … … TOOL TOOL OFFSET RADIUS LENGTH … T2 D1 4.000 72.345 … D2 11.990 60.036 … D3 7.500 33.110 … … … … … … BASIC ISO PROGRAMMING
  • 34. 34 M functions DESCRIPTION M00 Program STOP / Spindle STOP / Coolant OFF M03 Spindle ON clockwise M04 Spindle ON counterclockwise M05 Spindle STOP M06 Tool change M08 Coolant ON M09 Coolant OFF M30 End of program BASIC ISO PROGRAMMING Auxiliary or Miscellaneous (M) functions by Endika Gandarias
  • 35. 35 M functions MODAL DESCRIPTION G00 * Rapid traverse G01 * Linear interpolation G02 * Clockwise circular interpolation G03 * Counterclockwise circular interpolation G05 * Controlled corner rounding G07 * Square corner G36 Automatic radius blend G39 Chamfer G37 Tangential entry G38 Tangential exit G40 * Cancellation of tool radius compensation G41 * Left-hand tool radius compensation G42 * Right-hand tool radius compensation G43 * Tool length compensation G44 * Cancellation of tool length compensation G90 * Absolute programming G91 * Incremental programming … … … BASIC ISO PROGRAMMING Preparatory functions or G-codes by Endika Gandarias MODAL = Once programmed, it remains active until another incompatible G function is programmed or until M30 / EMERGENCY or RESET.
  • 36. 36  It is a positioning linear movement at maximum F value defined in the machine parameters.  Not valid for cutting.  It can be programmed as G00, G0 or G. by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Rapid traverse (G00) Linear interpolation (G01)  It is a working linear movement at the programmed F value.  It can be programmed as G01 or G1. … N80 G00 X500 Y300 … … N120 G01 X500 Y300 F400 … (TP) (SP) (TP) (SP) G00 X___ Y___ TP G01 X___ Y___ TP
  • 37. 37by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Rapid traverse (G00) Linear interpolation (G01) EXERCISE 1 w = SP
  • 38. 38 I J SP TP CC I J SP TP CC  It is a working circular movement at the programmed F value.  It can be programmed as G02 or G2 / G03 or G3. by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Clockwise circular interpolation (G02) Counterclockwise circular interpolation (G03) … N60 G02 X300 Y300 I200 J0 … CARTESIANCOORDINATES WITHARCCENTER G02 X___ Y___ I___ J___ Distance from the SP to the Circle Center (CC). TP … N60 G03 X300 Y300 I0 J200 … G03 X___ Y___ I___ J___ Distance from the SP to the Circle Center (CC). TP
  • 39. 39 SP TP SP TP by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes … N40 G02 X400 Y150 R150 … Clockwise circular interpolation (G02) Counterclockwise circular interpolation (G03) CARTESIANCOORDINATES WITHARCRADIUS G02 X___ Y___ R___ R + : Arc < 180º R ˗̶ : Arc > 180º TP  A complete circle cannot be programmed. … N40 G02 X400 Y150 R-150 … R+ R ˗̶ … N40 G03 X400 Y300 R150 … … N40 G03 X400 Y300 R-150 … R+ R ˗̶ G03 X___ Y___ R___ R + : Arc < 180º R ˗̶ : Arc > 180º TP
  • 40. 40by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Clockwise circular interpolation (G02) Counterclockwise circular interpolation (G03) EXERCISE 2 EXERCISE 3 EXERCISE 4 EXERCISE 5 w w w w SP SP SP SP
  • 41. 41by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Clockwise circular interpolation (G02) Counterclockwise circular interpolation (G03) EXERCISE 6 w SP
