SlideShare una empresa de Scribd logo
1 de 42
Docente:
                                Luis Fernando Arias Londoño



    Operaciones Algebraicas
                                     CONTENIDO :

.   1.  Adición y sustracción de monomios y polinomios con coeficientes, enteros y fraccionarios.
    2.  Introducción y supresión de signos de agrupación.
    3.  Leyes de los exponentes enteros para la multiplicación.
     OPERACIONES ALGEBRAICAS.
    4.  Multiplicación por polinomios.
    5.  Definición de producto y producto notable.
        5.1. Cuadrado de un binomio.
        5.2. Binomios conjugados.
        5.3. Binomio con un término común.
        5.4. Cubo de un binomio.
        5.5. Teorema del binomio.
        5.6. Binomio por un trinomio cuyo producto es igual a una suma o diferencia de cubos
        5.7. Cuadrado de un trinomio.
    6.  Leyes de los exponentes enteros para la división.
    7.  División de polinomios.
    8.  División sintética.
    9.  Factorización.
        9.1. Factor común.
        9.2. Diferencia de cuadrados.
        9.3. Trinomios con término de segundo grado.
        9.4. Suma y diferencia de cubos.
        9.5. Por agrupación.


Así como la aritmética surgió la necesidad que tenían los pueblos primitivos de medir el
tiempo y de contar sus posesiones, el origen del álgebra es muy posterior puesto que
debieron transcurrir muchos siglos para que el hombre llegara al concepto abstracto de
número que es el fundamento del álgebra. El gran desarrollo experimentado por el álgebra
se debió sobre todo a los matemáticos árabes y, muy en particular, a Al-Hwarizmi (siglo IX
d.C.), que sentó las bases del álgebra tal como la conocemos hoy en día.

Los primeros vestigios históricos sobre el desarrollo del álgebra en la antigüedad han sido
encontrados en Egipto. Los egipcios desarrollaron muchísimos las matemáticas como
consecuencia de la creación de las pirámides y otros monumentos y de las inundaciones del
Nilo que contribuyeron a desarrollar la agrimensura y con ella la geometría. En los
documentos escritos hallados se han encontrado ingeniosos métodos de resolución de
ecuaciones de segundo grado, lo cual pone de manifiesto la familiaridad de los egipcios con
el álgebra
OPERACIONES ALGEBRAICAS


 1. ADICIÓN Y SUSTRACCIÓN DE MONOMIOS Y POLINOMIOS CON COEFICIENTES
                        ENTEROS Y FRACCIONARIOS.

                                                             SUMA

   La suma de monomios y polinomios es asunto de combinar términos semejantes.
EJEMPLO:
Supongamos que se desea sumar 3x 2                           7x 3 y 5x 2                2x 9 ; es decir deseamos encontrar
                                                 2                           2
                                          3x             7x 3          5x          2x 9
Al aplicar las propiedades conmutativa, asociativa y distributiva podemos escribir:
3x 2    7x 3        5x 2        2x 9     3x 2        5x 2          7 x 2x                       3 9
                                                         2
                                         3 5x                    7 2x               3 9
                                             2
                                        8x           5x 6

EJEMPLO:
                                                             3 2                                      1 2
De manera semejante, la suma de 4x 3                           x       2x 3 y 6x 3                      x 9 , se escribe como:
                                                             7                                        7
        3 2                             1 2                                              3 2          1 2
 4x 3     x       2x 3           6x 3     x          9        4x 3         6x 3            x             x     2x     3 9
        7                               7                                                7             7
                                                                           2 2
                                                              10x 3          x          2x 12
                                                                           7
EJEMPLO:
                            2                    2
Para sumar      3x 7x 2 y 4x 3 5x ; primero escribimos ambos polinomios en orden
descendente, colocamos los términos semejantes en una columna y luego sumamos

                  7x2      3x 2         4x 2         5x 3             7x 2        4x 2            3x 5x               2 3
                                                                              3x 2                        2x          5
                                                                                   2
                                                                             3x                           2x          5
EJEMPLO:
Del mismo modo que en aritmética, podemos sumar o restar más de dos polinomios.
                                                                       2                    2                         2
Por ejemplo, para sumar los polinomios 7x x     3 , 6x 8 2x y 3x x 5 , escribimos
cada polinomio en orden descendente con los términos semejantes en la misma columna y
sumamos:

  7x    x2    3     6x 2        8 2x     3x x 2              5        x2      7x 3               6x 2          2x 8       x2   3x 5
                                                                      x2         6x 2       x2             7 x 2x 3x           3 8 5
                                                                     6x 2              2x             6
                                                                     6x 2         2x 6




                                                              3-2
OPERACIONES ALGEBRAICAS



                                                         RESTA

                    Para restar polinomios, primero recordemos que a-(b+c) = a-b-c
            debemos cambiar el signo de cada término dentro del paréntesis.
Para eliminar los mismo que multiplicar cada término dentropor los paréntesis por (de resta)
        Esto es lo paréntesis de una expresión precedida de un signo menos -1.

EJEMPLO:
Efectuar la operación 3x 2             2x 1       4x 2     5x 2

             3x 2     2x 1        4x 2      5x 2         3x 2    2x 1 4x 2         5x 2
                                                         3x 2    4x 2          2x 5x        1 2
SOLUCIÓN:
                                                           x2    7x        1
                                                           x2    7x 1

EJEMPLO:
           2 2            3 2
Resolver     x y            x y
           5             10

                    2 2         3 2             2 2    3 2            4 3 2           7 2
SOLUCIÓN:             x y         x y             x y    x y              x y           x y
                    5          10               5     10               10            10

EJEMPLO:
Restar 8x4   5x3 y 3x2 y 2 y 4x4            2x3 y 5x2 y 2

             8x 4     5x3 y 3x 2 y 2       4x 4   2x3 y 5x 2 y 2        8x 4   5x3 y 3x 2 y 2   4x 4   2x3 y 5x 2 y 2
SOLUCIÓN:
                                                                        4x 4   3x3 y 2x 2 y 2




EJEMPLO:
         1 2   1 2          1 3 1 2   1 2                  1 3
Restar     x y   xy           x y x y   xy                   x
         3     4            6    6    3                    4
                1 3 1 2            1 2
                  x     x y          xy
                6    3             4
                1 3 1 2            1 2
SOLUCIÓN:         x    x y           xy
                4    6             3
               1 3 1 2             7
                 x     x y               xy 2
              12    6              12




                                                         3-3
OPERACIONES ALGEBRAICAS



EJERCICIO 1:
Resolver los ejercicios siguientes:
1.-    2y2            y 1               6y2     2y 1
2.-    4x 2           3x 1              5x 2       x 1
3.-    z2         4z 1              2z 2       z 1
4.-    y2         3y 5                  y2     4y 3

5.-    2xy 2          6xy           x         2xy        x

6.-    5ax 2          3ax           4        2ax 2           3
7.-    2x         y    z            x 2y             z           x           y 2z                    x 3y             4z
8.-    a b c                    a b c                    a b c                       a b c
9.-    2g 3h k                          2g 3h                k           2g        2h 2k                         3g h k
10.- 2x 2 y                z            x 2y             z        3x 2 y                     z               x 4 y 5z
       3 2            2 2                    1    1 2                         1    1 2
11.-     a              b                      ab   b                           ab   b
       4              3                      3    9                           6    3
        9              25               1                                1           5                       7            1       7
12.-        m
                  2
                            n
                                2
                                                     15mn                                    n
                                                                                                 2
                                                                                                                 m2                    m
                                                                                                                                           2
                                                                                                                                                   30mn 3
       17              34               4                                2         17                    34            4          34

       1               3                       3                         1                           1                1                              3    1
13.-        bm
              2
                           cn 2
                                                     2
                                                   bm 6                       cn                         bm
                                                                                                             2
                                                                                                                           cn 4            2cn                bm
                                                                                                                                                                    2

       2               5                       4                         10                          4                25                             5 8

       5 2            3 2 5
14.-     a              a   a
       6              8   6
       1   3
15.-     a   b                      8a 6b 5
       2   5
       2          3 3 2             1 4                  7 4    1 3 2                                2 2 3             1 4
16.-                x y               xy                   x y    x y                                  x y               xy        7
       9          7                 8                    8     14                                    3                 3
             2 6           1 6               7 4 2                5 2 4                  3               3 4 2                3 2 4            5 6
17.-           m             n                 mn                   mn                                      mn                  mn               n
            13             3                20                   14                      5               10                   7                9
       5 3            7 2                      5 2  1 2                            1
18.-     a              ab              6        ab   ab
       6              8                        8    4                              3
19.- 0.2a 3 0.4ab 2 0.5a 2b                                  0.8b
                                                                     3
                                                                             0.6ab
                                                                                     2
                                                                                             0.3a b
                                                                                                         2
                                                                                                                      0.4a
                                                                                                                              3
                                                                                                                                  6 0.8a b
                                                                                                                                               2
                                                                                                                                                         0.2a
                                                                                                                                                                3
                                                                                                                                                                        0.9b
                                                                                                                                                                               3       2
                                                                                                                                                                                   1.5a b




                                                                                         3-4
OPERACIONES ALGEBRAICAS


             2. INTRODUCCIÓN Y SUPRESIÓN DE SIGNOS DE AGRUPACIÓN
En ocasiones es necesario eliminar paréntesis antes de combinar términos semejantes. Por
ejemplo, para combinar términos semejantes en 3x 5       2x 2 tenemos que suprimir los
paréntesis primero. Si hay un signo más (o ningún signo) enfrente de los paréntesis,
podemos simplemente eliminar; esto es,
                                          a b           a b
                                          a b           a b

EJEMPLO:
                            3x 5        2x 2           3x 5 2x 2
                                                       3x 2x 5 2
                                                        3x 2x         5 2
                                                       5x 3

La eliminación de paréntesis precedidos por un signo menos se hará de la manera siguiente:

EJEMPLO:
                          8x 2 x 1      x 3          8x 2x 2 x 3
                                                     8x 2x 2 x
                                                        8x 2x x               2 3
                                                       5x 1

En ocasiones los paréntesis se presentan dentro de otros paréntesis. Para evitar confusión,
utilizamos diferentes símbolos de agrupación. De este modo, por lo general no escribimos
  x 5    3 , sino   x 5    3 . Para combinar términos semejantes en tales expresiones, los
símbolos de agrupación más internos se eliminan primero.

EJEMPLO:

 x2 1     2x 5       x 2     3x 2   3    x 2 1 2x 5                  x 2 3x 2        3
                                             2                            2
                                         x          2x 4             3x        x 5
                                             2                   2
                                         x          2x 4 3x               x 5
                                             2x 2      3x 1

Como efecto de la propiedad distributiva tenemos, que:
                                        ab c           ab   ac

La propiedad distributiva también puede extenderse a más de dos números dentro de los
paréntesis. Por tanto a b c d      ab ac ad . Además b c a ba ca




                                                 3-5
OPERACIONES ALGEBRAICAS


3. LEYES DE LOS EXPONENTES ENTEROS PARA LA MULTIPLICACIÓN
Los exponentes se han utilizado para indicar el número de veces que se repite un factor en
                                         3
un producto. Por ejemplo, x         x x x . La notación exponencial proporciona un modo
sencillo para multiplicar expresiones que contienen potencias de la misma base.

