SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
Ertek, G., Eryılmaz, E. (2008) “The bullwhip effect in supply chain: Reflections after a decade” .
CELS 2008, Jönköping, Sweeden. (presented by EmreEryılmaz).

Note: This is the final draft version of this paper. Please cite this paper (or this final draft) as
above. You can download this final draft from http://research.sabanciuniv.edu.




      THE BULLWHIP EFFECT IN SUPPLY CHAIN
                          Reflections after a Decade


                               Gürdal Ertek, Emre Eryılmaz
                         Sabancı University, Orhanlı, Tuzla, 34956, Turkey




Abstract  A decade has passed since the publication of the two seminal papers by
Lee, Padmanabhan and Whang (1997) that describes the “bullwhip effect” in supply
chains and characterizes its underlying causes. The bullwhip phenomenon is
observed in supply chains where the decisions at the subsequent stages of the
supply chain are made greedily based on local information, rather than through
coordination based on global information on the state of the whole chain. The first
consequence of this information distortion is higher variance in purchasing

                                                   1
quantities compared to sales quantities at a particular supply chain stage. The
second consequence is increasingly higher variance in order quantities and
inventory levels in the upstream stages compared to their downstream stages
(buyers). In this paper, we survey a decade of literature on the bullwhip effect and
present the key insights reported by researchers and practitioners. We also present
our reflections and share our vision of possible future.



Keywords: Bullwhip Effect, Information Distortion, Information Flow, Production
and Inventory Management.



Introduction

      The general opinion of a supply chain is that it is a channel that finished goods are produced
from raw materials and then transported to customers (Vollmann et al., 2000). Mentzer et al.
(2001) describes upstream and downstream flow of products, information and finances from
supplier to customer that occurs between three or more echelons. “According to a Georgia
Technical University study, because of supply chain problems, a firm loses its value between 9 and
20 percent in a six-month period” (Reddy, 2001). Due to the high competition of business
environment in the global world, most firms try to increase productivity and eliminate problems of
their supply chain systems. Some of the problems that firms face are excessive inventory, shortage
of the products, information distortion and insufficient transportation. One of the main reasons of
these problems is the “bullwhip effect”. The Bullwhip effect is the demand variance amplification
while moving through to upstream echelons from downstream echelons (Lee et al, 1997).

    The concept of the bullwhip effect was first mentioned by Procter & Gamble to explain
increasing order behavior of Pamper diapers between customer and supplier (Lee et al., 1997).
Although customer demand is almost stable, Procter & Gamble realized that there is a significant
variance at wholesale orders. They also realized that the variance of orders placed to the raw
material suppliers is greater than the variance of orders placed to wholesalers. There are also other
firms that realized the “bullwhip effect” with respect to their companies’ order fluctuations such as
Hewlett-Packard, 3M, Eli-Lilly, DRAM market. The bullwhip effect causes inefficiency and this
returns as costs to firms. For example, “among various members of the $300 billion (annual)
                                             2
grocery industry, there is $75 billion to $100 billion worth of inventory caught due to the
inefficiencies” (Fuller et al, 1993).

   The “bullwhip effect” phenomenon is also known in different names such as “whiplash effect”,
“whipsaw effect” and “acceleration principle” but the “bullwhip effect” term is the most preferred
one. In this tutorial, we searched “bullwhip effect” in “ABI/INFORM Global (ProQuest)” database
system and we used only full text resources.



The Bullwhip Effect and the Beer Game

   First studies on the bullwhip effect belong to Jay Forrester. He developed a computer
simulation model using the DYNAMO simulator that represents traditional supply chain. The
supply chain consists of three echelons, namely factory, distributor and retailer. He demonstrated
the amplification of demand in his model but did not call the phenomenon as “bullwhip effect”.
Forrester believed that irrational decision making is the main cause of the bullwhip effect which he
proved through his model. He also showed that time delays, random fluctuation of demand and
limited capacity can lead to the bullwhip effect.



 Emergence of the Beer Game

    Beer Distribution Game is one of the exercises that illustrate the dynamics of a supply chain
(Jacobs, 2000). The game was developed at the Massachusetts Institute of Technology’s Sloan
School of Management by System Dynamics Group (Sterman, 1989). The Beer Distribution Game
consists of four echelons which are customer, retailer, distributor and factory. Each echelon is
managed by a single player and communication between echelons is not allowed. In the game, the
customer requests beer from the retailer and, in turn, the retailer orders to the distributor.
Similarly, the distributor gives orders to the factory and then the beer is produced. Only the retailer
knows the actual customer demand and the other players base their decisions according to the
ordering patterns of their immediate downstream echelon. The time that is required for ordering,
process and delivering the beer are represented by ordering and shipping delays. The main
objective of the game is minimizing total cost, which is the combination of inventory holding and
backlogging costs. Sterman (1989) inferred three consequences from the game:

                                                    3
1) Large oscillations appear in orders and inventories.

   2) Demand amplification increases as one goes to upstream.

   3) Order rate tends to peak from retailer to factory.

   The following figures show the results of a beer game played by a diverse population of
industrial engineering and management science undergraduate students in Istanbul, Turkey. The
figures I and II in appendix part display the ordering patterns of 2 teams representing the supply
chain of Brand 1 and Brand 2.

 Having observed outcomes of the beer game, Sterman (1989) claims that the bullwhip effect
occurs due to the irrational behavior of managers or feedback misperception.

      Lee et al. (1997) identify the underlying causes of the bullwhip effect by developing a
mathematical model of serial supply chain. In contrast to Forrester (1961) and Sterman (1989),
they model the manager of each echelon as being rational and optimizing. In the follow-up paper,
Lee et al. (2004) demonstrate that the bullwhip effect is a result of strategic interactions among
rational supply chain members. Lee et al. (1997) demonstrate four reasons of the bullwhip effect:

      1) Demand Signal Processing

      2) Order Batching

      3) Price Fluctuations

      4) Shortage Gaming

       We will shortly point out these four reasons because this model constitutes the backbone of
the bullwhip effect studies.



Demand Signal Processing: Most companies use forecasting to determine capacity planning,
production scheduling, material requirement and inventory control. Forecasts are often based on
historical data gathered from sales information of the company. When a downstream echelon
places an order, its immediate upstream firm considers this order as a signal about expected future

                                                 4
product demand. Subsequently, upstream firm adjusts its forecasts based on this signal. For
instance, if a retailer places an order to a distributor, the distributor adjusts its forecasts and places
an order to wholesaler. Similar relation occurs between the wholesaler and the factory. In this case,
orders have larger variance due to the updated forecasts. Moreover, safety stock is required as a
result of forecasted demand and the longer lead time results in the need of more safety stock. This
situation causes higher order variance than the actual demand, therefore the bullwhip effect
occurs.



Order Batching: Some inventory monitoring and control are used by each echelon in order to
place orders to its immediate upstream echelon in a supply chain (Lee et al., 1997). Generally,
companies do not immediately place orders to their suppliers. They often batch demands and use
periodic ordering or push ordering strategies. In periodic ordering, companies place orders once in
a week or in another period. For example, if a company places order monthly, supplier will face
erratic downstream orders, since there will be a spike in a month and no demand orders in the rest
of the month. “Obviously, the supplier faces higher demand variability than the company” (Lee et
al., 1997). This increased variability attests to the fact that periodical ordering causes the bullwhip
effect. In push ordering, salespeople regularly measures quarterly or yearly. As a result, most of the
companies have orders at the end of a quarter or a year. In this situation, the bullwhip effect
appears due to companies’ order patterns that indicate higher variance than customers’
consumption patterns.



Price Fluctuations: Price fluctuations are generally resulted by “forward buy” arrangements
between a company and its supplier. Lee et al. (1997) indicated that 80 percent of transaction
between manufacturer and distributor is forward buying in the grocery industry. Coupons, price
discounts, quantity discounts and rebates are frequently used in marketplace and these special
promotions also cause price fluctuations. This situation triggers customers to buy more than their
immediate needs and they stock products for their future needs. If prices return to its previous
level, customers do not buy products until their entire stock will be consumed. Because of the fact
that the buying pattern has higher variances than the normal pattern, it does not reflect actual
consumption pattern. Hence, the bullwhip effect occurs.