  • 42. 42 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Absolute programming (G90) Incremental programming (G91) G90: The positioning data refers to the part zero (default). G91: The positioning data corresponds to the distance to be travelled from the point where the tool is situated. w … N70 G01 G90 X70 Y15 F350 ; P2 N80 G01 X70 Y30 ; P3 N90 G01 X45 Y45 ; P4 N100 G01 X20 Y45 ; P5 N110 G01 X20 Y15 ; P6 … Absolute programming (G90) … N70 G01 G91 X50 Y0 F350; P2 N80 G01 X0 Y15 ; P3 N90 G01 X-25 Y15 ; P4 N100 G01 X-25 Y0 ; P5 N110 G01 X0 Y-30 ; P6 … Incremental programming (G91) = SP
  • 43. 43 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Absolute programming (G90) Incremental programming (G91) EXERCISE 7 w EXERCISE 8 SP SP
  • 44. 44 BASIC ISO PROGRAMMING by Endika Gandarias Other functions REPEAT (RPT N___ ,N___)N___ Number of repetitions From block To block EXERCISE 9 100 275 450 600 775 950 1100 1275 1450 SP
  • 45. 45 Pocket Milling Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling BASIC ISO PROGRAMMING Pecking / Drilling / Threading / Reaming
  • 46. 46 Face milling by Endika Gandarias N00 T1 D1 ; Ø28mm end-mill, assign tool 1 value D1 N10 M06 ; Tool change action N20 G00 G43 X14 Y40 Z100 F400 S1500 M03 N30 G00 Z58 N40 G01 X116 Y40 N50 G00 X116 Y54 N60 G01 X14 Y54 N70 G00 X14 Y68 N80 G01 X116 Y68 N90 G00 X116 Y82 N100 G01 X14 Y82 N110 G00 X14 Y96 N120 G01 X116 Y96 N130 G00 Z100 N130 M30 ; End of program SP 60 70 20 40 60 80 100 100 80 60 40 20 Security distance ~ 2 mm For exercises consider: ae = 50% of tool Ø BASIC ISO PROGRAMMING
  • 47. 47by Endika Gandarias Face milling EXERCISE 10 Tool: Ø50mm HSS end-mill, z=4 Material: Aluminium • CASE A  apTOTAL=5mm; ap=5mm • CASE B  apTOTAL=5mm; ap=2.5mm  RPT • CASE C  apTOTAL=5mm; ap=1mm  RPT & G91 BASIC ISO PROGRAMMING
  • 48. 48 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Square corner (G07) Round corner (G05)  The CNC starts executing the following block as soon as the position programmed in the current block has reached the dead band (default)  Sharp edges, Machining time ↑, Shocks ↑.  To be used with G00: face milling, canned cycles, …  The CNC starts executing the following block as soon as deceleration of the currently executing axes start (“?” distance depends on the feedrate F value)  Rounded edges, Machining time ↓  NOT to be used with G00: slot milling, engraving, contouring,… … N60 G01 G07 X50 Y100 F400 N70 G01 X140 Y100 F300 … … N60 G01 G05 X50 Y100 F400 N70 G01 X140 Y100 F300 … w t Fy t Fx w DEAD BAND: The range through which an input can be varied without initiating response t Fy t Fx Acceleration Constant feed Deceleration
  • 49. 49 Pocket Milling Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling BASIC ISO PROGRAMMING Pecking / Drilling / Threading / Reaming
  • 50. 50 Slot milling by Endika Gandarias SP 20 60 85 20 Security distance ~ 2 mm 70 95 45 N00 T7 D1 ; Ø10mm end-mill N10 M06 N20 G00 G43 X85 Y13 Z100 F400 S3500 M03 N30 G00 Z20 N40 G00 G91 Z-2 N50 G01 G90 G05 X85 Y45 N60 G01 X60 Y70 N70 G01 X60 Y95 N80 G01 G07 X3 Y95 N90 G00 G91 Z10 N100 G00 G90 X85 Y13 N110 G00 G91 Z-10 N120 (RPT N40,N110)N1 ; Repeat N130 (RPT N40,N80)N1 ; Repeat N140 G00 Z100 N150 M30 20 40 60 80 100 60 40 20 6 +Z • • • • Tool: Ø10mm H.S.S. end-mill ap TOTAL = 6mm ; ap = 2mm BASIC ISO PROGRAMMING