PRIMERA LEY DE LOS EXPONENTES.
Los exponentes se suman para multiplicar dos potencias de la misma base.
Considera que m y n son enteros positivos:
                                                         xm xn      xm    n




Esta regla significa que para multiplicar expresiones con la misma base, mantenemos la
base y sumamos los exponentes. Antes de aplicar la regla del producto, hay que
asegurarnos de que las bases sean las mismas.

Por supuesto algunas expresiones pueden tener coeficientes de 1. Por ejemplo, la expresión
3x 2 tiene coeficiente numérico de 3. De manera similar, el coeficiente numérico de 5x 3 es 5.
Si decidimos multiplicar 3x 2 por 5x 3 , solo multiplicamos números por números (coeficientes)
y letras por letras. Este procedimiento es posible debido a las propiedades conmutativa y
asociativa de la multiplicación. Luego de aplicar estas dos propiedades, escribimos:

EJEMPLO:
3x 2 5x 3     3 5 x 2 x3            15x 2    3
                                                     15x 5

EJEMPLO:
8x 2 y 4xy 2 2x 5 y 3     8 4 2 x 2 x1 x 5 y 1 y 2 y 3                        64x 8 y 6



SEGUNDA LEY DE LOS EXPONENTES.
Los exponentes se multiplican par elevar una potencia a otra potencia.
                                                 n
Si m y n son enteros positivos: x m                    xm n
Cuando se eleva una potencia a una potencia, mantenemos las bases y multiplicamos los
exponentes.
                                     3
Considera la expresión x 4 , que significa que x 4 está elevado al cubo. Esta expresión
puede simplificarse como se muestra enseguida:
      3
 x4       x4 x4 x4      x4    4 4
                                     x12
                        2 5
En forma parecida y                 y2 y2 y2 y2 y2                  y2   2 2 2 2
                                                                                   y 10
Debido a que la multiplicación es en realidad una suma que se repite, es posible obtener los
mismos resultados en los ejemplos anteriores al multiplicar entre sí los exponentes.



                                                              3-6
OPERACIONES ALGEBRAICAS


EJEMPLO:
     6
53               53 6       518

EJEMPLO:
                                                                            3
                                                                    x2 y3         x2 y3 x2 y3 x2 y3
                                                                                      x2 x2 x2 y3 y3 y3
                                                                                           3           3
                                                                                      x2       y3
                                                                                  x2 3 y33
                                                                                  x6 y9

TERCERA LEY DE LOS EXPONENTES.
Mediante las propiedades asociativa y conmutativa de la multiplicación es posible escribir
Una potencia de un producto es igual al producto de las potencias de cada uno de los
factores.
                                                  n
Simbólicamente: ab                                         a nbn

EJEMPLO:
                                                                                  3
                                                                            2x              2x 2x 2x
                                                                                           2 2 2 x x x
                                                                                           23 x 3
                                                                                           8x 3

EJEMPLO:
             4              4        4             4
3xy 2                   3        x           y2            81x 4 y 8

EJEMPLO:
                   3                     3             3        3
  2x 2 y 3                           2        x2           y3          8x 6 y 9


Ene general se cumple:
         n                                                                                          n
     x            xn            Si n es número par                                             x           x n Si n es número impar


EJEMPLO:
         4                                                                             5
  2               24            16                                                2               25       32




                                                                                           3-7
OPERACIONES ALGEBRAICAS


4. MULTIPLICACIÓN POR POLINOMIOS
La multiplicación de polinomios es una operación algebraica que tiene por objeto hallar una
cantidad llamada producto dadas dos cantidades llamadas multiplicando y multiplicador, de
modo que el producto sea con respecto del multiplicando en signo y valor absoluto lo que el
multiplicador es respecto a la unidad positiva. Tanto el multiplicando como el multiplicador
reciben el nombre de factores del producto.

La multiplicación de polinomios cumple la propiedad distributiva. Es decir, que dados tres
polinomios cualesquiera x, y, z se cumplirá que xy z x yz . Esta ley acostumbra a
enunciarse diciendo que los factores se pueden agrupar de cualquier manera.

Asimismo, el producto de polinomios también cumplía la propiedad conmutativa. Es decir,
que dados los polinomios cualesquiera x, y , se cumplirá que xy yx . Esta ley acostumbra
a enunciarse diciendo que el orden de los factores no altera el producto.

Por lo que respecta al signo del producto de dos factores, pueden presentarse los cuatro
puntos siguientes:
   a) Si dos factores tienen el mismo signo positivo, su producto también tendrá signo
       positivo. x      y    xy
   b) Si el multiplicador tiene signo positivo y el multiplicando tiene signo negativo, el
      producto tendrá signo negativo. x       y    xy
   c) Si el multiplicando tiene signo positivo y el multiplicador tiene signo negativo, el
      producto tendrá signo negativo. x       y    xy
   d) Si dos factores tienen        ambos signo negativo, su         producto tendrá signo
      positivo. x   y     xy

Por lo que podemos concluir en la Regla de los Signos, siguiente:
                                     +       +    =+
                                     +       -    =-
                                      -      +    =-
                                      -      -    =+

En la multiplicación algebraica pueden considerarse los tres casos siguientes:
    a) Multiplicación de monomios.
    b) Multiplicación de un polinomio por un monomio
    c) Multiplicación de polinomios

MULTIPLICACIÓN DE MONOMIOS.
Para multiplicar monomios, se multiplican sus coeficientes y a continuación se escriben las
letras diferentes de los factores ordenados alfabéticamente, elevadas a un exponente igual a
la suma de los exponentes que cada letra tenga en los factores. El signo del producto será el
que le corresponda al aplicar la regla de los signos.


                                           3-8
OPERACIONES ALGEBRAICAS



EJEMPLO:
Multiplicar 3x 3      5x 4
SOLUCIÓN: 3x 3         5x 4        3 5 x3         4
                                                           15x 7

EJEMPLO:
Multiplicar    8ab 2       3a 2 b 2 c
Solución:     8ab 2       3a 2 b 2 c          8 3 a1          2
                                                                   b2    2
                                                                             c1         24a 3b 4 c

EJEMPLO:
Multiplicar    4x      5x 3 y 2          2x 2 y
SOLUCIÓN:       4x      5x 3 y 2         2x 2 y              4 5         2 x1 3         2
                                                                                             y2 1     40x 6 y 3

EJEMPLO:
Multiplicar    2a 3bc          4a 2 b 2 c 2       5abc             6ab 2
                2a 3 bc        4a 2 b 2 c 2           5abc             6ab 2             2     4 5         6 a3   2 1 1
                                                                                                                           b1   2 1 2
                                                                                                                                        c1   2 1
SOLUCIÓN:
                                                                                        240a 7 b 6 c 4
El producto es negativo por que hay un número impar de factores negativos.

MULTIPLICACIÓN DE UN POLINOMIO POR UN MONOMIO
Para multiplicar un polinomio por un monomio se multiplica cada uno de los términos del
polinomio por el monomio, teniendo en cuenta la regla de los signos, y se suman todos los
productos parciales así obtenidos.

EJEMPLO:

Multiplicar 3a 3      5a 2     4       3a

              3a 3    5a 2     4        3a        3a 3       3a          5a 2      3a          4     3a
SOLUCIÓN:
                                                       4           3
                                                  9a        15a          12a

EJEMPLO:

Multiplicar: x 3     3x 2 y 3xy 2            y3        2xy

SOLUCIÓN:
 x3   3x 2 y 3xy 2        y3       2xy        x3           2xy         3x 2 y      2xy             3xy 2    2xy           y3     2xy
                                              2x 4 y 6x 3 y 2                6x 2 y 3        2xy 3




                                                                   3-9
OPERACIONES ALGEBRAICAS


EJEMPLO:

               2 3 2 1 2 3            5 4       2 5              1 2
Multiplicar:     a b   a b              ab        b                ab
               3     4                6         5                2
SOLUCIÓN:
 2 3 2 1 2 3        5 4         2 5           1 2
   ab    a b          ab          b             ab
 3     4            6           5             2
               2 3 2    1 2       1 2 3     1 2                             5 4        1 2     2 5   1 2
                 ab       ab        a b       ab                              ab         ab      b     ab
               3        2         4         2                               6          2       5     2
               1 4 4 1 3 5 5 2 6 1 7
                 a b   ab       a b      ab
               3     8       12        5

EJEMPLO:

               2 4 2 3 2 4        5 6              2 2 3 2
Multiplicar:     x y   x y          y por            a x y
               3     5            6                9
                 2 4 2 3 2 4 5 6
                   x y     x y      y
                 3       5        6
                 2 2 3 2
SOLUCIÓN:          a x y
                 9
                 4 2 7 4 2 2 5 6 5 2 3 8
                   a x y       a x y     a x y
                27          15        27


MULTIPLICACIÓN DE POLINOMIOS
Para multiplicar un polinomio por otro se multiplican todos los términos del multiplicando por
cada uno de los términos del multiplicador, teniendo en cuenta la regla de los signos, y a
continuación se efectúa la suma algebraica de todos los productos parciales así obtenidos.

EJEMPLO:
Multiplicar: 2a 3   3a 2 b   4ab 2     2b 3      3a 2     4ab 5b 2
                         2a 3     3a 2 b        4ab 2        2b 3
                                  3a 2         4ab           5b 2
                      6a 5       9a 4 b       12a 3 b 2          6a 2 b 3
                                 8a 4 b       12a 3 b 2     16a 2 b 3        8ab 4
                                              10a 3 b 2     15a 2 b 3        20ab 4    10b 5
                      6a 5        a 4b        10a 3 b 2      25a 2 b 3       28ab 4    10b 5




                                                        3 - 10
OPERACIONES ALGEBRAICAS


EJEMPLO:
Multiplicar: 3x 2   2x 1 4x 2     2x 2         2x 2    3x 4

SOLUCIÓN: Se multiplican los dos primeros términos
                                    3x 2       2x      1
                                    4x 2       2x       2
                                  12 x 4      8x 3     4x 2
                                              6x3      4x 2         2x
                                                            2
                                                       6x           4x      2
                                  12 x 4      2x3       2x 2        6x      2

A continuación el resultado obtenido lo multiplicamos por el otro polinomio.