                                                    5
Shortage Gaming: If the demand of a product exceeds its supply, shortage gaming occurs.
Because there is insufficient amount of the product, supplier rations the product between
downstream members. After that, downstream members place demand orders more than their
needs to finally reach their actual needs. After shortage time passes, placed demand orders will be
canceled since they were inflated. Shortage gaming causes the bullwhip effect because the actual
demand variance is amplified as we moved from the customer to the supplier.



Literature on the Bullwhip Effect

   There are numerous researches about the bullwhip effect. Most of the researches demonstrate
that the bullwhip effect exists and some others investigate how the bullwhip effect reacts according
to different conditions.



Impact of Forecasting on the Bullwhip Effect

   The relationship between forecasting and the bullwhip effect is considered by many authors.
Hanssens (1998) empirically connects the bullwhip effect and forecasting. He illustrates that the
bullwhip effect exists as a result of forecasting and measures the impact of the effect. Graves (1999)
also shows that the bullwhip effect exists in consequence of forecasting under integrated demand
method. Chen et al. (1999) measure the magnitude of the bullwhip effect under different
forecasting techniques such as exponential smoothing and moving average. Also Chen et al. (2000)
quantify the impact of demand forecasting on the bullwhip effect in a two stage supply chain and
extend this study to a multistage supply chain. They demonstrated that the variance of orders
placed by the downstream echelons will be higher than the variance of demand if a downstream
echelon periodically updates the mean and the variance of demand that based on observed
customer demand data. They assume that exact demand value is not known. Dejonckheere et al.
(2004) have gained similar results with Chen.

   Metters (1997) investigates the bullwhip effect in monetary terms. He proves that forecasting is
one of the main reasons of the bullwhip effect. Results of his research indicate that eliminating
forecast error may increase profitability between 5 – 10 percent. Miyooka and Hausman (2004)
                                                  6
deploy “stale” or old forecasts to determine base stock levels and use current forecasts to
communicate upstream and downstream stages. Their strategy can decrease expected inventory
level, shortage cost and production fluctuations in the decentralized strategy. In contrast to
benchmarking, their strategy results in higher shortage costs and inventory level but lower
variability at period to period production



Impact of Information on the Bullwhip Effect

   Chen (1998) studies the importance of centralized demand information in a serial inventory
system. He compares the echelon stock and installation stock policies and shows that the value of
information is related to the system parameters namely lead times, batch sizes, number of stages,
demand variability and customer service level. Towill and McCullen (2001) study on the efficiency
of a supply chain and they used information transparency system as one of the methods that
reduce the bullwhip effect which consists of high information integrity between supply chain
members. Yu et al. (2001) discuss information sharing between supply chain members and
investigate its benefits to the each member of the chain. In their model, a retailer and a
manufacturer can both gain benefit by information sharing.

   Disney and Towill (2003) examine the relation between the vendor-managed inventory and the
bullwhip effect in a traditional “serially-linked” supply chain. They demonstrate that some causes
of the bullwhip effect can be eliminated and the influence of other causes can be reduced by
applying VMI policy. Croson and Donohue (2003) focus on how point of sale (POS) data can help
to reduce the bullwhip effect in a multi-echelon supply chain. They found that POS information
across the supply chain can reduce the magnitude of the order oscillations and decrease the
magnitude of the order amplification between the wholesaler and the distributor. However, they do
not come to same conclusion in a retailer - wholesaler and a distributor – manufacturer relation.
Moreover, they prove that order oscillations of sharing POS information provide less benefit to
retailers and wholesalers than to manufacturers and distributors (Donahue et al., 2003).

   Chen et al. (2000) study the impact of sharing centralized customer demand information on
the bullwhip effect in a multistage supply chain. They prove that by information sharing, it is
possible to reduce the bullwhip effect but they could not eliminate the bullwhip effect. Hayya et al.
(2004) use a simulation model to examine the effects of information quality and information
                                                 7
sharing on bullwhip effect and illustrate that information quality is also important besides
information sharing. They use the results of Chen (2000) and Dejonckheere et al. (2004) to verify
the accuracy of the simulation. Kulp et al. (2004) conclude that supply chain performance is better
when information sharing and collaborations occur.

   Clark and Hammond (1997) make an empirical analysis which illustrates that investing in
Electronic Data Interchange (EDI) for information sharing provides less benefit than investing for
business process reengineering. Cachon et al. (2000) show that using information technology to
expand the flow of information provides less benefit than using information technology to
accelerate and smooth physical flow of goods in a supply chain. Lee et al. (2000) state that
information sharing of retail demand data decreases the cost of the manufacturer.



Impact of Seasonality and Order Batching on the Bullwhip Effect

   Firms use production smoothing technique due to the increasing marginal cost or high cost of
changing the rate of production. Blinder (1981) claims that batching occurs due to the setup and
ordering costs. Jung et al. (1999) analyze order batching in terms of customer’s effect and claim
that infrequent orders in large lot sizes are preferred by firms even they are flexible supplier.
Cachon (1999) shows that if a retailer order is periodically in fixed lots, the order cycles and the
batch size influence the bullwhip effect proportionally. Moinzadeh and Nahmias (2000) observe
that the bullwhip effect can be reduced as a result of correlated ordering instead of order batching.
Gilbert and Chatpattananan (2006) study on ARIMA model and show how to optimally distribute
the bullwhip effect over smoothing periods. Lee et al. (1999) illustrate that batching contributes to
the bullwhip effect.

   Cachon et al. (2006) have searched the bullwhip effect according to monthly data of U.S.
Census Bureau between January 1992 and February 2006 that consists of 6 retailers, 18
wholesalers and 50 manufacturing industries. They claim that the bullwhip effect is more
dominant than production smoothing if an industry’s production is more volatile than its demand.
“An industry’s incentive to production smooth should increase as its demand becomes more
seasonal” (Cachon et al., 2006). Most of the researchers observe the bullwhip effect in various
examples and conclude that it is consistent with the variance of sales is lower than variance of
production. However, Cachon et al. (2006) find that manufacturing demand is less volatile than
                                                 8
downstream echelons. Only wholesalers reflect amplified demand characteristics. Moreover, they
find some verification that retails demand is the most volatile in the supply chain which contradicts
with the bullwhip effect. They believe that they come to different conclusions because “seasonality
in combination with increasing marginal costs provides a strong motivation to smooth production
relative to demand, so it is not surprising that eliminating a primary reason to production smooth
leads to incorrect conclusion that most firms amplify” (Cachon et al. 2006). Also, they consider
that seasonality is one of the major causes of the bullwhip effect that should be analyzed. Similarly,
Metters (1997) depicts that seasonality is a major factor of the bullwhip effect.



Strategies for Dealing with the Bullwhip Effect

   Lee et al. (1997) suggest that making demand data available at downstream site to an upstream
site is a remedy to mitigate demand signal processing. Thus, upstream site and downstream site
can use same data while updating their forecasts. Their strategy can be achieved by using electronic
data interchange (EDI) and point of sale systems (POS). They prove EDI can also help to break
order batching. Against price variations they recommend reducing price discount and using
strategies like everyday low pricing system. They add that sharing sales capacity and inventory data
can be helpful to eliminate shortage gaming.

    Hayya et al. (2004) find out that information sharing decreases total and stage to stage
variance amplification. They also illustrate that information sharing decelerates variance
amplification as going to upstream site from downstream site. Additionally, the authors show that
information quality is an important factor to reduce the bullwhip effect. Chen et al. (2000)
demonstrate that smoother demand forecasts provide smaller variation increase. They also
illustrate that the retailer should use more demand data to reduce the bullwhip effect if longer lead
times is in process. They also have similar conclusion about using centralized information but they
demonstrate that the bullwhip effect is not completely eliminated by using information sharing
policies. Croson and Donohue (2003) confirm that behavioral impact of adding POS data sharing
improves performance of supply chains.

   Ruggles (2005) suggests that using collaboration tools like vendor managed inventory (VMI)
can help to reduce the bullwhip effect because these systems make available the demand data and
inventory position information to members of the supply chain. Disney and Towill (2003)
                                                   9
recommend VMI as a remedy against the bullwhip effect. They argue that shortage gaming can be
completely eliminated because responsibilities in relation change. Also, they claim order batching
effect can be eliminated by the structure of the information flow. Moreover, VMI can reduce the
bullwhip effect that is caused by price variations. Finally, they claim that VMI supply chain causes
less variation than traditional supply chain.