  • 51. 51 35 100 40 SP 85 65 6555 • •• • • 85 Slot milling by Endika Gandarias EXERCISE 11 60 40 20 5 +Z Tool: Ø16mm H.M. end-mill, z=3 Material: Steel ap TOTAL = 5mm ; ap = 2.5mm BASIC ISO PROGRAMMING
  • 52. 52 Engraving by Endika Gandarias EXERCISE 12 Tool: Ø12mm HSS engraving tool, z=1 Material: Steel ap TOTAL = 2mm ; ap = 2mm H.S.S. engraving tool H.M. engraving tool 60 40 20 2 +Z 20 40 60 80 100 100 20 20 45 60 70 35 45 55 70 85 100 52.5 BASIC ISO PROGRAMMING
  • 53. 53 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Cancellation of tool radius compensation (G40) Left-hand tool radius compensation (G41) Right-hand tool radius compensation (G42)  The CNC automatically calculates the path the tool should follow based on the contour of the part and the tool radius value stored in the tool offset table. G41 - CLIMB CUTTING G42 - CONVENTIONAL CUTTING
  • 54. 54 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Cancellation of tool radius compensation (G40) Left-hand tool radius compensation (G41) Right-hand tool radius compensation (G42) … N50 G01 G41 G05 X77.5 Y70 F400 N60 G01 X100 Y70 N70 G01 X100 Y60 N80 G03 X85 Y45 I0 J-15 N90 G02 X70 Y30 I-15 J0 N100 G01 X50 Y30 N110 G01 X20 Y20 N120 G01 X25 Y70 N130 G03 X55 Y70 I15 J0 N140 G01 X77.5 Y70 N150 G01 G40 G07 X77.5 Y100 … G41  Tool entry & exit should always be perpendicular to the workpiece contour.  Tool entry & exit should be avoided to be from a workpiece edge  may produce burr. 20 25 50 55 70 85 100 20 45 60 70 30 SP • 22.5 30
  • 55. 55 Pocket Milling Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling BASIC ISO PROGRAMMING Pecking / Drilling / Threading / Reaming
  • 56. 56 BASIC ISO PROGRAMMING by Endika Gandarias Roughing operation Tool: Ø8mm H.M. end-mill, z=3 Material: Aluminium ap TOTAL = 10mm ; ap = 2.5mm +Z 30 60 90 120 150 30 60 30 60 90 120 150 30 60 90 25 SP • Profile milling EXERCISE 13
  • 57. 57 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Automatic radius blend (G36) Chamfer (G39)  It rounds a corner with a determined radius, without having to calculate the center nor the start and end points of the arc.  Function G36 is not modal. … N60 G01 G36 R5 X250 Y450 F400 N70 G01 X400 Y0 … … N60 G01 G39 R15 X350 Y600 F400 N70 G01 X500 Y0 … G36 R___  It chamfers corners between two straight lines, without having to calculate intersection points.  Function G39 is not modal. G39 R___
  • 58. 58 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Tangential entry (G37 RENTRY) Tangential exit (G38 REXIT)  It is used to create a tangential entry in Finishing operations so tool entry mark can be unnoticeable (not necessary for roughing).  It is used to create a tangential entry in Finishing operations so tool exit mark can be unnoticeable (not necessary for roughing). … N60 G01 G05 G41 G37 R12 X25 Y30 ; Tool Ø 22mm N70 G01 X10 Y30 … … N60 G01 G38 R12 X25 Y30 ; Tool Ø 22mm N70 G01 G07 G40 X25 Y5 … RENTRY > RTOOL-OFFSET LENTRY ≥ 2 * RENTRY RENTRY LENTRY REXIT > RTOOL-OFFSET LEXIT ≥ 2 * REXIT 12 ≥ 11 25 ≥ 2 * 12 12 ≥ 11 25 ≥ 2 * 12 REXIT LEXIT NOT MODAL FUNCTION NOT MODAL FUNCTION G38 REXIT G37RENTRY