                         12x 4    2x 3       2x 2     6x        2
                                            2x 2      3x        4
                         24x 6 - 4x 5       4x 4      12x 3         4x 2
                                 36x 5      6x 4       6x3          18x 2       6x
                                           48x 4       8x 3         8x 2        24x 8
                         24x 6 - 32 x 5     38x 4      26 x 3       30x 2       30x 8




                                                   3 - 11
OPERACIONES ALGEBRAICAS


EJERCICIO 2:
Resolver los ejercicios siguientes:

1.-      2x 2 y 3 3xy 5

2.-        4xy 2 5x 2 y 4

3.-        2a a 2         b c

4.-      3x 2 y 2x 3 y 2       5xy 2       4x 2 y 2

5.-      2a b 3a 2b

6.-      x4     2x 3      3 x2       2x 3

7.-      a 1         a 1

8.-      2ab 2 3a 4 bc 2

9.-        3b 2 c 3 8ab 3 c

10.-     2x 2 yz 3        4x 3 y 2

          1   2              2 2
11.-        a   b              a
          2   3              5
          2 6        1 4 2         3 2 4      1 6       5 3 4 3
12.-        x          x y           x y         y        a x y
          5          3             5          10        7
                                    3 2 3
13.-     3a 5b 6c                     a x
                                   10
          2 4                  1 4     3 3 4
14.-        x        x2 y2       y       x y
          9                    3       7
          2   3               2 3
15.-        a   b               ab
          3   4               3
          3 3        1 2  2 2                1 3       2 2     5 2   2
16.-        m          mn   mn                 n         m       n     mn
          4          2    5                  4         3       2     3
          1 1 2           1   1 3           3 2       1 1
17.-          x             x   x             x            x
          2 3             4   4             2         5 10
          1   1              1   1
18.-        a   b              a   b
          2   3              3   2

          1 2                2 2     1   3
19.-        a        ab        b       a   b
          4                  3       4   2



                                                         3 - 12
OPERACIONES ALGEBRAICAS


 5. DEFINICIÓN DE PRODUCTO Y PRODUCTO NOTABLE
Un producto es el resultado de multiplicar dos o más números. Los números que se
multiplican se llaman factores o divisores del producto. Se llaman productos notables (o
productos especiales) a ciertos productos que cumplen reglas fijas y cuyo resultado puede
ser escrito por simple inspección, es decir, sin verificar la multiplicación.

5.1. Cuadrado de un binomio
El cuadrado de la suma de dos números es igual al cuadrado del primer número, más el
doble del producto del primer número multiplicado por el segundo, más el cuadrado del
segundo.

                                                 2                                           2
Consideremos que x                       y . Tendremos que x                             y               x       y        x    y . Por tanto
                                                                            2                        2       2
                                         x           y x        y       x        xy xy           y       x           2xy       y2
                    2
Es decir x    y                 x2       2xy            y2

EJEMPLO:
                            2
Desarrollar x       2
SOLUCIÓN: Tendremos que el cuadrado del primer número: x 2
El doble del producto del primer número por el segundo: 2 x 2                                                                 4x
                                                                    2
El cuadrado del segundo número: 2                                           4
                    2
Así pues x      2               x2       4x 4

EJEMPLO:
                                     2
Al desarrollar 3x               2y
                                                                                                                      2
SOLUCIÓN: Tendremos que el cuadrado del primer número: 3x                                                                     9x 2
El doble del producto del primer número por el segundo: 2 3x                                                              2y         12xy
                                                                        2
El cuadrado del segundo número: 2 y                                             4y2
                            2
Así pues 3x       2y                 9x 2 12xy                   4y2

EJEMPLO:
                        2                    2
Al desarrollar 4x                3y 3
                                     2                      2                                        2
             4x 2           3y3                      4x 2       2 4x 2           3y3     3y3
SOLUCIÓN:
                                                 16x 4          24x 2 y 3        9y6

El cuadrado de la diferencia de dos números es igual al cuadrado del primer número menos
el doble del producto del primer número multiplicado por el segundo, más el cuadrado del
segundo número.



                                                                                3 - 13
OPERACIONES ALGEBRAICAS


                                                  2
Consideremos que x                            y .
                                          2
Tendremos que x                   y                    x    y       x       y .
Por tanto x     y x y                             x2       xy xy            y2      x2 2xy                 y2
                     2
Es decir x      y            x2               2xy          y2

EJEMPLO:
                         2
Desarrollar x        3
                         2                    2                                        2
              x 3                     x                2 x              3          3
SOLUCIÓN:
                                  x2              6x 9

EJEMPLO:
                                  2
Desarrollar 2x           4y
                              2                        2                                               2
             2x 4 y                           2x            2 2x                 4y              4y
SOLUCIÓN:
                                          4x 2 16xy 16 y 2

EJEMPLO:
                                          2
Desarrollar 2x 3             5y2
                                      2                     2                                                       2
              2x 3       5y2                       2x 3            2 2x 3                  5y2              5y2
SOLUCIÓN:
                                                  4x 6          20x 3 y 2         25 y 4

EJEMPLO:
                                      2
Desarrollar 4a 2             3b3
             2                        2                     2                                                   2
SOLUCIÓN: 4a             3b 3                      4a 2           2(4a 2 ) 3b 3                       3b 3
                                                  16a 4          24a 2b3 9b6


5.2 Binomios conjugados
El producto de dos números por su diferencia es igual al cuadrado del primer número menos
el cuadrado del segundo número.

Consideremos el producto: x                                     y x         y
                                                   x       y x y                  x2       xy xy             y2     x2    y2
Es decir x      y x           y               x2           y2

EJEMPLO:
Multiplicar x       4 x 4


                                                                                  3 - 14
OPERACIONES ALGEBRAICAS


                                                            2
SOLUCIÓN: Cuadrado del primer número: x                                 x2
                                                                    2
             Cuadrado del segundo número: 4                                     16
Así pues, x      4 x 4          x 2 16

EJEMPLO:
Multiplicar 5x     2 y 5x 2 y
                                                                2
SOLUCIÓN: Cuadrado del primer número: 5x                                    25x 2
                                                                        2
             Cuadrado del segundo número: 2 y                                    4y2
Así pues, 5x       2 y 5x 2 y         25x 2      4y2

EJEMPLO:
Multiplicar 5x 2    3y 3 5x 2       3y 3
                                                            2 2
SOLUCIÓN: Cuadrado del primer número: 5x                                        25x 4
                                                                            2
             Cuadrado del segundo número: 3 y 3                                   9y6
Así pues, 5x 2     2 y 3 5x 2      2y3        25x 4    9y6

EJEMPLO:
Multiplicar 3 8x 8x        3
                                                                                          2
SOLUCIÓN: Cuadrado del primer número de la diferencia: 3                                       9
                                                                                               2
             Cuadrado del segundo número de la diferencia: 8x                                      64x 2
Así pues, 3 8x 8x         3        9 64x 2



5.3. Binomio con un término común
El producto de dos binomios del tipo x a x b es igual al cuadrado del primer término,
más el producto de la suma de los dos segundos términos por el primer término, más el
producto de los segundos términos.

Se trata de demostrar que x            a x b           x2               a b x ab .
Tendremos que: x a             x b         x2   ax bx ab                         x2     a b x ab
Es decir x    a x b           x2     a b x ab , tal como queríamos demostrar.

EJEMPLO:
Comprobar que x        4 x 5             x2     4 5 x 4 5.




                                                       3 - 15
OPERACIONES ALGEBRAICAS


                                  x 4 x 5
SOLUCIÓN: Tendremos                               x2 4 5 x 4 5 .
                                                  x 2 9x 20

EJEMPLO:
Comprobar que x           2 x 3          x2       2 3x               2 3

SOLUCIÓN: Tendremos x 2                  x 3      x2        2 3 x                   2 3.
                                                  x2       x 6

EJEMPLO:
Comprobar que x           6 x 4          x2      6 4x 6                  4 .
                                                    2
SOLUCIÓN: Tendremos x 6 x 4                       x    6 4 x 6                           4 .
                                                  x 2 2x 24

EJEMPLO:
Comprobar que x 5 x                 3    x2       5 3x               5             3 .
                                                   2
SOLUCIÓN: Tendremos x 5 x 3                       x     5 3 x                       5           3 .
                                                  x 2 8x 15


5.4. Cubo de un binomio
El cubo de la suma de dos números es igual al cubo del primer número, más el triple del
producto del cuadrado del primer número por el segundo, más el triple del producto del
primer número por el cuadrado del segundo, más el cubo del segundo.

                              3                                                2
Consideremos x           y          x   y x      y x      y      x        y        x        y     x2   2xy   y2 x       y , por lo
tanto
                                           x2     2xy             y2
                                                    x            y
                                           x2     2x 2 y             xy 2
                                                   x2 y          2xy 2                 y3
                                           x2     3x 2 y         3xy 2                 y3
                 3
Es decir x   y           x2       3x 2 y 3xy 2    y3

EJEMPLO:
                     3
Desarrollar x    2
                                                   3
SOLUCIÓN: Cubo del primer número: x                        x3
                                                                                                         2
Triple del producto del cuadrado del primer número por el segundo: 3 x                                       2   6x 2


                                                        3 - 16
OPERACIONES ALGEBRAICAS


                                                                                                                                               2
Triple del producto del primer número por el cuadrado del segundo: 3 x 2                                                                               12x
                                                   3
Cubo del segundo número: 2                                 8
                    3
Así pues x      2           x3           6x 2 12x 8

EJEMPLO:
                             3
Desarrollar 3x          2y
                                                                          3
SOLUCIÓN: Cubo del primer número: 3x                                              27x 3
                                                                                                                                           2
Triple del producto del cuadrado del primer número por el segundo: 3 3x                                                                            2y        54x 2 y
                                                                                                                                                   2
Triple del producto del primer número por el cuadrado del segundo: 3 3x 2 y                                                                              36xy 2
                                                       3
Cubo del segundo número: 2 y                                    8y3
                        3
Así pues 3x       2y             27x 3         54x 2 y 36xy 2                       8y3

EJEMPLO:
                                     3
Desarrollar 3a 2        2b 3
                                     3             3                      2                                        2               3
             3a 2       2b 3                3a 2            3 3a 2             2b 3        3 3a 2          2b 3             2b 3
SOLUCIÓN:
                                           27a 6           54a 4 b 3           36a 2 b 6       8b 6


El cubo de la diferencia de dos números es igual al cubo del primer número, menos el triple
del producto del cuadrado del primer número por el segundo más el triple del producto del
primer número por el cuadrado del segundo, menos el cubo del segundo número.

                                 3                                                                2
Consideremos x               y             x   y x              y x           y        x     y        x        y       x2      2xy             y2 x          y , por lo
tanto
                                                           x2         2 xy                  y2
                                                                       x                    y
                                                           x2         2x 2 y               xy 2
                                                                          x2 y         2xy 2              y3
                                                           x2         3x 2 y          3xy 2           y3
                    3
Es decir x    y             x2           3x 2 y 3xy 2             y3

EJEMPLO:
                        3
Desarrollar x       3
                                                                      3
SOLUCIÓN: Cubo del primer número: x                                            x3
                                                                                                                                       2
Triple del producto del cuadrado del primer número por el segundo: 3 x                                                                         3        9x 2


                                                                              3 - 17
OPERACIONES ALGEBRAICAS


                                                                                                                               2
Triple del producto del primer número por el cuadrado del segundo: 3 x                                                   3             27x
                                                    3
Cubo del segundo número:                    3                  27
               3
Así pues x 3         x3          9x 2       27x 27

EJEMPLO:
                      3
Desarrollar 2x 3y
                     3                  3                  2                                        2               3
            2x 3 y                2x           3 2x                 3y       3 2x              3y           3y
SOLUCIÓN:
                                 8x 3       36x 2 y 546xy 2                   27 y 3

EJEMPLO:
                             3
Desarrollar 4a 2   2b 3
                             3                  3                   2                                           2                  3
            4a 2   2b 3                 4a 2             3 4a 2              2b 3      3 4a 2            2b 3           2b 3
SOLUCIÓN:
                                    64a 6               96a 4 b 3        48a 2 b 6        8b 6


5.5. Teorema del binomio
El teorema del binomio es una fórmula (por esto se llama también fórmula del binomio) con
la cual se puede escribir directamente los términos del desarrollo de una potencia entera y
                                                                                                                                              n
positiva de un binomio. Para formarnos una idea de la estructura del desarrollo de a                                                         b :
Por multiplicación directa podemos obtener
                         1
               a b               a b
                         2
               a b                a2        2ab b2
                         3
               a b                a3 3a 2b 3ab2                         b3
                         4
               a b                a4        4a3b 6a 2b2                  4ab3        b4
                         5
               a b                a5 5a 4b 10a3b2 10a 2b3                                 5ab4      b5
De acuerdo con estos desarrollos nos podemos dar una idea acerca de la ley que siguen en
su formación:
    1. Si el exponente del binomio es n, hay n+1 términos en el desarrollo.
                                                                                          n
   2. Para cada valor de n, el desarrollo de a b                                              empieza con a n y termina con b n . En
      cada término los exponentes de a y b suman n.
   3. Las potencias de a disminuyen de 1 en 1 al pasar de cada término al siguiente. La b
      aparece por primera vez en el segundo término con exponente 1 que aumenta de 1
      en 1. El exponente de b siempre es una unidad menor que el número de orden del
      término.