    Yu et al. (2001) investigate the benefits of information sharing to members of the chain. They
found that in “decentralized control” and “coordinated control”, retailer will obtain nothing but in
“centralized control” retailer can gain performance improvement. However, manufacturer can gain
inventory level reduction if information sharing occurs. Manufacturer gains more than retailer but
it is possible to provide pareto improvement (benefit of the two stages) by information sharing.
Towill (1999) demonstrates that removal of one or more intermediate echelons, encouraging
collaboration among supply chain members and reducing time delays can significantly reduce the
bullwhip effect. McCullen and Towill (2001) categorize various supply chain strategies into four
principles:



   1) Control System Principle: Strengths dynamic stability of the supply chain.

   2) Time Compression Principle: Aims reduction in material and information flow lead
times

   3) Information Transparency Principle: Information sharing between members

   4) Echelon Elimination Principle: Removal of echelons.



   Authors embedded these principles in a company’s strategy and achieved 36 per cent reduction
in the bullwhip effect (Mc Cullen et al., 2001).



   Kaipia et al. (2006) state that reducing “nervousness” can reduce the bullwhip effect. They have
three strategies.

   1) Stabilize and simplify planning process.

   2) Develop communication practices with suppliers
                                                   10
3) Implementing VMI system

    Donavan (2003) makes some managerial suggestions to minimize the bullwhip effect and
increase business performance. He suggests minimizing cycle time, monitoring actual demand for
products, increasing quality and frequency of collaboration, minimizing or eliminating information
queues, minimizing incentive promotions to customers and providing vendor-managed inventory.



Conclusion

   Although the bullwhip effect phenomenon has been heavily considered in the last two decades,
nowadays it is a well known issue that is being investigated in various aspects. There are a lot of
research that demonstrate the bullwhip effect exists and that try to find reasons which cause the
bullwhip effect. Moreover, some researches seek remedies to eliminate or reduce the bullwhip
effect and some firms like Cisco and P&G explain the reasons of the inefficiencies they faced in
their supply chain by referring to the bullwhip effect (Lee et al. 2004).

   The researches about the bullwhip effect come to a point but there is a long way that to go
through to clearly understand the effect because there are still contradictions. For example, Cachon
et al. (2006) find out significant contradictions to the definition of the effect that was discussed in
part 3. The fact that they come up with different results could not be fully explained. We do not
know if it is a special case or researches before Cachon’s have similar characteristics. Moreover,
there are possibly different choices that can be made regarding the way data was aggregated and
neither current literature nor business practice is clear about this matter. In addition, different
choices can be used while separating the data (Fransoo, 2000). Since different choices can be
considered we are not able to find the exact reflections of the bullwhip effect but it can be said that
similar databases and applied methods can be used as an initiative to eliminate the bullwhip effect
and to increase the efficiency of the supply chain systems.




                                                  11
Appendix




           Figure 1




           Figure 2
                      12
References



Cachon, G. P., Randall, T. and Schmidt, G. M., 2006. In Search of the Bullwhip Effect. Working
Paper, Wharton School of Business, University of Pennsylvania.



Chatfield, D. C., Kim, J. G., Harrison, T. P. and Hayya, J. C., 2004. The Bullwhip Effect-Impact of
Stochastic Lead Time, Information Quality, and Information Sharing: A Simulation Study,
Production and Operations Management, 13(4), 340-353.



Chen, F., Drezner, Z., Ryan, J. K. and Simchi-Levi, D., 2000. Quantifying the Bullwhip Effect in a
Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information, Management
Science, 46(3), 436-443.



Croson, R. and Donohue, K., 2003. Impact of Pos Data on Supply Chain Management: An
Experimental Study, Production and Operations Management, 12(1), 1-11.



Croson, R. and Donohue, K., 2006. Behavioral Causes of the Bullwhip Effect and the Observed
Value of Inventory Information, Management Science, 52(3), 323-336.



Davies, C., 2004.Game Shows It’s Professionals Who Causes the Bullwhip Effect, Supply Chain
Europe, 13(4), 35.



Disney, S. M. and Towill, D.R., 2003. Vendor-Managed Inventory and Bullwhip Reduction in a
Two-Level Supply Chain, International Journal of Operations & Production Management, 23(5),
625-651.




                                                13
Donovan, R. M., 2002. Supply Chain Management: Cracking the Bullwhip Effect, Material
Handling Management, 57(10), A44-A45.



Fransoo, J. C., Wouters, M. J. F., 2000. Measuring Bullwhip Effect in Supply Chain, Supply Chain
Management, 5(2), 78.



Gilbert, K., 2005. An Arima Supply Chain Model, Management Science, February, 51(2), 305-310.



Gilbert, K C. and Chatpattananan V., 2006. An Arima Supply Chain Model with a Generalized
Ordering Policy, Journal of Modeling in Management, 1(1), 33-51.

Greek, D. 2000. Whip Hand, Professional Engineering, May, 43.

Jacobs, F. Robert, 2000. Playing the Beer Distribution Game Over the Internet, Production and
Operations Management, Spring, 31-39.

Kaipia, R., Korhonen, H. and Hartiala, H., 2006. Planning Nervousness in a Demand Supply
Network: An Empirical Study, 17(1), 95-113.

Kok, D. T., Janssen, F., Doremalen, J., Wachem, E., Clerkx, M. and Peeters W., 2005. Philips
Electronics Synchronizes Its Supply Chain to End the Bullwhip Effect, Interfaces, January, 37-48.

Lee, H. L., Padmanabhan, V. and Whang, S., 1997. The Bullwhip Effect in Supply Chain, Sloan
Management Review, Spring, 93-102.

Lee, H. L., Padmanabhan, V. and Whang, S., 2004. Information Distortion in a Supply Chain: The
Bullwhip Effect, Management Science, 50(12), 1875-1886.

Lee, H. L., Padmanabhan, V. and Whang, S., 2004. Comments on Information Distortion in a
Supply Chain: The Bullwhip Effect, Management Science, 50(12), 1887-1893.

Lummus, R.R., Duclos L. K. and Vokurka R. J., 2003. The Impact of Marketing Initiatives on the
Supply Chain, Supply Chain Management, 8(4), 317-323.

McCullen, P. and Towill, D., 2001. Achieving Lean Supply through Agile Manufacturing, Integrated
Manufacturing Systems, 12(7), 524-533.
                                                14
Miyaoka, J. and Hausman, W., 2004. How a Base Stock Policy Using “Stale” Forecasts Provides
Supply Chain Benefits, Manufacturing & Service Operations Management, 6(2), 149-162.

O’Marah, K., 2005. It’s all about the Customer, Industrial Management, 47(2), 8-12.

Reddy, R., 2001. Taming the Bullwhip Effect, Intelligent Enterprise, 4(9), 58-60.

Ruggles, K., 2005.Technology and the Service Supply Chain, Supply Chain Management Review,
9(7), 12-13.

Salmi, L. and Holmstrom, J., 2004. Monitoring New Product Introductions with Sell-Through
Data from Channel Partners, Supply Chain Management Review, 9(3), 209-212.

Paik, S. K., 2003. Analysis of the Causes of “Bullwhip” Effect in a Supply Chain: A Simulation
Study, Washington University Degree of Doctor of Philosophy, 21-47.

Warburton, R. D. H., 2004. An Analytical Investigation of the Bullwhip Effect, Production and
Operations Management, Summer, 150-160.

Zhou, L. and Disney, S. M., 2005. Bullwhip and Inventory Variance in a Closed Loop supply Chain,
OR Spectrum, 28(1), 127-149.