  • 59. 59 G01 G05 G41 G37 RENTRY G00 G43 G01 G07 G40 RENTRY = REXIT G38 REXIT 1 2 3 4 5 0 WORKPIECE LENTRY = LEXIT TOOL BASIC ISO PROGRAMMING Preparatory functions or G-codes Summary for profile milling operations by Endika Gandarias NOTE: - G37 & G38 only for finishing operations. RENTRY > RTOOL-OFFSET LENTRY ≥ 2 * RENTRY
  • 60. 60 Pocket Milling Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling BASIC ISO PROGRAMMING Pecking / Drilling / Threading / Reaming
  • 61. 61 SP Profile milling by Endika Gandarias Roughing operation: Tool: Ø20mm H.M. end-mill, z=3 Stock: 0.4mm Finishing operation: Tool: Ø20mm H.M. end-mill, z=3 Stock: 0mm Material: Steel ap TOTAL = 5mm ; ap = 2.5mm (Use G36 R__ and G39 R__) BASIC ISO PROGRAMMING +X +Y +X +Z • EXERCISE 14 • CASE A  Same tool • CASE B  Different tool
  • 62. 62  Cycles are referred to repetitive program sequences commonly used In machining operations that makes easier programming.  Canned cycles or Fixed cycles: They are an inbuilt feature of the CNC usually permanently stored as a pre-program and cannot be altered by the user (G80-G89)  User-defined cycles or Sub-routines: They are created when the necessary fixed cycle is not available. FIXED CYCLES OR CANNED CYCLES by Endika Gandarias CANNED CYCLE NUMBER DESCRIPTION G80 Canned cycle cancellation G81 Drilling cycle G69 Deep hole drilling cycle with variable peck G84 Tapping cycle G85 Reaming cycle G87 Rectangular pocket cycle G88 Circular pocket cycle
  • 63. 63 G81 G98/G99 X___ Y___ Z___ I___ K___ G81: Drilling cycle FIXED CYCLES OR CANNED CYCLES by Endika Gandarias  Valid for drilling depth ≤ 3*Ø  Valid for pecking cycle N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G81 G98 X30 Y20 Z2 I-15 K100 ; P1 N40 G80 N50 M30 Only one drill machining N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G81 G99 X30 Y20 Z2 I-15 K100 ; P1 N40 G00 X80 Y20 ; P2 N50 G00 X80 Y50 ; P3 N60 G00 G98 X30 Y50 ; P4 N70 G80 N80 M30 Four drills machining Dwell time (1/100s) I.P. R.P. Distance from w to the drilling depth Distance from w to the R.P. Machining coordinates Withdrawal planes Z I Reference Plane (R.P.) - G99 Initial Plane (I.P.) - G98 W 15 8 4 3 1 2
  • 64. 64 G81 G98/G99 X___ Y___ Z___ I___ K___ G81: Drilling cycle FIXED CYCLES OR CANNED CYCLES by Endika Gandarias  Valid for drilling depth ≤ 3*Ø  Valid for pecking cycle N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 ; Z100 N30 G81 G99 X30 Y20 Z2 I-15 K100 ; Z2 N40 G00 G98 X30 Y50 ; Z100 N50 G81 G99 X80 Y50 Z27 I10 K100 ; Z27 N60 G00 G98 X80 Y20 ; Z100 N70 G80 N80 M30 Dwell time (1/100s) I.P. R.P. Distance from w to the drilling depth Distance from w to the R.P. Machining coordinates Withdrawal planes Z Z’R.P. - G99 Initial Plane (I.P.) - G98 W 15 Ref. Plane’ (R.P.) - G99’ I’ I 25 10 8 2 3 1 4 Four drills machining