                                                                        3 - 18
OPERACIONES ALGEBRAICAS


   4. El primer coeficiente es la unidad, el de cualquier otro término se obtiene
      multiplicando en el término anterior su coeficiente por el exponente de a y dividiendo
      ese producto entre el número de términos anteriores al que se trata de formar.

Cierta simetría constituye una característica del desarrollo del binomio. Esta simetría se
puede apreciar al disponer los coeficientes en el siguiente orden que se conoce como
                                                                                                                          n
Triángulo de Pascal, para valores enteros no negativos de n en el desarrollo de a b .

                            n   0                                           1
                            n    1                                  1           1
                            n    2                          1               2       1
                            n    3                      1           3           3       1
                            n    4                  1       4            6          4 1
                            n    5             1        5
                                                  10 10 5 1
                            n   6           1 6 15 20 15 6 1
                            n   7          1 7 21 35 35 21 7 1

A estos números se les llama coeficientes binomiales o binómicos, dado que cada renglón se
observa que el primer y último elemento es 1 porque los coeficientes del primer y último
término son iguales a 1.

Cada elemento se puede obtener como la suma de los dos que se encuentra a su izquierda
y derecha en el renglón superior. Así, para n=6, el segundo coeficiente 6 es la suma de los
elementos 1 y 5 que se encuentran a su izquierda y derecha en el renglón superior; el tercer
coeficiente 15 se obtiene de manera similar como la suma de los elementos 5 y 10 del
renglón superior, y así sucesivamente.

EJEMPLO:
                                                                4
Desarrollar por el teorema del binomio: a 2b
SOLUCIÓN:
Como en este caso n=4, utilizaremos los coeficientes binomiales con las potencias
correspondientes para cada término del desarrollo. Es decir,
                      4         4          3        1                   2           2             1        3          4
               a 2b       1 a        4 a       2b           6 a              2b             4 a       2b       1 2b

efectuando las potencias, se tiene:
                            4
                   a 2b         1 a4     4 a3 2b 6 a 2 4b2                              4 a 8b3 1 16b 4

efectuando los productos:
                                     4
                            a 2b         a 4 8a3b 24a 2b2                           32ab3 16b 4




                                                    3 - 19
OPERACIONES ALGEBRAICAS


EJEMPLO:
                                                                            4
Desarrollar por el teorema del binomio: 3a 2b
SOLUCIÓN: Procediendo de manera semejante a la anterior, se tiene:
                 4              4              3                 1               2           2          1         3             4
         3a 2b       1 3a               4 3a             2b           6 3a            2b         4 3a       2b        1 2b

efectuando las potencias:
                 4
         3a 2b           1 81a 4         4 27a3                  2b    6 9a 2             4b 2   4 3a       8b3       1 16b 4
                                                   4
efectuando los productos: 3a 2b                             81a 4     216a3b 216a 2b 2              96ab3 16b 4



5.6. Binomio por un trinomio cuyo producto es igual a una suma o diferencia
de cubos.
La suma algebraica de dos términos, por un trinomio que consta del cuadrado del primer
término menos el producto de los dos, más el cuadrado del segundo término, es igual a la
suma de los cubos de los dos términos algebraicos.

                                    3
Se trata de demostrar que x               y3            x     y x2          xy        y2 .
Tendremos:
                                              x2             xy                 y2
                                                             x                  y
                                              x3             x2 y           xy 2
                                                             x2 y           xy 2            y3
                                              x3                                            y3

Es decir x    y x2       xy    y2        x3            y 3 , tal como queríamos demostrar.

EJEMPLO:
Comprobar que x 3        1     x 1 x2              x 1
                     2
SOLUCIÓN: x 1 x               x 1        x3 x 2              x x2       x 1
                                         x3 1

EJEMPLO:
Comprobar que 27x 3           8y3        3x 2 y 9x 2                  6xy           4y2

             3x 2 y 9x 2 6xy 4 y 2                           27 x 3 18x 2 y               12xy 2 18x 2 y     12xy 2         8y 3
SOLUCIÓN:
                                                             27 x 3 8 y3




                                                                  3 - 20
OPERACIONES ALGEBRAICAS


EJEMPLO:
Comprobar que 64b 6         27c 3            4b 2        3c 16b 4 12b 2 c 9c 2
               2
SOLUCIÓN: 4b       3c 16b 4 12b 2c 9c 2                         64b 6 48b 2c 36b 2c 2 48b 2c 36b 2c 2 27c 3
                                                                64b 6 27c 3


La diferencia de dos términos, por un trinomio que consta del cuadrado del primer término
más el producto de los dos, más el cuadrado del segundo término, es igual a la diferencia de
los cubos de los dos términos algebraicos.

                                    3
Se trata de demostrar que x                  y3          x    y x2       xy     y2 .
Tendremos: x       y x2      xy         y2          x3       x2 y xy 2        x2 y xy 2       y3     x3   y3


Es decir x    y x2    xy      y2             x3       y 3 , tal como queríamos demostrar.

EJEMPLO:
Comprobar que x 3      8      x 2 x2                  2x 4

SOLUCIÓN: x 2        x2     2x 4              x 3 2x 4x 2x 4x 8
                                              x3 8

EJEMPLO:
Comprobar que 64x 3         27 y 3           4x 3y 16x 2 12xy                    9y2

             4x 3 y 16x 2 12xy 9 y 2                           64x 3 48x 36xy 48x 36xy 27 y 3
SOLUCIÓN:
                                                               64x3 27 y3

EJEMPLO:
Comprobar que 8a 6         27b 9         2a 2         3b 3 4a 4      6a 2 b 3        9b 6
               2
SOLUCIÓN: 2a       3b 3 4a 4 6a 2b 3 9b 6                        8a 6 12a 4b 3 18a 2b 6 12a 4b 3 18a 2b 6 27b 9
                                                                 8a 6 27b9

5.7. Cuadrado de un trinomio
El cuadrado de un polinomio es igual a la suma de los cuadrados de cada uno de los
términos, más el doble producto de cada término por los que le siguen tomados de dos en
dos.
                                                  2
                               a b c                     a2     b2   c2        2ab      2ac        2bc




                                                               3 - 21
OPERACIONES ALGEBRAICAS


EJEMPLO:
                              2
Efectuar 2x 3 y 5z
                                      2                    2                 2                      2
             2x 3 y 5z                         2x                      3y                      5z        2 2x 3 y       2 2x       5z     2 3y         5z
SOLUCIÓN:
                                                       2                2                  2
                                            4x                 9y                25z            12xy       20xz       30 yz

EJEMPLO:
                                  2
         1           2
Efectuar   x           y z
         3           5
SOLUCIÓN:
                 2                2                            2
 1     2                1                      2                                     2          1        2            1                 2
   x     y   z            x                      y                           z             2      x        y      2     x      z    2     y        z
 3     5                3                      5                                                3        5            3                 5
                       1 2                 4 2                               4                 2         4
                         x                   y                 z2              xy                xz        yz
                       9                  25                                15                 3         5

EJEMPLO:
                         2
Efectuar a 2b 3c
                              2                    2                    2                      2
             a 2b 3c                       a                       2b                     3c            2 a 2b    2a          3c   2 2b       3c
SOLUCIÓN:
                                               2                   2             2
                                           a               4b               9c            4ab 6ac 12bc




                                                                                         3 - 22
OPERACIONES ALGEBRAICAS




EJERCICIOS 3.3:
Desarrollar los siguientes productos notables:
              2                                                                  2
1.   x 2                                              22. 2x 2       3y 2
              2
2.   3 a                                              23. 2a 2       4
                                                                         2


                   2
3.   2x       y                                       24. 2a 3
                                                                                 2
                                                                     4b 2
                   2
4.   3 5y                                                                    2
                                                      25. x 4       2 y3
                   2
5.   2a 3                                                                        2
                                                      26. 3x 3       2y2
                       2
6.   2a 3b                                                                       2
                                                      27. 4a 5       3b 4
                       2
7.   2 4a 2
                                                      28. x         y x y
                       2
8.   3a 4b
                                                      29. m n m n
                           2
9.   2x 3         6b                                  30. a x x a
                               2
10. 2x 3          3y 2                                31. x2        a2       x2      a2
                               2
11. 3x 4          2 y3                                32. 2a 1 1 2a

12. 3x 2 y         z3
                               2                      33. n 1 n 1

                                     2                34. 1 3ax 3ax 1
13. 4a 2 y 3           3c 2 d 3
                                                      35. 2m 9 2m 9
          2   3                    3 2
14. 2x y               4mn
                                                      36. a3 b2              a3 b 2
                               2
15. 3x 5          4 y6
                                                      37. y 2 3y             y 2 3y
              2
16. x 3
                                                      38. 1 8xy 8xy 1
                   2
17. 2a 4
                                                      39. 6x2 m2 x 6x2 m2 x
                   2
18. 4 2x
                                                      40. a m bn             a m bn
                       2
19. 3x 2 y
                                                      41. 3x a 5 y m 5 y m 3xa
                       2
20. 5x 3y
                                                      42. a x   1
                                                                     2b x    1
                                                                                     2b x   1
                                                                                                ax   1

                       2
21. x 2       y2                                      43. 2a b 2a b



                                             3 - 23
OPERACIONES ALGEBRAICAS


44. 2x 3y 2x 3y                          69. x 5       4 x5            6

45. 4 2a 4 2a                            70. x 6       4 x6            8

46. 2m 2    3n 2 2m 2    3n 2            71. xy 3 xy 2

47. 3x 2 3x 2                            72. ab 4 ab 6

48. 2x 4 2x 4                            73. x 2 y 2           2 x2 y2     5
49. 2 4 y 2 4 y                          74. a 3 b 5 a 3b 4
50. 3x 5 3x 5                            75. a 3 a 6
51. 2x 3    y 2 2x 3    y2               76. a 2       3



52. 2x 2    3x 2x 2     3x               77. x 1       3


53. 3 4ab 3 4ab
                                         78. m 3 3
54. x 3 x 4                                            3
                                         79. n 4
55. a 5 a 2                                                3
                                         80. 2x 1
56. a 3 a 8
                                                           3
                                         81. 1 3y
57. x 2 x 3
                                                           3
                                         82. 2      y2
58. a 6 a 2
                                                           3
                                         83. 1 2n
59. a 4 a 5
                                                           3
60. a 1 a 4                              84. 4n 3
                                                               3
61. a 2 a 3                              85. a 2       2b