                                                15

Más contenido relacionado

Similar a The Bullwhip Effect In Supply Chain Reflections After A Decade

The bullwhip effect in supply chain: Reflections after a decade
The bullwhip effect in supply chain: Reflections after a decadeThe bullwhip effect in supply chain: Reflections after a decade
The bullwhip effect in supply chain: Reflections after a decadeGurdal Ertek
 
11.factors causing reversed bullwhip effect on the supply chains of kenyan firms
11.factors causing reversed bullwhip effect on the supply chains of kenyan firms11.factors causing reversed bullwhip effect on the supply chains of kenyan firms
11.factors causing reversed bullwhip effect on the supply chains of kenyan firmsAlexander Decker
 
S P R I N G 1 9 9 7Hau L. LeeV. PadmanabhanSeungjin W.docx
S P R I N G  1 9 9 7Hau L. LeeV. PadmanabhanSeungjin W.docxS P R I N G  1 9 9 7Hau L. LeeV. PadmanabhanSeungjin W.docx
S P R I N G 1 9 9 7Hau L. LeeV. PadmanabhanSeungjin W.docxrtodd599
 
Multi agent system for knowledge management in SCM
Multi agent system for knowledge management in SCMMulti agent system for knowledge management in SCM
Multi agent system for knowledge management in SCMGeorge Ogrinja
 
Corresponding author. Tel. 773 702 7282; fax 773 702 9937;.docx
 Corresponding author. Tel. 773 702 7282; fax 773 702 9937;.docx Corresponding author. Tel. 773 702 7282; fax 773 702 9937;.docx
Corresponding author. Tel. 773 702 7282; fax 773 702 9937;.docxShiraPrater50
 
Research Paper for Fatos Final
Research Paper for Fatos FinalResearch Paper for Fatos Final
Research Paper for Fatos FinalSam Boutin
 
Market Efficiency, Long-Term Returns, and Behavioral Finance
Market Efficiency, Long-Term Returns, and Behavioral FinanceMarket Efficiency, Long-Term Returns, and Behavioral Finance
Market Efficiency, Long-Term Returns, and Behavioral FinanceMaría Sánchez Gonzaga
 
Reducing the Bullwhip Effect via Market Research-Gleaned Insights
Reducing the Bullwhip Effect via Market Research-Gleaned InsightsReducing the Bullwhip Effect via Market Research-Gleaned Insights
Reducing the Bullwhip Effect via Market Research-Gleaned InsightsCognizant
 
Competing retailers and inventory an empirical investigation of
Competing retailers and inventory  an empirical investigation ofCompeting retailers and inventory  an empirical investigation of
Competing retailers and inventory an empirical investigation ofMakwana Suresh
 
Adoption of supply chain management strategies
Adoption of supply chain management strategiesAdoption of supply chain management strategies
Adoption of supply chain management strategiesTapan Panda
 
Bullwhip effect tutorial
Bullwhip effect tutorialBullwhip effect tutorial
Bullwhip effect tutorialAnoop Iyer
 
Measuring the bullwhip effect
Measuring the bullwhip effectMeasuring the bullwhip effect
Measuring the bullwhip effectJohannes Wolff
 
Summary of the article (50) Research problem and research ques.docx
Summary of the article (50) Research problem and research ques.docxSummary of the article (50) Research problem and research ques.docx
Summary of the article (50) Research problem and research ques.docxpicklesvalery
 

Similar a The Bullwhip Effect In Supply Chain Reflections After A Decade (20)

The bullwhip effect in supply chain: Reflections after a decade
The bullwhip effect in supply chain: Reflections after a decadeThe bullwhip effect in supply chain: Reflections after a decade
The bullwhip effect in supply chain: Reflections after a decade
 
I0210048052
I0210048052I0210048052
I0210048052
 
11.factors causing reversed bullwhip effect on the supply chains of kenyan firms
11.factors causing reversed bullwhip effect on the supply chains of kenyan firms11.factors causing reversed bullwhip effect on the supply chains of kenyan firms
11.factors causing reversed bullwhip effect on the supply chains of kenyan firms
 
Shareholder Activism
Shareholder ActivismShareholder Activism
Shareholder Activism
 
S P R I N G 1 9 9 7Hau L. LeeV. PadmanabhanSeungjin W.docx
S P R I N G  1 9 9 7Hau L. LeeV. PadmanabhanSeungjin W.docxS P R I N G  1 9 9 7Hau L. LeeV. PadmanabhanSeungjin W.docx
S P R I N G 1 9 9 7Hau L. LeeV. PadmanabhanSeungjin W.docx
 
Multi agent system for knowledge management in SCM
Multi agent system for knowledge management in SCMMulti agent system for knowledge management in SCM
Multi agent system for knowledge management in SCM
 
Fama98.pdf
Fama98.pdfFama98.pdf
Fama98.pdf
 
Corresponding author. Tel. 773 702 7282; fax 773 702 9937;.docx
 Corresponding author. Tel. 773 702 7282; fax 773 702 9937;.docx Corresponding author. Tel. 773 702 7282; fax 773 702 9937;.docx
Corresponding author. Tel. 773 702 7282; fax 773 702 9937;.docx
 
Research Paper for Fatos Final
Research Paper for Fatos FinalResearch Paper for Fatos Final
Research Paper for Fatos Final
 
Market Efficiency, Long-Term Returns, and Behavioral Finance
Market Efficiency, Long-Term Returns, and Behavioral FinanceMarket Efficiency, Long-Term Returns, and Behavioral Finance
Market Efficiency, Long-Term Returns, and Behavioral Finance
 
A NOVEL APPROACH OF QUALITY CHAIN MANAGEMENT
A NOVEL APPROACH OF QUALITY CHAIN MANAGEMENTA NOVEL APPROACH OF QUALITY CHAIN MANAGEMENT
A NOVEL APPROACH OF QUALITY CHAIN MANAGEMENT
 
Reducing the Bullwhip Effect via Market Research-Gleaned Insights
Reducing the Bullwhip Effect via Market Research-Gleaned InsightsReducing the Bullwhip Effect via Market Research-Gleaned Insights
Reducing the Bullwhip Effect via Market Research-Gleaned Insights
 
Competing retailers and inventory an empirical investigation of
Competing retailers and inventory  an empirical investigation ofCompeting retailers and inventory  an empirical investigation of
Competing retailers and inventory an empirical investigation of
 
Adoption of supply chain management strategies
Adoption of supply chain management strategiesAdoption of supply chain management strategies
Adoption of supply chain management strategies
 
Bullwhip effect tutorial
Bullwhip effect tutorialBullwhip effect tutorial
Bullwhip effect tutorial
 
Measuring the bullwhip effect
Measuring the bullwhip effectMeasuring the bullwhip effect
Measuring the bullwhip effect
 
7
77
7
 
01a Bullwhip Effect
01a Bullwhip Effect01a Bullwhip Effect
01a Bullwhip Effect
 
Summary of the article (50) Research problem and research ques.docx
Summary of the article (50) Research problem and research ques.docxSummary of the article (50) Research problem and research ques.docx
Summary of the article (50) Research problem and research ques.docx
 
Supply
SupplySupply
Supply
 

Más de ertekg

Rule-based expert systems for supporting university students
Rule-based expert systems for supporting university studentsRule-based expert systems for supporting university students
Rule-based expert systems for supporting university studentsertekg
 
Optimizing the electric charge station network of EŞARJ
Optimizing the electric charge station network of EŞARJOptimizing the electric charge station network of EŞARJ
Optimizing the electric charge station network of EŞARJertekg
 
Competitiveness of Top 100 U.S. Universities: A Benchmark Study Using Data En...
Competitiveness of Top 100 U.S. Universities: A Benchmark Study Using Data En...Competitiveness of Top 100 U.S. Universities: A Benchmark Study Using Data En...
Competitiveness of Top 100 U.S. Universities: A Benchmark Study Using Data En...ertekg
 
Industrial Benchmarking through Information Visualization and Data Envelopmen...
Industrial Benchmarking through Information Visualization and Data Envelopmen...Industrial Benchmarking through Information Visualization and Data Envelopmen...
Industrial Benchmarking through Information Visualization and Data Envelopmen...ertekg
 
Modelling the supply chain perception gaps
Modelling the supply chain perception gapsModelling the supply chain perception gaps
Modelling the supply chain perception gapsertekg
 
Risk Factors and Identifiers for Alzheimer’s Disease: A Data Mining Analysis
Risk Factors and Identifiers for Alzheimer’s Disease:  A Data Mining AnalysisRisk Factors and Identifiers for Alzheimer’s Disease:  A Data Mining Analysis
Risk Factors and Identifiers for Alzheimer’s Disease: A Data Mining Analysisertekg
 
Text Mining with RapidMiner
Text Mining with RapidMinerText Mining with RapidMiner
Text Mining with RapidMinerertekg
 