  • 65. 65 G69: Deep hole drilling cycle with variable peck FIXED CYCLES OR CANNED CYCLES by Endika Gandarias  General drilling cycle (≥ 3*Ø) G69 G98/G99 X___ Y___ Z___ I___ B___ C___ Drilling peck I.P. R.P. Distance from w to the R.P. Machining coordinates Withdrawal planes Distance from w to the drilling depth D___ H___ J___ K___ L___ R___ Reduction factor for drilling peck Dwell time (1/100s) Minimum drilling peck Approach to the previous drilling Distance between R.P. and working surface (absolute value) Withdrawal after drilling Num. pecks before total withdrawal N0 T3 D3 ; Ø10mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G69 G99 X30 Y20 Z2 I-60 B4 C1 D2 H10 J5 K100 L2 R0.8 ; Z2 N40 G00 G98 X30 Y50 ; Z100 N50 G69 G99 X80 Y50 Z27 I-20 B4 C1 D2 H10 J5 K100 L2 R0.8 ; Z27 N60 G98 X80 Y20 ; Z100 N40 G80 N50 M30 8 2 3 1 4 Z Z’R.P. - G99 Initial Plane (I.P.) - G98 W 60 Ref. Plane’ (R.P.) - G99’ I’ I 25 20 B D D’
  • 66. 66 G84: Tapping cycle N0 T7 D7 ; M-10 tap N10 M06 N20 G00 G43 X50 Y20 Z100 F600 S600 M03 N30 G84 G98 X50 Y20 Z2 I-60 R0 N40 G80 N50 M30 Z I Ref. Plane (R.P.) - G99 Initial Plane (I.P.) - G98 W 60 G84 G98/G99 X___ Y___ Z___ I___ K___ R___ Dwell time (1/100s) I.P. R.P. Distance from w to the thread depth Distance from w to the R.P. Machining coordinates Withdrawal planes FIXED CYCLES OR CANNED CYCLES by Endika Gandarias Type of tapping R=0 Normal tapping R=1 Rigid tapping
  • 67. 67 N0 T4 D4 ; Ø12H6 reamer N10 M06 N20 G00 G43 X30 Y20 Z100 F500 S2500 M03 N30 G85 G99 X30 Y20 Z2 I-35 K100 N40 G00 G98 X30 Y50 N50 G85 G99 X80 Y50 Z22 I-15 K100 N60 G00 X80 Y20 N70 G80 N80 M30 G85 G98/G99 X___ Y___ Z___ I___ K___ Dwell time (1/100s) I.P. R.P. Distance from w to the reaming depth Distance from w to the R.P. Machining coordinates Withdrawal planes FIXED CYCLES OR CANNED CYCLES by Endika Gandarias G85: Reaming cycle 12 2 3 1 4 Z Z’R.P. - G99 Initial Plane (I.P.) - G98 W 35 Ref. Plane’ (R.P.) - G99’ I’ I 20 15
  • 68. 68 Pocket MillingPecking / Drilling / Tapping / Reaming Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling FIXED CYCLES OR CANNED CYCLES
  • 69. 69by Endika Gandarias FIXED CYCLES OR CANNED CYCLES Pecking / Drilling / Tapping / Reaming EXERCISE 15 Tool:  Ø12mm H.M. spot drill, z=2  Ø7.75mm H.S.S. drill, z=2  Ø8H7 H.M. reamer, z=5 Material: Steel
  • 70. 70by Endika Gandarias FIXED CYCLES OR CANNED CYCLES Pecking / Drilling / Tapping / Reaming EXERCISE 16 Tool:  Ø12mm H.M. spot drill, z=2  Ø5mm H.S.S. drill, z=2  M-6x1 H.M. tap Material: Aluminium
  • 71. 71by Endika Gandarias FIXED CYCLES OR CANNED CYCLES Pecking / Drilling / Tapping / Reaming EXERCISE 17 Tool:  Ø16mm H.S.S. spot drill, z=2  Ø5mm H.S.S. drill, z=2  M-6x1 H.M. tap Material: Steel
  • 73. 73by Endika Gandarias EXERCISES Face milling / Profile milling EXERCISE 18 Material: Steel
  • 74. 74by Endika Gandarias EXERCISES Face milling / Profile milling EXERCISE 19 Material: Aluminium
  • 75. 75 EXERCISES by Endika Gandarias Face milling / Grooving / Pecking / Drilling / Tapping / Reaming EXERCISE 20 Material: Aluminium
  • 77. 77 FAGOR SIMULATOR by Endika Gandarias CNC FAGOR 8060/65 SIMULATOR www.fagorautomation.com/download/ CHANGE LANGUAGE: https://www.youtube.com/watch?v=rFTlmvQJdk8 VIDEO VIDEOVIDEO