62. x 7 x 8                              86. 2x 3y             3



63. x 2    3 x2   4                      87. 1 a 2
                                                           3



64. a 2    3 a2   5                                                3
                                         88. 3a 3       2y3
65. x 2    2 x2   7                                        3
                                         89. 5 2x
66. x 3    5 x3   4                                    3
                                         90. x 5
67. a 3 15 a 3     4

68. x 4    3 x4   2



                                3 - 24
OPERACIONES ALGEBRAICAS


                     6. LEYES DE LOS EXPONENTES ENTEROS PARA LA DIVISIÓN
                                                                                                  am
Lo siguiente indica una regla para simplificar expresiones de la forma
                                                                                                  an
35     3 3 3 3 3
                              3 3 3 33
32        3 3

Se puede apreciar que podemos restar los exponentes para encontrar el exponente del
cociente. Por lo que para cualquier número real a excepto el 0 (cero), y para cualquier par
de números completos m y n
                                                am
                                                             am        n
                                                                           con m     n
                                                an
EJEMPLO:
Al simplificar las siguientes expresiones tenemos:
45                                  4 4 4 4 4
       45   2
                     4 3 p orque                     43
42                                     4 4
x6                                  x x x x x x
       x6   2
                     x 4 p orque                               x4
x2                                      x x
p5 q7
                p5   2
                         q7   5
                                   p3 q2
p2 q5

Por si el exponente mayor está en el denominador, es decir si n es mayor que m
entonces:
                                                am             1
                                                                                 n   m
                                                an           am    n



EJEMPLO:
x2        x x                     1        x2            1             1
                                     o bien 5
x5     x x x x x                  x3        x        x   5 2
                                                                       x3

EJEMPLO:
6x 3 y 2        2 3 x x x y y              3x 2        6x 3 y 2                  3x 3 1   3x 2
                                                o bien
2xy 4            2 x y y y y                y2         2xy 4                     y4 2     y2

Tenemos que para todo número real a excepto el 0, y para todo número completo m
                                                                   m         1
                                                             a
                                                                            am




                                                                 3 - 25
OPERACIONES ALGEBRAICAS


EJEMPLO:
                        2   1                         3     1
Como en el caso: 4                                m
                            42                              m3
     1       1     a
ab       a           Ya que el exponente solo afecta a b
             b1    b

Sabemos que cualquier número diferente de cero dividido entre sí mismo es igual a 1. Por
       a2                                                             a2
ejemplo 2         1 . Si utilizamos la regla anterior, encontramos que 2     a2   2
                                                                                      a0   1
       a                                                              a

Podemos establecer la siguiente definición: a0=1, para cualquier número real excepto el
cero.
p0=1        30=1



                                   7. DIVISIÓN DE POLINOMIOS
La división algebraica es la operación que consiste en hallar uno de los factores de un
producto, que recibe el nombre de cociente dado el otro factor, llamado divisor, y el
producto de ambos factores llamado dividendo.

De la definición anterior se deduce que el dividendo coincide con el producto del divisor
por el cociente. Así por ejemplo, si dividimos 8xy 2xy 4 , se cumplirá que 4 2xy 8xy
                                      cociente        dividendo
                            divisor dividendo                     cociente
                                                       divisor

Si el residuo no fuera igual a cero, entonces:
                                  dividendo                  residuo
                                                 cociente
                                   divisor                   divisor

Para efectuar una división algebraica hay que tener en cuenta los signos, los exponentes
y los coeficientes de las cantidades que se dividen.
       (+)÷(+)=+               (–)÷(–)=+             (+)÷(–)=–            (–)÷(+)=–



DIVISIÓN DE UN MONOMIO POR OTRO
Para dividir dos monomios se divide el coeficiente del dividiendo entre el coeficiente del
divisor y a continuación se escriben las letras ordenadas alfabéticamente, elevando cada
letra a un exponente igual a la diferencia entre el exponente que tiene en el dividendo y el
exponente que tiene en el divisor. El signo del cociente será el que corresponda al aplicar
la regla de los signos.




                                                 3 - 26
OPERACIONES ALGEBRAICAS


EJEMPLO:
Dividir 8x 6    4x 4
SOLUCIÓN: 8x 6          4x 4      8x 6 : 4x 4       8 : 4 x6      4
                                                                           2x 2

EJEMPLO:
          12x 3 y 2 z
Dividir
           3xy
                12x 3 y 2 z
SOLUCIÓN:                              12 : 3 x 3 1 y 2 1 z 1     0
                                                                            4x 2 yz
                 3xy

EJEMPLO:
          18a 3 b 4 c 2
Dividir
           6a 3 b 2 c 2
                18a 3 b 4 c 2
SOLUCIÓN:                              18 : 6 a 3   3
                                                         b4   2
                                                                  c2   2
                                                                              3b 2
                 6a 3 b 2 c 2

En ocasiones el cociente de dos monomios es fraccionario y, por consiguiente, la división
propiamente dicha no puede efectuarse en los siguientes casos:
   a) Cuando una letra está elevada a un exponente menor al que se halla elevada
       dicha letra en el divisor.
   b) Cuando el divisor contiene alguna letra que no se halla en el dividendo.

EJEMPLO:
          12a 2 b 3 c              2
Dividir
          18a 3 b 4 c 2 d        3abcd


DIVISIÓN DE UN POLINOMIO POR UN MONOMIO
Para dividir un polinomio por un monomio se divide cada uno de los términos del
polinomio por el monomio teniendo en cuenta la regla de los signos, y se suman los
cocientes parciales así obtenidos.

EJEMPLO:
Dividir 4x 3     6x 2       8x     2x

               4x 3     6x 2      8x      2x      4x 3         2x          6x 2       2x   8x   2x
SOLUCIÓN:
                                                  2x 2    3x 4




                                                              3 - 27
OPERACIONES ALGEBRAICAS


EJEMPLO:
          6x 4 y 9x 3 y 2     12x 2 y 3   6xy 4
Dividir
                            3xy

                6x 4 y 9x 3 y 2     12x 2 y 3      6xy 4     6x 4 y      9x 3 y 2    12x 2 y 3   6xy 4
SOLUCIÓN:                         3xy                         3xy         3xy          3xy       3xy
                                                             2x 3     3x 2 y 4xy 2       2y3

EJEMPLO:
          3x 3 y 2   5x 2 y 6xy 2
Dividir
                     4x 2 y

                3x 3 y 2   5x 2 y 6xy 2         3x 3 y 2 5x 2 y         6xy 2
                           4x 2 y               4x 2 y 4x 2 y           4x 2 y
SOLUCIÓN:
                                                3       5 3y
                                                  xy
                                                4       4 2x


DIVISIÓN DE UN POLINOMIO POR UN POLINOMIO.
Para dividir dos polinomios se procede de la manera siguiente:
    1) Se ordena el dividendo y el divisor con respecto a una misma letra.
    2) Se divide el primer término del dividendo entre el primer término del divisor,
       obteniéndose así el primer término del cociente
    3) Se multiplica el primer término del cociente por todo el divisor y el producto así
       obtenido se resta del dividendo, para lo cual se le cambia de signo y se escribe
       cada término de su semejante. En el caso de que algún término de este producto
       no tenga ningún término semejante en el dividendo, es escribe dicho término en el
       lugar que le corresponda de acuerdo con la ordenación del dividendo y del divisor.
    4) Se divide el primer término del resto entre el primer término del divisor,
       obteniéndose de este modo el segundo término del cociente.
    5) El segundo término del cociente se multiplica por todo el divisor y el producto así
       obtenido se resta del dividendo, cambiándole todos los signos.
    6) Se divide el primer término del segundo resto entre el primer término del divisor y
       se repiten las operaciones anteriores hasta obtener cero como resto.

EJEMPLO:

Dividir: 5x 2        xy 3y 2 15x 4        7x 3 y     6x 2 y 2       7xy 3   3y 4




                                                           3 - 28
OPERACIONES ALGEBRAICAS


                                        3x 2        2xy y 2
                       5x 2   xy 3 y 2 15x 4         7 x 3 y 6x 2 y 2          7 xy 3     3y4
                                       15x 4         3x 3 y      9x 2 y 2
                                                   10x 3 y      3x 2 y 2      7 xy 3     3y 4
                                                   10x 3 y      2x 2 y 2      6xy 3
                                                                5x 2 y 2        xy 3     3y 4
                                                                5x 2 y 2        xy 3     3y 4
                                                                                          0
Para resolver la operación anterior se procedió del modo siguiente:
En primer lugar se han ordenado dividendo y divisor en orden ascendente con respecto a
la letra y y en orden descendente con respecto a la letra x.

A continuación se ha dividido el primer término del dividendo, 15x 4 , entre el primer
término del divisor, 5x 2 , obteniéndose 3x 2 , por cada uno de los términos del divisor,
obteniéndose como resultado 15x 4                  3x 3 y - 9x 2 y 2 , que se escribe debajo de los
términos semejantes del dividendo cambiando los signos de todos los términos
semejantes, obteniéndose como primer resto                10x 3 y          3x 2 y 2     7xy 3   3y 4 .

Después se ha dividido        10x 3 y entre 5x 2 obteniéndose como cociente                          2xy , que es el
segundo término del cociente. Multiplicando                   2xy por todos los términos del divisor que
se obtiene como resultado            10x 3 y       2x 2 y 2     6xy 3 , que se escribe debajo de los
términos semejantes del primer resto cambiando los signos de todos sus términos para
efectuar la resta.
A continuación se ha procedido a efectuar la reducción de términos semejantes,
                                          2    2
obteniéndose como segundo resto 5x y                   xy 3      3y 4

Finalmente se ha dividido 5x 2 y 2             entre 5x 2 , obteniéndose como cociente                          y2 .
Multiplicando      y 2 por todos los términos del divisor se obtiene como producto
5x 2 y 2   xy 3    3y 4 , que se escribe debajo de los términos semejantes del segundo resto
cambiando los signos de todos lo términos para efectuar la resta. A continuación se ha
procedido a efectuar la reducción de términos semejantes, obteniéndose como tercer
resto 0, con lo cual queda acabada la división.