Competitive Pattern-Based Strategies under Complexity: The Case of Turkish Ma...
Competitive Pattern-Based Strategies under Complexity: The Case of Turkish Ma...Competitive Pattern-Based Strategies under Complexity: The Case of Turkish Ma...
Competitive Pattern-Based Strategies under Complexity: The Case of Turkish Ma...ertekg
 
Supplier and Buyer Driven Channels in a Two-Stage Supply Chain
Supplier and Buyer Driven Channels in a  Two-Stage Supply ChainSupplier and Buyer Driven Channels in a  Two-Stage Supply Chain
Supplier and Buyer Driven Channels in a Two-Stage Supply Chainertekg
 
Simulation Modeling For Quality And Productivity In Steel Cord Manufacturing
Simulation Modeling For Quality And Productivity In Steel Cord ManufacturingSimulation Modeling For Quality And Productivity In Steel Cord Manufacturing
Simulation Modeling For Quality And Productivity In Steel Cord Manufacturingertekg
 
Visual and analytical mining of transactions data for production planning f...
Visual and analytical mining of transactions data  for production planning  f...Visual and analytical mining of transactions data  for production planning  f...
Visual and analytical mining of transactions data for production planning f...ertekg
 
A Tutorial On Crossdocking
A Tutorial On CrossdockingA Tutorial On Crossdocking
A Tutorial On Crossdockingertekg
 
Application Of Local Search Methods For Solving A Quadratic Assignment Probl...
Application Of Local Search Methods For Solving  A Quadratic Assignment Probl...Application Of Local Search Methods For Solving  A Quadratic Assignment Probl...
Application Of Local Search Methods For Solving A Quadratic Assignment Probl...ertekg
 
Financial Benchmarking Of Transportation Companies In The New York Stock Exc...
Financial Benchmarking Of Transportation Companies  In The New York Stock Exc...Financial Benchmarking Of Transportation Companies  In The New York Stock Exc...
Financial Benchmarking Of Transportation Companies In The New York Stock Exc...ertekg
 
Optimizing Waste Collection In An Organized Industrial Region: A Case Study
Optimizing Waste Collection  In An Organized Industrial Region: A Case StudyOptimizing Waste Collection  In An Organized Industrial Region: A Case Study
Optimizing Waste Collection In An Organized Industrial Region: A Case Studyertekg
 
Demonstrating Warehousing Concepts Through Interactive Animations
Demonstrating Warehousing Concepts Through Interactive AnimationsDemonstrating Warehousing Concepts Through Interactive Animations
Demonstrating Warehousing Concepts Through Interactive Animationsertekg
 
A Framework for Visualizing Association Mining Results
A Framework for Visualizing  Association Mining ResultsA Framework for Visualizing  Association Mining Results
A Framework for Visualizing Association Mining Resultsertekg
 
Compiere kurulumu
Compiere kurulumuCompiere kurulumu
Compiere kurulumuertekg
 
Application of the Cutting Stock Problem to a Construction Company: A Case Study
Application of the Cutting Stock Problem to a Construction Company: A Case StudyApplication of the Cutting Stock Problem to a Construction Company: A Case Study
Application of the Cutting Stock Problem to a Construction Company: A Case Studyertekg
 
Benchmarking The Turkish Apparel Retail Industry Through Data Envelopment Ana...
Benchmarking The Turkish Apparel Retail Industry Through Data Envelopment Ana...Benchmarking The Turkish Apparel Retail Industry Through Data Envelopment Ana...
Benchmarking The Turkish Apparel Retail Industry Through Data Envelopment Ana...ertekg
 

Más de ertekg (20)

Rule-based expert systems for supporting university students
Rule-based expert systems for supporting university studentsRule-based expert systems for supporting university students
Rule-based expert systems for supporting university students
 
Optimizing the electric charge station network of EŞARJ
Optimizing the electric charge station network of EŞARJOptimizing the electric charge station network of EŞARJ
Optimizing the electric charge station network of EŞARJ
 
Competitiveness of Top 100 U.S. Universities: A Benchmark Study Using Data En...
Competitiveness of Top 100 U.S. Universities: A Benchmark Study Using Data En...Competitiveness of Top 100 U.S. Universities: A Benchmark Study Using Data En...
Competitiveness of Top 100 U.S. Universities: A Benchmark Study Using Data En...
 
Industrial Benchmarking through Information Visualization and Data Envelopmen...
Industrial Benchmarking through Information Visualization and Data Envelopmen...Industrial Benchmarking through Information Visualization and Data Envelopmen...
Industrial Benchmarking through Information Visualization and Data Envelopmen...
 
Modelling the supply chain perception gaps
Modelling the supply chain perception gapsModelling the supply chain perception gaps
Modelling the supply chain perception gaps
 
Risk Factors and Identifiers for Alzheimer’s Disease: A Data Mining Analysis
Risk Factors and Identifiers for Alzheimer’s Disease:  A Data Mining AnalysisRisk Factors and Identifiers for Alzheimer’s Disease:  A Data Mining Analysis
Risk Factors and Identifiers for Alzheimer’s Disease: A Data Mining Analysis
 
Text Mining with RapidMiner
Text Mining with RapidMinerText Mining with RapidMiner
Text Mining with RapidMiner
 
Competitive Pattern-Based Strategies under Complexity: The Case of Turkish Ma...
Competitive Pattern-Based Strategies under Complexity: The Case of Turkish Ma...Competitive Pattern-Based Strategies under Complexity: The Case of Turkish Ma...
Competitive Pattern-Based Strategies under Complexity: The Case of Turkish Ma...
 
Supplier and Buyer Driven Channels in a Two-Stage Supply Chain
Supplier and Buyer Driven Channels in a  Two-Stage Supply ChainSupplier and Buyer Driven Channels in a  Two-Stage Supply Chain
Supplier and Buyer Driven Channels in a Two-Stage Supply Chain
 
Simulation Modeling For Quality And Productivity In Steel Cord Manufacturing
Simulation Modeling For Quality And Productivity In Steel Cord ManufacturingSimulation Modeling For Quality And Productivity In Steel Cord Manufacturing
Simulation Modeling For Quality And Productivity In Steel Cord Manufacturing
 
Visual and analytical mining of transactions data for production planning f...
Visual and analytical mining of transactions data  for production planning  f...Visual and analytical mining of transactions data  for production planning  f...
Visual and analytical mining of transactions data for production planning f...
 
A Tutorial On Crossdocking
A Tutorial On CrossdockingA Tutorial On Crossdocking
A Tutorial On Crossdocking
 
Application Of Local Search Methods For Solving A Quadratic Assignment Probl...
Application Of Local Search Methods For Solving  A Quadratic Assignment Probl...Application Of Local Search Methods For Solving  A Quadratic Assignment Probl...
Application Of Local Search Methods For Solving A Quadratic Assignment Probl...
 
Financial Benchmarking Of Transportation Companies In The New York Stock Exc...
Financial Benchmarking Of Transportation Companies  In The New York Stock Exc...Financial Benchmarking Of Transportation Companies  In The New York Stock Exc...
Financial Benchmarking Of Transportation Companies In The New York Stock Exc...
 
Optimizing Waste Collection In An Organized Industrial Region: A Case Study
Optimizing Waste Collection  In An Organized Industrial Region: A Case StudyOptimizing Waste Collection  In An Organized Industrial Region: A Case Study
Optimizing Waste Collection In An Organized Industrial Region: A Case Study
 
Demonstrating Warehousing Concepts Through Interactive Animations
Demonstrating Warehousing Concepts Through Interactive AnimationsDemonstrating Warehousing Concepts Through Interactive Animations
Demonstrating Warehousing Concepts Through Interactive Animations
 
A Framework for Visualizing Association Mining Results
A Framework for Visualizing  Association Mining ResultsA Framework for Visualizing  Association Mining Results
A Framework for Visualizing Association Mining Results
 
Compiere kurulumu
Compiere kurulumuCompiere kurulumu
Compiere kurulumu
 
Application of the Cutting Stock Problem to a Construction Company: A Case Study
Application of the Cutting Stock Problem to a Construction Company: A Case StudyApplication of the Cutting Stock Problem to a Construction Company: A Case Study
Application of the Cutting Stock Problem to a Construction Company: A Case Study
 
Benchmarking The Turkish Apparel Retail Industry Through Data Envelopment Ana...
Benchmarking The Turkish Apparel Retail Industry Through Data Envelopment Ana...Benchmarking The Turkish Apparel Retail Industry Through Data Envelopment Ana...
Benchmarking The Turkish Apparel Retail Industry Through Data Envelopment Ana...
 