  • 79. 79 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Accuracy Exactitud Zehaztasun Adaptative control Control adaptativo Kontrol moldagarri Blade Hélice Helize Burr Rebaba Bizar Cam Leva Espeka Carousel Carrusel Karrusel Chamfer Chaflán Alaka Clamp Brida Brida Climb cutting Corte en concordancia Konkordantzia ebaketa Clockwise Sentido horario Erlojuaren norantza Closed loop Lazo cerrado Lotura itxia Conventional cutting Corte en contraposición Kontraposizio ebaketa Coolant Regfrigerante Hozkarri Counterclockwise Sentido anti-horario Erlojuaren aurkako norantza Dead band Banda muerta Tarte hila Deep hole drilling Taladrado profundo Zulaketa sakona Downtime Tiempo de inactividad Aktibitate gabeko denbora Drill Broca Barauts Drilling Taladrado Zulaketa Driving system Sistema de regulación Erregulazio sistema Dwell time Tiempo de espera Itxaron denbora Edge finder Centrador Zentratzaile EDM Electroerosión Elektrohigadura Encoder Encoder Encoder End mill Fresa plana Fresa planua Engraving Grabado Grabaketa Face milling Planeado Planeaketa Feed Avance por minuto Aitzinamendua minutuko
  • 80. 80 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Finishing Acabado Akabera Fixed canned cycle Ciclo fijo Ziklo fijoa Glass scale Regla óptica Erregela optiko Grinding Rectificado Artezketa Grooving Ranurado Artekaketa Homing Búsqueda de cero máquina Zero makina bilatzea HSS Acero rápido Altzairu laster Investment Inversión Inbertsio Left-hand tool Herramienta a izquierdas Ezkerretarako erraminta Load Cargar Kargatu Loop Lazo Lotura Machine zero Cero máquina Zero makina bilatzea Machining centre Centro de mecanizado Mekanizatu zentru Modal Modal Modal Noise Ruido Zarata Offset Corrector Zuzentzaile Offset table Tabla de correctores Taula zuzentzaile Open loop Lazo abierto Lotura irekia Part zero Cero pieza Zero pieza Peck Picada Ziztada Pecking Punteado Punteaketa Pin Pasador Ziri Pocket Cajera Kajera Power failure Fallo de alimentación eléctrica Elikadura elektriko gabezia Profiling Perfilado / Contorneado Perfilaketa / Kontorneaketa Punched tape Tarjeta perforada Tarjeta perforatu Rapid traverse Recorrido rápido Ibilbide azkar Reamer Escariador Otxabu
  • 81. 81 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Reaming Escariado Otxabuketa Reference system Sistema de referencias Erreferentzi sistema Referencing block Bloque de referencia Erreferentzi bloke Repeatability Repetibilidad Errepikagarritasun Rigth-hand tool Herramienta a derechas Eskuinetarako erraminta Roughing Desbaste Arbastaketa Round corner Arista matada Ertz hila Setter gauge Calibre de alturas Altuera kalibratzailea Set-up Puesta a punto Prestaketa Skip Salto Jauzi Slot Ranura Arteka Speed Velocidad de giro Biraketa abiadura Spot drill Broca de puntear Punteatzaile Square corner Arista viva Ertz bizia Stationary chuck Parte no movil Atal ez higikor Stylus Estilete Estilete Tap Macho de roscar Hariztatze ardatz Tapping Roscado (con macho de roscar) Hariztaketa (hariztatze ardatzarekin) Target position Posición objetivo Jomuga posizio Thermal growth Alargamiento térmico Luzapen termikoa Threading Roscado Hariztaketa Tip Punta Punta Tool magazine Cambiador de herramienta Erraminta aldatzaile Tool presetting machine Máquina de pre-reglaje Doikuntza makina Touch probe Palpador Haztagailu Track Pista Pista Trueness Veracidad Egiatasun Unnoticeable Imperceptible Hauteman ezin
  • 82. 82 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Vise Mordaza Baraila Wear Desgaste Higadura Withdrawal planes Planos de salida Irteera planu Workholding Sistema de amarre de pieza Pieza lotze sistema