EJEMPLO:
Dividir: x 4    5x 3   11x 2 12x 6       x2     3x 3




                                                    3 - 29
OPERACIONES ALGEBRAICAS


                        x2           2x 2
             x2    3x 3 x 4          5x 3 11x 2 12x 6
                              - x 4 3x 3      3x 2
                                     2x3    8x 2 12x 6
SOLUCIÓN:                            2x3 6x 2 6x
                                              2x 2       6x 6
                                                    2
                                            - 2x         6x 6
                                                            0

EJEMPLO:
Dividir: 1 a      a 5 - 3a 2         1 2a      a2
                        3a 3           2a 2      3a 1
            a2     2a 1 a 5                         3a 2                   a 1
                               a 5 2a 4        a3
                                     2a 4       a3       3a 2             a 1
                                     2a 4 4a 3 2a 2
SOLUCIÓN:                                     3a 3      5a 2              a 1
                                                   3            2
                                              3a        6a            3a
                                                                2
                                                            a         2a 1
                                                            2
                                                        a           2a 1
                                                                        0

EJEMPLO:
Dividir: 8 y 6    21x 3 y 3     x6    24xy 5            3xy          x2      y2




                                                                    3 - 30
OPERACIONES ALGEBRAICAS


SOLUCIÓN:
                  x 4 3x 3 y 8x 2 y 2        42 xy 3 118 y 4
  x2   3xy   y2      x6                        21x 3 y 3                       24 xy 5    8y6
                   x6    3x 5 y    x4 y2
                         3x 5 y    x4 y2      21x 3 y 3                        24 xy 5    8y6
                         3x 5 y 9 x 4 y 2       3x 3 y 3
                                  8x 4 y 2    18x 3 y 3                       24 xy 5     8y6
                                  8x 4 y 2    24x 3 y 3         8x 2 y 4
                                              42x 3 y 3        8x 2 y 4      24xy 5      8y6
                                              42x 3 y 3 126x 2 y 4           42 xy 5
                                                             118x 2 y 4     18xy 5       8y6
                                                             118x 2 y 4    354xy 5 118 y 6
                                                                           336xy 5 126 y 6

Se dice que una división de un polinomio por otro es inexacta cuando:
   a) Si después de ordenar los dos polinomios, el primer término del dividendo no es
       divisible entre el primer término del divisor.
   b) Si el último término del dividendo no es divisible entre el último término del divisor.
   c) Si en el primer término de algún dividendo parcial la letra ordenatriz tiene menor
       exponente que en el primer término del divisor.



                                      8. DIVISIÓN SINTÉTICA
La división sintética es un procedimiento práctico para hallar el cociente y el residuo de la
división de un polinomio entero en x por x-a.

Dividamos x 3     5x 2   3x 14 entre x 3
                                                 x2     2x 3
                                    x 3        x3     5x 2 3x 14
                                              x 3 3x 2
                                                      2x 2    3x 14
                                                      2x 2 6x
                                                           3x 14
                                                           3x 9
                                                               5




                                                    3 - 31
OPERACIONES ALGEBRAICAS


                                                    2
Podemos apreciar que el cociente x                       2x 3 es un polinomio en x de un grado menor
que el del dividendo; que el coeficiente del primer término del cociente es igual al
coeficiente del primer término del dividendo y que el residuo es 5.
Sin efectuar la división, el cociente y el residuo pueden hallarse por la siguiente regla
práctica:
   1) El cociente de un polinomio en x cuyo grado es 1 menos que el grado del
        dividendo.
   2) El coeficiente del primer término del cociente es igual al coeficiente del primer
        término del dividendo.
   3) El coeficiente de un término cualquiera del cociente se obtiene multiplicando el
        coeficiente del término anterior por el segundo término del binomio divisor,
        cambiando el signo y sumando este producto con el coeficiente del término que
        ocupa el mismo lugar en el dividendo.
   4) El residuo se obtiene multiplicando el coeficiente del último término del divisor,
        cambiando de signo y sumando este producto con el término independiente del
        dividendo.

EJEMPLO:
Dividamos x 3         5x 2   3x 14 entre x 3

SOLUCIÓN:
       Dividendo                                                                                Divisor
         x3                             5x 2                       3x                    14      x 3
         1                              5                          3                     14       3
                             1 3 3                      2 3        6           3 3        9
         1                         -2                          -3                     +5

              2
Resultado x           2x 3 residuo: 5

EJEMPLO:

                                            2x 3   5x 2 7 x 8
Efectuar por división sintética
                                                    x 4
SOLUCIÓN:
              Dividendo                                                                       Divisor
                  2                          5                     7                 8         x 4
                             2 4        8           3 4       12        19 4    76              4
                  2                     3                     19                 68

Resultado 2x 2         3x 19 residuo: 68




                                                          3 - 32
OPERACIONES ALGEBRAICAS


EJEMPLO:
Efectuar por división sintética x 2        8x 5          x 2

SOLUCIÓN:
               Dividendo                                                          Divisor
               1                      8                            5                x 2
                           1   2      2                10      2   20                2
               1                    - 10                           25

Resultado x 10 residuo: 25

EJEMPLO:
Efectuar por división sintética x 5       16x 3       202x     81 entre x 4

SOLUCIÓN:
Como este polinomio es incompleto, pues le faltan los términos x 4 y x 2 , al escribir los
coeficientes ponemos 0 en los lugares que debían ocupar los coeficientes de estos
términos.

              Dividendo                                                            Divisor
              1        0           - 16           0            - 202         81     x 4
                       4             16           0              0         808       4
              1        4              0           0            - 202        727
Como el dividendo es de 5° grado, el cociente es de 4° grado los coeficientes del cociente
son 1, 4, 0, 0 y -202, el cociente es x 4         4x 3       202 y el residuo es -727




                                                      3 - 33
OPERACIONES ALGEBRAICAS


                                  9. FACTORIZACIÓN
Factorizar una expresión algebraica es hallar dos o más factores cuyo producto es igual a
la expresión propuesta.

La factorización puede considerarse como la operación inversa a la multiplicación, pues el
propósito de ésta última es hallar el producto de dos o más factores; mientras que en la
factorización, se buscan los factores de un producto dado.

Se llaman factores o divisores de una expresión algebraica, a los términos que
multiplicados entre sí dan como producto la primera expresión.

                                      Factorización


                                  24 2 2 2 3
                                  24 2 3 4
                                  24 4 6
                                  24 8 3
                                  24 12 2

                                      Multiplicación

Al factorizar una expresión, escribimos la expresión como un producto de sus factores.
Supongamos que tenemos dos números 3 y 5 y se pide que los multipliquemos,
escribiremos 3 5 15 . En el proceso inverso, tenemos el producto 15 y se nos pide que
lo factoricemos; entonces tendremos 15 3 5

Al factorizar el número 20, tendremos 20    4 5 o 20 10 2 .

Advierte que 20 4 5 y 20 10 2 no están factorizados por completo. Contienen
factores que no son números primos. Los primeros números primos son 2, 3, 5, 7, 11, etc.
Puesto que ninguna de esas factorizaciones está completa, notamos que en la primera
factorización 4    2 2 , de modo que 20              2 2   5 mientras que la segunda
factorización 10   2 5 , de modo que 20        2 5     2 , en cualquier caso la factorización
completa para 20 es 2 2 5 .

De ahora en adelante cuando digamos factorizar un número, queremos decir factorizarlo
por completo. Además se supone que los factores numéricos son números primos. De
                                             1
esta manera no factorizamos 20 como 20         80 .
                                             4
Con estos preliminares fuera del camino, ahora podemos factorizar algunas expresiones
algebraicas.



                                           3 - 34
OPERACIONES ALGEBRAICAS


9.1. Factor común.
Para comenzar, comparemos las multiplicaciones con los factores y veamos si podemos
descubrir un patrón.

4x 4 y 4 x y
5a 10b 5 a 2b
2x 2     6x        2x x 3
     2
3a       6ab        3a a 2b

Usan la propiedad distributiva. Cuando multiplicamos, tenemos que: a b                       c     ab ac .
Cuando factorizamos ab            ac    ab c .

Para factorizar un binomio, debemos hallar un factor (en este caso a) que sea común a
todos los términos. El primer paso para tener una expresión completamente factorizada es
seleccionar el máximo factor común, ax n . Aquí tenemos como hacerlo:


Máximo factor común (MFC).- El término ax n , es el MFC de un polinomio sí:
  1. a es el máximo entero que divide cada uno de los coeficientes del polinomio, y
  2. n es el mínimo exponente de x en todos los términos del polinomio.


De este modo para factorizar 6x 3          18x 2 , podríamos escribir 6x 3   18x 2     3x 2x 2      6x
Pero no está factorizado por completo por que 2x 2 6x puede factorizarse aún más.
Aquí el mayor entero que divide a 16 y 8 es 6, y el mínimo exponente de x en todos los
                                                                              3
términos es x 2 . De esta manera la factorización completa es 6x                     18x 2       6x 2 x 3 .
               2
Donde 6x es el MFC.

EJEMPLO:
                   8x 24      8 x 8 3
Factorizar
                              8x 3

EJEMPLO:
                     6 y 12      6 y 6 2
Factorizar
                                 6y 2
EJEMPLO:
                   10x 2 25x 3   5x 2 2 5x 2 5x
Factorizar                         2
                                 5x 2 5x




                                                  3 - 35
OPERACIONES ALGEBRAICAS


EJEMPLO:
             6x 3 12x 2        18x        6 x x 2 6 x 2x            6x 3
Factorizar
                                          6x x 2       2x 3

EJEMPLO:
             10x 6 15x 5        20x 4         30x 2        5x 2 2x 4 5x 2 3x 3        5x 2 4x 2   5x 2 6
Factorizar
                                                           5x 2 2x 4 3x 3    4x 2         6

EJEMPLO:
             2x 3 4x 4        8x 5       2 x 3 1 2 x 3 2x           2 x 3 4x 2
Factorizar
                                         2 x 3 1 2x 3        4x 2

EJEMPLO:
           3 2          1      5         1             1       1
             x            x                3x 2          x       5
Factorizar
           4            4      4         4             4       4
                                         1
                                           3x 2       x 5
                                         4


9.2. Diferencia de cuadrados.
Aquí tenemos un producto notable                             A B A B             A2       B 2 podemos utilizar esta
relación para factorizar una diferencia de cuadrados. A 2                            B2       A B A B

EJEMPLO:
             x2    4        x 2 22
Factorizar
                             x 2 x 2

EJEMPLO:
                                     2         2
Factorizar 4x 2        25     2x          5        2x 5 2x 5

EJEMPLO:
               8   4                          2        2
Factorizar 9a b         49      3a 4 b 2           7         3a 4 b 2   7 3a 4 b 2    7



9.3. Trinomios con término de segundo grado.
Del estudio de los productos notables sabemos que el cuadrado de un binomio es un
trinomio; tales trinomios se llaman trinomios cuadrados perfectos.




                                                             3 - 36
OPERACIONES ALGEBRAICAS


                                                         2
                                                   x 3         x2     6x 9
                                                         2
                                                   x 3         x2     6x 9
                       2
Los trinomios x             6x 9, x 2         6x 9 , son trinomios cuadrados porque son cuadrados
de un binomio.

Los siguientes puntos ayudan a identificar un trinomio cuadrado.
      A. Dos de los términos deben de ser cuadrados A 2 y B 2
      B. No debe haber signo de menos en A 2 o en B 2
      C. Si multiplicamos A y B y duplicamos el resultado, obtenemos el tercer término 2AB
         o su inverso aditivo -2AB.


¿Es x 2 6x 11 un trinomio cuadrado? La respuesta es no porqué solo hay un término al
cuadrado (x2) y (11) no es cuadrado de algún número.

Para factorizar trinomios cuadrados podemos utilizar las siguientes relaciones:
                                              A2    2 AB       B2     ( A B) 2
                                              A2    2 AB       B2     ( A B) 2
Hay que recordar que se deben de sacar primero los factores comunes, si es posible.