Último

FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607dollysharma2066
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Pereraictsugar
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis UsageNeil Kimberley
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 
India Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportIndia Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportMintel Group
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdfKhaled Al Awadi
 
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckPitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckHajeJanKamps
 
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCRashishs7044
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Servicecallgirls2057
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesKeppelCorporation
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxMarkAnthonyAurellano
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africaictsugar
 
International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...ssuserf63bd7
 
Innovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfInnovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfrichard876048
 

Último (20)

FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Perera
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 
India Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportIndia Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample Report
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
 
Corporate Profile 47Billion Information Technology
Corporate Profile 47Billion Information TechnologyCorporate Profile 47Billion Information Technology
Corporate Profile 47Billion Information Technology
 
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckPitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
 
Call Us ➥9319373153▻Call Girls In North Goa
Call Us ➥9319373153▻Call Girls In North GoaCall Us ➥9319373153▻Call Girls In North Goa
Call Us ➥9319373153▻Call Girls In North Goa
 
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation Slides
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africa
 
Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)
 
International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...
 
Innovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfInnovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdf
 

The Bullwhip Effect In Supply Chain Reflections After A Decade

  • 1. Ertek, G., Eryılmaz, E. (2008) “The bullwhip effect in supply chain: Reflections after a decade” . CELS 2008, Jönköping, Sweeden. (presented by EmreEryılmaz). Note: This is the final draft version of this paper. Please cite this paper (or this final draft) as above. You can download this final draft from http://research.sabanciuniv.edu. THE BULLWHIP EFFECT IN SUPPLY CHAIN Reflections after a Decade Gürdal Ertek, Emre Eryılmaz Sabancı University, Orhanlı, Tuzla, 34956, Turkey Abstract  A decade has passed since the publication of the two seminal papers by Lee, Padmanabhan and Whang (1997) that describes the “bullwhip effect” in supply chains and characterizes its underlying causes. The bullwhip phenomenon is observed in supply chains where the decisions at the subsequent stages of the supply chain are made greedily based on local information, rather than through coordination based on global information on the state of the whole chain. The first consequence of this information distortion is higher variance in purchasing 1
  • 2. quantities compared to sales quantities at a particular supply chain stage. The second consequence is increasingly higher variance in order quantities and inventory levels in the upstream stages compared to their downstream stages (buyers). In this paper, we survey a decade of literature on the bullwhip effect and present the key insights reported by researchers and practitioners. We also present our reflections and share our vision of possible future. Keywords: Bullwhip Effect, Information Distortion, Information Flow, Production and Inventory Management. Introduction The general opinion of a supply chain is that it is a channel that finished goods are produced from raw materials and then transported to customers (Vollmann et al., 2000). Mentzer et al. (2001) describes upstream and downstream flow of products, information and finances from supplier to customer that occurs between three or more echelons. “According to a Georgia Technical University study, because of supply chain problems, a firm loses its value between 9 and 20 percent in a six-month period” (Reddy, 2001). Due to the high competition of business environment in the global world, most firms try to increase productivity and eliminate problems of their supply chain systems. Some of the problems that firms face are excessive inventory, shortage of the products, information distortion and insufficient transportation. One of the main reasons of these problems is the “bullwhip effect”. The Bullwhip effect is the demand variance amplification while moving through to upstream echelons from downstream echelons (Lee et al, 1997). The concept of the bullwhip effect was first mentioned by Procter & Gamble to explain increasing order behavior of Pamper diapers between customer and supplier (Lee et al., 1997). Although customer demand is almost stable, Procter & Gamble realized that there is a significant variance at wholesale orders. They also realized that the variance of orders placed to the raw material suppliers is greater than the variance of orders placed to wholesalers. There are also other firms that realized the “bullwhip effect” with respect to their companies’ order fluctuations such as Hewlett-Packard, 3M, Eli-Lilly, DRAM market. The bullwhip effect causes inefficiency and this returns as costs to firms. For example, “among various members of the $300 billion (annual) 2
  • 3. grocery industry, there is $75 billion to $100 billion worth of inventory caught due to the inefficiencies” (Fuller et al, 1993). The “bullwhip effect” phenomenon is also known in different names such as “whiplash effect”, “whipsaw effect” and “acceleration principle” but the “bullwhip effect” term is the most preferred one. In this tutorial, we searched “bullwhip effect” in “ABI/INFORM Global (ProQuest)” database system and we used only full text resources. The Bullwhip Effect and the Beer Game First studies on the bullwhip effect belong to Jay Forrester. He developed a computer simulation model using the DYNAMO simulator that represents traditional supply chain. The supply chain consists of three echelons, namely factory, distributor and retailer. He demonstrated the amplification of demand in his model but did not call the phenomenon as “bullwhip effect”. Forrester believed that irrational decision making is the main cause of the bullwhip effect which he proved through his model. He also showed that time delays, random fluctuation of demand and limited capacity can lead to the bullwhip effect. Emergence of the Beer Game Beer Distribution Game is one of the exercises that illustrate the dynamics of a supply chain (Jacobs, 2000). The game was developed at the Massachusetts Institute of Technology’s Sloan School of Management by System Dynamics Group (Sterman, 1989). The Beer Distribution Game consists of four echelons which are customer, retailer, distributor and factory. Each echelon is managed by a single player and communication between echelons is not allowed. In the game, the customer requests beer from the retailer and, in turn, the retailer orders to the distributor. Similarly, the distributor gives orders to the factory and then the beer is produced. Only the retailer knows the actual customer demand and the other players base their decisions according to the ordering patterns of their immediate downstream echelon. The time that is required for ordering, process and delivering the beer are represented by ordering and shipping delays. The main objective of the game is minimizing total cost, which is the combination of inventory holding and backlogging costs. Sterman (1989) inferred three consequences from the game: 3
  • 4. 1) Large oscillations appear in orders and inventories. 2) Demand amplification increases as one goes to upstream. 3) Order rate tends to peak from retailer to factory. The following figures show the results of a beer game played by a diverse population of industrial engineering and management science undergraduate students in Istanbul, Turkey. The figures I and II in appendix part display the ordering patterns of 2 teams representing the supply chain of Brand 1 and Brand 2. Having observed outcomes of the beer game, Sterman (1989) claims that the bullwhip effect occurs due to the irrational behavior of managers or feedback misperception. Lee et al. (1997) identify the underlying causes of the bullwhip effect by developing a mathematical model of serial supply chain. In contrast to Forrester (1961) and Sterman (1989), they model the manager of each echelon as being rational and optimizing. In the follow-up paper, Lee et al. (2004) demonstrate that the bullwhip effect is a result of strategic interactions among rational supply chain members. Lee et al. (1997) demonstrate four reasons of the bullwhip effect: 1) Demand Signal Processing 2) Order Batching 3) Price Fluctuations 4) Shortage Gaming We will shortly point out these four reasons because this model constitutes the backbone of the bullwhip effect studies. Demand Signal Processing: Most companies use forecasting to determine capacity planning, production scheduling, material requirement and inventory control. Forecasts are often based on historical data gathered from sales information of the company. When a downstream echelon places an order, its immediate upstream firm considers this order as a signal about expected future 4