E J E R C I C I O 4 : Factorizar :
1.-       x 2 14x          49
2.-       x2     6x 9
3.-      16x 2    56xy          49 y 2

4.-      9x 2 18xy          9y2

5.-      36m 2     48mn 16n 2
6.-      16x 2    40x           25
7.-       x2     4xy       4y2

8.-       x2     2x 1


9.4. Suma y diferencia de cubos.
Es fácil verificar, mediante la multiplicación del segundo miembro de cada ecuación, las
siguientes fórmulas de factorización para la suma y la diferencia de dos cubos.
                                         A3    B3        A B A2         AB       B2
                                         A3    B3        A B A2         AB       B2



                                                             3 - 37
OPERACIONES ALGEBRAICAS


EJEMPLO:
Factorizar y 3      27 , observemos primero que se puede escribir en otra forma: y 3                      33
Así, advertimos que se trata de la diferencia de dos cubos. Si aplicamos la fórmula de
factorización y usamos los siguientes valores A=y, y B=3, obtenemos:

                                        y3         27            y3   33   y 3 y2       3y 9

EJEMPLO:
                                        3
Factorizar 8x 3         27      2x            33             2x 3 4x 2          6x 9

EJEMPLO:
Factorizar t 3      1        t 1 t2          t 1



9.5. Por Agrupación.
Podemos utilizar la propiedad distributiva para factorizar algunos polinomios con cuatro
términos. Consideremos x 3                           x2          2x 2 . No hay ningún factor diferente de 1. Sin
                                                         3
embargo podemos factorizar a x                                   x 2 y 2x 2 por separado:

                                    x3          x2           x2 x 1              2x 2    2x 1

Por lo tanto            x3     x2       2x 2                 x2 x 1        2 x 1 . Podemos utilizar la propiedad
distributiva una vez más y sacamos el factor común: x+1

                                            x2 x 1                2 x 1         x 1     2 x2
Este método se llama factorización por grupos (o por agrupación). No todas las
expresiones con cuatro términos se pueden factorizar con este método.

EJEMPLO:
6x 3   9x 2    4x 6           6x 3          9x 2             4x 6
                                2
                              3x 2x 3                        2 2x 3
                                                     2
                               2x 3 3x                       2

EJEMPLO:
Factorizar
x3     x2     x 1       x3     x2            x 1
                         2
                        x x 1               1x 1
                                    2
                        x 1 x               1




                                                                       3 - 38
OPERACIONES ALGEBRAICAS


EJEMPLO:
Factorizar
x3      2x 2      x 2   x3   2x 2         x 2
                        x2 x 2        1   x 2
                        2
                        x x 2         1x 2
                                  2
                        x 2 x 1
                        x 2 x 1 x 1

EJEMPLO:
Factorizar
x2 y2      ay 2    ab bx 2    y2 x2       a       b x2    a
                                  2           2
                              x       a y         b




                                                         3 - 39
OPERACIONES ALGEBRAICAS



RESPUESTA             DEL EJERCICIO                                   1:
1.-    2y2         y 1            6y2       2y 1

2.-    4x 2     3x 1               5x 2       x 1

3.-    z2      4z 1            2z 2        z 1

4.-    y2      3y 5                y2      4y 3

5.-    2xy 2       6xy        x         2xy         x

6.-    5ax 2       3ax        4         2ax 2           3

7.-    2x      y      z        x 2y             z           x     y 2z           x 3y       4z

8.-    a b c                  a b c                 a b c                  a b c

9.-    2g 3h k                     2g 3h                k        2g    2h 2k          3g h k

10.-   2x 2 y             z        x 2y             z        3x 2 y         z      x 4 y 5z


RESULTADOS                    DEL       EJERCICIO 2:
1.-    2x 2 y 3 3xy 5              6x 3 y 8

2.-      4xy 2 5x 2 y 4                   20x 3 y 6

3.-      2a a 2           b c                 2a a 2                  2a     b        2a c          2a 3    2ab   2ac

       3x 2 y 2x 3 y 2             5xy 2       4x 2 y 2           3x 2 y 2x 3 y 2          3x 2 y   5xy 2    3x 2 y 4x 2 y 2
4.-
                                                                  6x 5 y 3 15x 3 y 3 12x 4 y 3

5.-    2a b 3a 2b                       6a 2        ab 2b 2

6.-    x4      2x 3       3 x2          2x 3                x6    4x 5      7x 4    6x 3     3x 2   6x 9
               2               3
                                        a 12            3
7.-    a 1            a 1                                        a 15

8.-    2ab 2 3a 4 bc 2               6a 5b 3c 2

9.-      3b 2 c 3 8ab 3 c                 24ab 5 c 4

10.-   2x 2 yz 3          4x 3 y 2          8x 5 y 3 z 3




                                                                      3 - 40
Operacionesalgebraicas 091103181241-phpapp02 (1)
Operacionesalgebraicas 091103181241-phpapp02 (1)

Más contenido relacionado

La actualidad más candente (17)

20121007080131471
2012100708013147120121007080131471
20121007080131471
 
Ejercicios 5
Ejercicios 5Ejercicios 5
Ejercicios 5
 
Actividad de mejora matematicas ciclo iv( 4 c) 1er al 4to periodo (fernando l...
Actividad de mejora matematicas ciclo iv( 4 c) 1er al 4to periodo (fernando l...Actividad de mejora matematicas ciclo iv( 4 c) 1er al 4to periodo (fernando l...
Actividad de mejora matematicas ciclo iv( 4 c) 1er al 4to periodo (fernando l...
 
REDUCCION DE TERMINOS SEMEJANTES
REDUCCION DE TERMINOS SEMEJANTESREDUCCION DE TERMINOS SEMEJANTES
REDUCCION DE TERMINOS SEMEJANTES
 
Alge repa-01
Alge repa-01Alge repa-01
Alge repa-01
 
3.lenguaje algebraico
3.lenguaje algebraico3.lenguaje algebraico
3.lenguaje algebraico
 
Algebra
AlgebraAlgebra
Algebra
 
Valor numerico
Valor numericoValor numerico
Valor numerico
 
Axiomas De Peano
Axiomas De PeanoAxiomas De Peano
Axiomas De Peano
 
Funciones a trozos
Funciones a trozosFunciones a trozos
Funciones a trozos
 
Natalie todo
Natalie todoNatalie todo
Natalie todo
 
Ejercicios 4
Ejercicios 4Ejercicios 4
Ejercicios 4
 
Plano Coordenado
Plano CoordenadoPlano Coordenado
Plano Coordenado
 
Lista álgebra
Lista álgebra Lista álgebra
Lista álgebra
 
Ficha pra2012 cuarto
Ficha pra2012 cuartoFicha pra2012 cuarto
Ficha pra2012 cuarto
 
16026605 guia-fracciones-algebraicas-2-medio
16026605 guia-fracciones-algebraicas-2-medio16026605 guia-fracciones-algebraicas-2-medio
16026605 guia-fracciones-algebraicas-2-medio
 
Karla todos los trabajos
Karla todos los trabajos Karla todos los trabajos
Karla todos los trabajos
 

Similar a Operacionesalgebraicas 091103181241-phpapp02 (1)

Guía Ecuaciones Lineales y Cuadráticas
Guía Ecuaciones Lineales y CuadráticasGuía Ecuaciones Lineales y Cuadráticas
Guía Ecuaciones Lineales y Cuadráticasmatbasuts1
 
Factorizacion, binomios diferencia de cubos
Factorizacion, binomios  diferencia de cubosFactorizacion, binomios  diferencia de cubos
Factorizacion, binomios diferencia de cubossantyecca
 
Factorizacion, binomios diferencia de cubos
Factorizacion, binomios  diferencia de cubosFactorizacion, binomios  diferencia de cubos
Factorizacion, binomios diferencia de cubossantyecca
 
Trabajo final de matemáticas
Trabajo final de matemáticasTrabajo final de matemáticas
Trabajo final de matemáticassusanamate1
 
Funciones cuadráticas sin animaciones
Funciones cuadráticas sin animacionesFunciones cuadráticas sin animaciones
Funciones cuadráticas sin animacionesBiblio Rodriguez
 
Factorizacion de binomios suma de cubos
Factorizacion de binomios  suma  de cubosFactorizacion de binomios  suma  de cubos
Factorizacion de binomios suma de cubossantyecca
 
Operaciones con polinomios-EMDH
Operaciones con polinomios-EMDHOperaciones con polinomios-EMDH
Operaciones con polinomios-EMDHAdela M. Ramos
 
Álgebra Expresiones Verbales Expresiones Algebraicas Racionales
Álgebra Expresiones Verbales  Expresiones Algebraicas RacionalesÁlgebra Expresiones Verbales  Expresiones Algebraicas Racionales
Álgebra Expresiones Verbales Expresiones Algebraicas RacionalesComputer Learning Centers
 
Evaluación de polinomios
Evaluación de polinomiosEvaluación de polinomios
Evaluación de polinomiosgerardotocto
 
Secundaria
SecundariaSecundaria
Secundariajaninad
 
Suma de monomios
Suma de monomiosSuma de monomios
Suma de monomiosIgnored Sin
 
Lenguaje algebraico ecuaciones
Lenguaje algebraico ecuacionesLenguaje algebraico ecuaciones
Lenguaje algebraico ecuacionestonialcrod
 

Similar a Operacionesalgebraicas 091103181241-phpapp02 (1) (20)

Operaciones algebraicas
Operaciones algebraicasOperaciones algebraicas
Operaciones algebraicas
 
Guía Ecuaciones Lineales y Cuadráticas
Guía Ecuaciones Lineales y CuadráticasGuía Ecuaciones Lineales y Cuadráticas
Guía Ecuaciones Lineales y Cuadráticas
 
Factorizacion, binomios diferencia de cubos
Factorizacion, binomios  diferencia de cubosFactorizacion, binomios  diferencia de cubos
Factorizacion, binomios diferencia de cubos
 
Factorizacion, binomios diferencia de cubos
Factorizacion, binomios  diferencia de cubosFactorizacion, binomios  diferencia de cubos
Factorizacion, binomios diferencia de cubos
 
Trabajo final de matemáticas
Trabajo final de matemáticasTrabajo final de matemáticas
Trabajo final de matemáticas
 
Reecuperacion de cuarto periodo
Reecuperacion de cuarto periodoReecuperacion de cuarto periodo
Reecuperacion de cuarto periodo
 
Funciones cuadráticas sin animaciones
Funciones cuadráticas sin animacionesFunciones cuadráticas sin animaciones
Funciones cuadráticas sin animaciones
 
Factorizacion de binomios suma de cubos
Factorizacion de binomios  suma  de cubosFactorizacion de binomios  suma  de cubos
Factorizacion de binomios suma de cubos
 
Operaciones con polinomios-EMDH
Operaciones con polinomios-EMDHOperaciones con polinomios-EMDH
Operaciones con polinomios-EMDH
 
Álgebra Expresiones Verbales Expresiones Algebraicas Racionales
Álgebra Expresiones Verbales  Expresiones Algebraicas RacionalesÁlgebra Expresiones Verbales  Expresiones Algebraicas Racionales
Álgebra Expresiones Verbales Expresiones Algebraicas Racionales
 
Evaluación de polinomios
Evaluación de polinomiosEvaluación de polinomios
Evaluación de polinomios
 
Secundaria
SecundariaSecundaria
Secundaria
 
20121007080210891
2012100708021089120121007080210891
20121007080210891
 
Suma de monomios
Suma de monomiosSuma de monomios
Suma de monomios
 
Multiplicación
MultiplicaciónMultiplicación
Multiplicación
 
Algebra
AlgebraAlgebra
Algebra
 
Ejercicios para Repasar 9
Ejercicios para Repasar 9Ejercicios para Repasar 9
Ejercicios para Repasar 9
 