  • 5. product demand. Subsequently, upstream firm adjusts its forecasts based on this signal. For instance, if a retailer places an order to a distributor, the distributor adjusts its forecasts and places an order to wholesaler. Similar relation occurs between the wholesaler and the factory. In this case, orders have larger variance due to the updated forecasts. Moreover, safety stock is required as a result of forecasted demand and the longer lead time results in the need of more safety stock. This situation causes higher order variance than the actual demand, therefore the bullwhip effect occurs. Order Batching: Some inventory monitoring and control are used by each echelon in order to place orders to its immediate upstream echelon in a supply chain (Lee et al., 1997). Generally, companies do not immediately place orders to their suppliers. They often batch demands and use periodic ordering or push ordering strategies. In periodic ordering, companies place orders once in a week or in another period. For example, if a company places order monthly, supplier will face erratic downstream orders, since there will be a spike in a month and no demand orders in the rest of the month. “Obviously, the supplier faces higher demand variability than the company” (Lee et al., 1997). This increased variability attests to the fact that periodical ordering causes the bullwhip effect. In push ordering, salespeople regularly measures quarterly or yearly. As a result, most of the companies have orders at the end of a quarter or a year. In this situation, the bullwhip effect appears due to companies’ order patterns that indicate higher variance than customers’ consumption patterns. Price Fluctuations: Price fluctuations are generally resulted by “forward buy” arrangements between a company and its supplier. Lee et al. (1997) indicated that 80 percent of transaction between manufacturer and distributor is forward buying in the grocery industry. Coupons, price discounts, quantity discounts and rebates are frequently used in marketplace and these special promotions also cause price fluctuations. This situation triggers customers to buy more than their immediate needs and they stock products for their future needs. If prices return to its previous level, customers do not buy products until their entire stock will be consumed. Because of the fact that the buying pattern has higher variances than the normal pattern, it does not reflect actual consumption pattern. Hence, the bullwhip effect occurs. 5
  • 6. Shortage Gaming: If the demand of a product exceeds its supply, shortage gaming occurs. Because there is insufficient amount of the product, supplier rations the product between downstream members. After that, downstream members place demand orders more than their needs to finally reach their actual needs. After shortage time passes, placed demand orders will be canceled since they were inflated. Shortage gaming causes the bullwhip effect because the actual demand variance is amplified as we moved from the customer to the supplier. Literature on the Bullwhip Effect There are numerous researches about the bullwhip effect. Most of the researches demonstrate that the bullwhip effect exists and some others investigate how the bullwhip effect reacts according to different conditions. Impact of Forecasting on the Bullwhip Effect The relationship between forecasting and the bullwhip effect is considered by many authors. Hanssens (1998) empirically connects the bullwhip effect and forecasting. He illustrates that the bullwhip effect exists as a result of forecasting and measures the impact of the effect. Graves (1999) also shows that the bullwhip effect exists in consequence of forecasting under integrated demand method. Chen et al. (1999) measure the magnitude of the bullwhip effect under different forecasting techniques such as exponential smoothing and moving average. Also Chen et al. (2000) quantify the impact of demand forecasting on the bullwhip effect in a two stage supply chain and extend this study to a multistage supply chain. They demonstrated that the variance of orders placed by the downstream echelons will be higher than the variance of demand if a downstream echelon periodically updates the mean and the variance of demand that based on observed customer demand data. They assume that exact demand value is not known. Dejonckheere et al. (2004) have gained similar results with Chen. Metters (1997) investigates the bullwhip effect in monetary terms. He proves that forecasting is one of the main reasons of the bullwhip effect. Results of his research indicate that eliminating forecast error may increase profitability between 5 – 10 percent. Miyooka and Hausman (2004) 6
  • 7. deploy “stale” or old forecasts to determine base stock levels and use current forecasts to communicate upstream and downstream stages. Their strategy can decrease expected inventory level, shortage cost and production fluctuations in the decentralized strategy. In contrast to benchmarking, their strategy results in higher shortage costs and inventory level but lower variability at period to period production Impact of Information on the Bullwhip Effect Chen (1998) studies the importance of centralized demand information in a serial inventory system. He compares the echelon stock and installation stock policies and shows that the value of information is related to the system parameters namely lead times, batch sizes, number of stages, demand variability and customer service level. Towill and McCullen (2001) study on the efficiency of a supply chain and they used information transparency system as one of the methods that reduce the bullwhip effect which consists of high information integrity between supply chain members. Yu et al. (2001) discuss information sharing between supply chain members and investigate its benefits to the each member of the chain. In their model, a retailer and a manufacturer can both gain benefit by information sharing. Disney and Towill (2003) examine the relation between the vendor-managed inventory and the bullwhip effect in a traditional “serially-linked” supply chain. They demonstrate that some causes of the bullwhip effect can be eliminated and the influence of other causes can be reduced by applying VMI policy. Croson and Donohue (2003) focus on how point of sale (POS) data can help to reduce the bullwhip effect in a multi-echelon supply chain. They found that POS information across the supply chain can reduce the magnitude of the order oscillations and decrease the magnitude of the order amplification between the wholesaler and the distributor. However, they do not come to same conclusion in a retailer - wholesaler and a distributor – manufacturer relation. Moreover, they prove that order oscillations of sharing POS information provide less benefit to retailers and wholesalers than to manufacturers and distributors (Donahue et al., 2003). Chen et al. (2000) study the impact of sharing centralized customer demand information on the bullwhip effect in a multistage supply chain. They prove that by information sharing, it is possible to reduce the bullwhip effect but they could not eliminate the bullwhip effect. Hayya et al. (2004) use a simulation model to examine the effects of information quality and information 7
  • 8. sharing on bullwhip effect and illustrate that information quality is also important besides information sharing. They use the results of Chen (2000) and Dejonckheere et al. (2004) to verify the accuracy of the simulation. Kulp et al. (2004) conclude that supply chain performance is better when information sharing and collaborations occur. Clark and Hammond (1997) make an empirical analysis which illustrates that investing in Electronic Data Interchange (EDI) for information sharing provides less benefit than investing for business process reengineering. Cachon et al. (2000) show that using information technology to expand the flow of information provides less benefit than using information technology to accelerate and smooth physical flow of goods in a supply chain. Lee et al. (2000) state that information sharing of retail demand data decreases the cost of the manufacturer. Impact of Seasonality and Order Batching on the Bullwhip Effect Firms use production smoothing technique due to the increasing marginal cost or high cost of changing the rate of production. Blinder (1981) claims that batching occurs due to the setup and ordering costs. Jung et al. (1999) analyze order batching in terms of customer’s effect and claim that infrequent orders in large lot sizes are preferred by firms even they are flexible supplier. Cachon (1999) shows that if a retailer order is periodically in fixed lots, the order cycles and the batch size influence the bullwhip effect proportionally. Moinzadeh and Nahmias (2000) observe that the bullwhip effect can be reduced as a result of correlated ordering instead of order batching. Gilbert and Chatpattananan (2006) study on ARIMA model and show how to optimally distribute the bullwhip effect over smoothing periods. Lee et al. (1999) illustrate that batching contributes to the bullwhip effect. Cachon et al. (2006) have searched the bullwhip effect according to monthly data of U.S. Census Bureau between January 1992 and February 2006 that consists of 6 retailers, 18 wholesalers and 50 manufacturing industries. They claim that the bullwhip effect is more dominant than production smoothing if an industry’s production is more volatile than its demand. “An industry’s incentive to production smooth should increase as its demand becomes more seasonal” (Cachon et al., 2006). Most of the researchers observe the bullwhip effect in various examples and conclude that it is consistent with the variance of sales is lower than variance of production. However, Cachon et al. (2006) find that manufacturing demand is less volatile than 8
  • 9. downstream echelons. Only wholesalers reflect amplified demand characteristics. Moreover, they find some verification that retails demand is the most volatile in the supply chain which contradicts with the bullwhip effect. They believe that they come to different conclusions because “seasonality in combination with increasing marginal costs provides a strong motivation to smooth production relative to demand, so it is not surprising that eliminating a primary reason to production smooth leads to incorrect conclusion that most firms amplify” (Cachon et al. 2006). Also, they consider that seasonality is one of the major causes of the bullwhip effect that should be analyzed. Similarly, Metters (1997) depicts that seasonality is a major factor of the bullwhip effect. Strategies for Dealing with the Bullwhip Effect Lee et al. (1997) suggest that making demand data available at downstream site to an upstream site is a remedy to mitigate demand signal processing. Thus, upstream site and downstream site can use same data while updating their forecasts. Their strategy can be achieved by using electronic data interchange (EDI) and point of sale systems (POS). They prove EDI can also help to break order batching. Against price variations they recommend reducing price discount and using strategies like everyday low pricing system. They add that sharing sales capacity and inventory data can be helpful to eliminate shortage gaming. Hayya et al. (2004) find out that information sharing decreases total and stage to stage variance amplification. They also illustrate that information sharing decelerates variance amplification as going to upstream site from downstream site. Additionally, the authors show that information quality is an important factor to reduce the bullwhip effect. Chen et al. (2000) demonstrate that smoother demand forecasts provide smaller variation increase. They also illustrate that the retailer should use more demand data to reduce the bullwhip effect if longer lead times is in process. They also have similar conclusion about using centralized information but they demonstrate that the bullwhip effect is not completely eliminated by using information sharing policies. Croson and Donohue (2003) confirm that behavioral impact of adding POS data sharing improves performance of supply chains. Ruggles (2005) suggests that using collaboration tools like vendor managed inventory (VMI) can help to reduce the bullwhip effect because these systems make available the demand data and inventory position information to members of the supply chain. Disney and Towill (2003) 9
  • 10. recommend VMI as a remedy against the bullwhip effect. They argue that shortage gaming can be completely eliminated because responsibilities in relation change. Also, they claim order batching effect can be eliminated by the structure of the information flow. Moreover, VMI can reduce the bullwhip effect that is caused by price variations. Finally, they claim that VMI supply chain causes less variation than traditional supply chain. Yu et al. (2001) investigate the benefits of information sharing to members of the chain. They found that in “decentralized control” and “coordinated control”, retailer will obtain nothing but in “centralized control” retailer can gain performance improvement. However, manufacturer can gain inventory level reduction if information sharing occurs. Manufacturer gains more than retailer but it is possible to provide pareto improvement (benefit of the two stages) by information sharing. Towill (1999) demonstrates that removal of one or more intermediate echelons, encouraging collaboration among supply chain members and reducing time delays can significantly reduce the bullwhip effect. McCullen and Towill (2001) categorize various supply chain strategies into four principles: 1) Control System Principle: Strengths dynamic stability of the supply chain. 2) Time Compression Principle: Aims reduction in material and information flow lead times 3) Information Transparency Principle: Information sharing between members 4) Echelon Elimination Principle: Removal of echelons. Authors embedded these principles in a company’s strategy and achieved 36 per cent reduction in the bullwhip effect (Mc Cullen et al., 2001). Kaipia et al. (2006) state that reducing “nervousness” can reduce the bullwhip effect. They have three strategies. 1) Stabilize and simplify planning process. 2) Develop communication practices with suppliers 10
  • 11. 3) Implementing VMI system Donavan (2003) makes some managerial suggestions to minimize the bullwhip effect and increase business performance. He suggests minimizing cycle time, monitoring actual demand for products, increasing quality and frequency of collaboration, minimizing or eliminating information queues, minimizing incentive promotions to customers and providing vendor-managed inventory. Conclusion Although the bullwhip effect phenomenon has been heavily considered in the last two decades, nowadays it is a well known issue that is being investigated in various aspects. There are a lot of research that demonstrate the bullwhip effect exists and that try to find reasons which cause the bullwhip effect. Moreover, some researches seek remedies to eliminate or reduce the bullwhip effect and some firms like Cisco and P&G explain the reasons of the inefficiencies they faced in their supply chain by referring to the bullwhip effect (Lee et al. 2004). The researches about the bullwhip effect come to a point but there is a long way that to go through to clearly understand the effect because there are still contradictions. For example, Cachon et al. (2006) find out significant contradictions to the definition of the effect that was discussed in part 3. The fact that they come up with different results could not be fully explained. We do not know if it is a special case or researches before Cachon’s have similar characteristics. Moreover, there are possibly different choices that can be made regarding the way data was aggregated and neither current literature nor business practice is clear about this matter. In addition, different choices can be used while separating the data (Fransoo, 2000). Since different choices can be considered we are not able to find the exact reflections of the bullwhip effect but it can be said that similar databases and applied methods can be used as an initiative to eliminate the bullwhip effect and to increase the efficiency of the supply chain systems. 11
  • 12. Appendix Figure 1 Figure 2 12
  • 13. References Cachon, G. P., Randall, T. and Schmidt, G. M., 2006. In Search of the Bullwhip Effect. Working Paper, Wharton School of Business, University of Pennsylvania. Chatfield, D. C., Kim, J. G., Harrison, T. P. and Hayya, J. C., 2004. The Bullwhip Effect-Impact of Stochastic Lead Time, Information Quality, and Information Sharing: A Simulation Study, Production and Operations Management, 13(4), 340-353. Chen, F., Drezner, Z., Ryan, J. K. and Simchi-Levi, D., 2000. Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information, Management Science, 46(3), 436-443. Croson, R. and Donohue, K., 2003. Impact of Pos Data on Supply Chain Management: An Experimental Study, Production and Operations Management, 12(1), 1-11. Croson, R. and Donohue, K., 2006. Behavioral Causes of the Bullwhip Effect and the Observed Value of Inventory Information, Management Science, 52(3), 323-336. Davies, C., 2004.Game Shows It’s Professionals Who Causes the Bullwhip Effect, Supply Chain Europe, 13(4), 35. Disney, S. M. and Towill, D.R., 2003. Vendor-Managed Inventory and Bullwhip Reduction in a Two-Level Supply Chain, International Journal of Operations & Production Management, 23(5), 625-651. 13
  • 14. Donovan, R. M., 2002. Supply Chain Management: Cracking the Bullwhip Effect, Material Handling Management, 57(10), A44-A45. Fransoo, J. C., Wouters, M. J. F., 2000. Measuring Bullwhip Effect in Supply Chain, Supply Chain Management, 5(2), 78. Gilbert, K., 2005. An Arima Supply Chain Model, Management Science, February, 51(2), 305-310. Gilbert, K C. and Chatpattananan V., 2006. An Arima Supply Chain Model with a Generalized Ordering Policy, Journal of Modeling in Management, 1(1), 33-51. Greek, D. 2000. Whip Hand, Professional Engineering, May, 43. Jacobs, F. Robert, 2000. Playing the Beer Distribution Game Over the Internet, Production and Operations Management, Spring, 31-39. Kaipia, R., Korhonen, H. and Hartiala, H., 2006. Planning Nervousness in a Demand Supply Network: An Empirical Study, 17(1), 95-113. Kok, D. T., Janssen, F., Doremalen, J., Wachem, E., Clerkx, M. and Peeters W., 2005. Philips Electronics Synchronizes Its Supply Chain to End the Bullwhip Effect, Interfaces, January, 37-48. Lee, H. L., Padmanabhan, V. and Whang, S., 1997. The Bullwhip Effect in Supply Chain, Sloan Management Review, Spring, 93-102. Lee, H. L., Padmanabhan, V. and Whang, S., 2004. Information Distortion in a Supply Chain: The Bullwhip Effect, Management Science, 50(12), 1875-1886. Lee, H. L., Padmanabhan, V. and Whang, S., 2004. Comments on Information Distortion in a Supply Chain: The Bullwhip Effect, Management Science, 50(12), 1887-1893. Lummus, R.R., Duclos L. K. and Vokurka R. J., 2003. The Impact of Marketing Initiatives on the Supply Chain, Supply Chain Management, 8(4), 317-323. McCullen, P. and Towill, D., 2001. Achieving Lean Supply through Agile Manufacturing, Integrated Manufacturing Systems, 12(7), 524-533. 14
  • 15. Miyaoka, J. and Hausman, W., 2004. How a Base Stock Policy Using “Stale” Forecasts Provides Supply Chain Benefits, Manufacturing & Service Operations Management, 6(2), 149-162. O’Marah, K., 2005. It’s all about the Customer, Industrial Management, 47(2), 8-12. Reddy, R., 2001. Taming the Bullwhip Effect, Intelligent Enterprise, 4(9), 58-60. Ruggles, K., 2005.Technology and the Service Supply Chain, Supply Chain Management Review, 9(7), 12-13. Salmi, L. and Holmstrom, J., 2004. Monitoring New Product Introductions with Sell-Through Data from Channel Partners, Supply Chain Management Review, 9(3), 209-212. Paik, S. K., 2003. Analysis of the Causes of “Bullwhip” Effect in a Supply Chain: A Simulation Study, Washington University Degree of Doctor of Philosophy, 21-47. Warburton, R. D. H., 2004. An Analytical Investigation of the Bullwhip Effect, Production and Operations Management, Summer, 150-160. Zhou, L. and Disney, S. M., 2005. Bullwhip and Inventory Variance in a Closed Loop supply Chain, OR Spectrum, 28(1), 127-149. 15