Lenguaje algebraico ecuaciones
Lenguaje algebraico ecuacionesLenguaje algebraico ecuaciones
Lenguaje algebraico ecuaciones
 
División algebraica.miñano
División algebraica.miñanoDivisión algebraica.miñano
División algebraica.miñano
 
1ero secun
1ero secun1ero secun
1ero secun
 

Último

CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORGonella
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesRaquel Martín Contreras
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsxJuanpm27
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 

Último (20)

CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
recursos naturales america cuarto basico
recursos naturales america cuarto basicorecursos naturales america cuarto basico
recursos naturales america cuarto basico
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIOR
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materiales
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 

Operacionesalgebraicas 091103181241-phpapp02 (1)

  • 1. Docente: Luis Fernando Arias Londoño Operaciones Algebraicas CONTENIDO : . 1. Adición y sustracción de monomios y polinomios con coeficientes, enteros y fraccionarios. 2. Introducción y supresión de signos de agrupación. 3. Leyes de los exponentes enteros para la multiplicación. OPERACIONES ALGEBRAICAS. 4. Multiplicación por polinomios. 5. Definición de producto y producto notable. 5.1. Cuadrado de un binomio. 5.2. Binomios conjugados. 5.3. Binomio con un término común. 5.4. Cubo de un binomio. 5.5. Teorema del binomio. 5.6. Binomio por un trinomio cuyo producto es igual a una suma o diferencia de cubos 5.7. Cuadrado de un trinomio. 6. Leyes de los exponentes enteros para la división. 7. División de polinomios. 8. División sintética. 9. Factorización. 9.1. Factor común. 9.2. Diferencia de cuadrados. 9.3. Trinomios con término de segundo grado. 9.4. Suma y diferencia de cubos. 9.5. Por agrupación. Así como la aritmética surgió la necesidad que tenían los pueblos primitivos de medir el tiempo y de contar sus posesiones, el origen del álgebra es muy posterior puesto que debieron transcurrir muchos siglos para que el hombre llegara al concepto abstracto de número que es el fundamento del álgebra. El gran desarrollo experimentado por el álgebra se debió sobre todo a los matemáticos árabes y, muy en particular, a Al-Hwarizmi (siglo IX d.C.), que sentó las bases del álgebra tal como la conocemos hoy en día. Los primeros vestigios históricos sobre el desarrollo del álgebra en la antigüedad han sido encontrados en Egipto. Los egipcios desarrollaron muchísimos las matemáticas como consecuencia de la creación de las pirámides y otros monumentos y de las inundaciones del Nilo que contribuyeron a desarrollar la agrimensura y con ella la geometría. En los documentos escritos hallados se han encontrado ingeniosos métodos de resolución de ecuaciones de segundo grado, lo cual pone de manifiesto la familiaridad de los egipcios con el álgebra
  • 2. OPERACIONES ALGEBRAICAS 1. ADICIÓN Y SUSTRACCIÓN DE MONOMIOS Y POLINOMIOS CON COEFICIENTES ENTEROS Y FRACCIONARIOS. SUMA La suma de monomios y polinomios es asunto de combinar términos semejantes. EJEMPLO: Supongamos que se desea sumar 3x 2 7x 3 y 5x 2 2x 9 ; es decir deseamos encontrar 2 2 3x 7x 3 5x 2x 9 Al aplicar las propiedades conmutativa, asociativa y distributiva podemos escribir: 3x 2 7x 3 5x 2 2x 9 3x 2 5x 2 7 x 2x 3 9 2 3 5x 7 2x 3 9 2 8x 5x 6 EJEMPLO: 3 2 1 2 De manera semejante, la suma de 4x 3 x 2x 3 y 6x 3 x 9 , se escribe como: 7 7 3 2 1 2 3 2 1 2 4x 3 x 2x 3 6x 3 x 9 4x 3 6x 3 x x 2x 3 9 7 7 7 7 2 2 10x 3 x 2x 12 7 EJEMPLO: 2 2 Para sumar 3x 7x 2 y 4x 3 5x ; primero escribimos ambos polinomios en orden descendente, colocamos los términos semejantes en una columna y luego sumamos 7x2 3x 2 4x 2 5x 3 7x 2 4x 2 3x 5x 2 3 3x 2 2x 5 2 3x 2x 5 EJEMPLO: Del mismo modo que en aritmética, podemos sumar o restar más de dos polinomios. 2 2 2 Por ejemplo, para sumar los polinomios 7x x 3 , 6x 8 2x y 3x x 5 , escribimos cada polinomio en orden descendente con los términos semejantes en la misma columna y sumamos: 7x x2 3 6x 2 8 2x 3x x 2 5 x2 7x 3 6x 2 2x 8 x2 3x 5 x2 6x 2 x2 7 x 2x 3x 3 8 5 6x 2 2x 6 6x 2 2x 6 3-2
  • 3. OPERACIONES ALGEBRAICAS RESTA Para restar polinomios, primero recordemos que a-(b+c) = a-b-c debemos cambiar el signo de cada término dentro del paréntesis. Para eliminar los mismo que multiplicar cada término dentropor los paréntesis por (de resta) Esto es lo paréntesis de una expresión precedida de un signo menos -1. EJEMPLO: Efectuar la operación 3x 2 2x 1 4x 2 5x 2 3x 2 2x 1 4x 2 5x 2 3x 2 2x 1 4x 2 5x 2 3x 2 4x 2 2x 5x 1 2 SOLUCIÓN: x2 7x 1 x2 7x 1 EJEMPLO: 2 2 3 2 Resolver x y x y 5 10 2 2 3 2 2 2 3 2 4 3 2 7 2 SOLUCIÓN: x y x y x y x y x y x y 5 10 5 10 10 10 EJEMPLO: Restar 8x4 5x3 y 3x2 y 2 y 4x4 2x3 y 5x2 y 2 8x 4 5x3 y 3x 2 y 2 4x 4 2x3 y 5x 2 y 2 8x 4 5x3 y 3x 2 y 2 4x 4 2x3 y 5x 2 y 2 SOLUCIÓN: 4x 4 3x3 y 2x 2 y 2 EJEMPLO: 1 2 1 2 1 3 1 2 1 2 1 3 Restar x y xy x y x y xy x 3 4 6 6 3 4 1 3 1 2 1 2 x x y xy 6 3 4 1 3 1 2 1 2 SOLUCIÓN: x x y xy 4 6 3 1 3 1 2 7 x x y xy 2 12 6 12 3-3
  • 4. OPERACIONES ALGEBRAICAS EJERCICIO 1: Resolver los ejercicios siguientes: 1.- 2y2 y 1 6y2 2y 1 2.- 4x 2 3x 1 5x 2 x 1 3.- z2 4z 1 2z 2 z 1 4.- y2 3y 5 y2 4y 3 5.- 2xy 2 6xy x 2xy x 6.- 5ax 2 3ax 4 2ax 2 3 7.- 2x y z x 2y z x y 2z x 3y 4z 8.- a b c a b c a b c a b c 9.- 2g 3h k 2g 3h k 2g 2h 2k 3g h k 10.- 2x 2 y z x 2y z 3x 2 y z x 4 y 5z 3 2 2 2 1 1 2 1 1 2 11.- a b ab b ab b 4 3 3 9 6 3 9 25 1 1 5 7 1 7 12.- m 2 n 2 15mn n 2 m2 m 2 30mn 3 17 34 4 2 17 34 4 34 1 3 3 1 1 1 3 1 13.- bm 2 cn 2 2 bm 6 cn bm 2 cn 4 2cn bm 2 2 5 4 10 4 25 5 8 5 2 3 2 5 14.- a a a 6 8 6 1 3 15.- a b 8a 6b 5 2 5 2 3 3 2 1 4 7 4 1 3 2 2 2 3 1 4 16.- x y xy x y x y x y xy 7 9 7 8 8 14 3 3 2 6 1 6 7 4 2 5 2 4 3 3 4 2 3 2 4 5 6 17.- m n mn mn mn mn n 13 3 20 14 5 10 7 9 5 3 7 2 5 2 1 2 1 18.- a ab 6 ab ab 6 8 8 4 3 19.- 0.2a 3 0.4ab 2 0.5a 2b 0.8b 3 0.6ab 2 0.3a b 2 0.4a 3 6 0.8a b 2 0.2a 3 0.9b 3 2 1.5a b 3-4
  • 5. OPERACIONES ALGEBRAICAS 2. INTRODUCCIÓN Y SUPRESIÓN DE SIGNOS DE AGRUPACIÓN En ocasiones es necesario eliminar paréntesis antes de combinar términos semejantes. Por ejemplo, para combinar términos semejantes en 3x 5 2x 2 tenemos que suprimir los paréntesis primero. Si hay un signo más (o ningún signo) enfrente de los paréntesis, podemos simplemente eliminar; esto es, a b a b a b a b EJEMPLO: 3x 5 2x 2 3x 5 2x 2 3x 2x 5 2 3x 2x 5 2 5x 3 La eliminación de paréntesis precedidos por un signo menos se hará de la manera siguiente: EJEMPLO: 8x 2 x 1 x 3 8x 2x 2 x 3 8x 2x 2 x 8x 2x x 2 3 5x 1 En ocasiones los paréntesis se presentan dentro de otros paréntesis. Para evitar confusión, utilizamos diferentes símbolos de agrupación. De este modo, por lo general no escribimos x 5 3 , sino x 5 3 . Para combinar términos semejantes en tales expresiones, los símbolos de agrupación más internos se eliminan primero. EJEMPLO: x2 1 2x 5 x 2 3x 2 3 x 2 1 2x 5 x 2 3x 2 3 2 2 x 2x 4 3x x 5 2 2 x 2x 4 3x x 5 2x 2 3x 1 Como efecto de la propiedad distributiva tenemos, que: ab c ab ac La propiedad distributiva también puede extenderse a más de dos números dentro de los paréntesis. Por tanto a b c d ab ac ad . Además b c a ba ca 3-5
  • 6. OPERACIONES ALGEBRAICAS 3. LEYES DE LOS EXPONENTES ENTEROS PARA LA MULTIPLICACIÓN Los exponentes se han utilizado para indicar el número de veces que se repite un factor en 3 un producto. Por ejemplo, x x x x . La notación exponencial proporciona un modo sencillo para multiplicar expresiones que contienen potencias de la misma base. PRIMERA LEY DE LOS EXPONENTES. Los exponentes se suman para multiplicar dos potencias de la misma base. Considera que m y n son enteros positivos: xm xn xm n Esta regla significa que para multiplicar expresiones con la misma base, mantenemos la base y sumamos los exponentes. Antes de aplicar la regla del producto, hay que asegurarnos de que las bases sean las mismas. Por supuesto algunas expresiones pueden tener coeficientes de 1. Por ejemplo, la expresión 3x 2 tiene coeficiente numérico de 3. De manera similar, el coeficiente numérico de 5x 3 es 5. Si decidimos multiplicar 3x 2 por 5x 3 , solo multiplicamos números por números (coeficientes) y letras por letras. Este procedimiento es posible debido a las propiedades conmutativa y asociativa de la multiplicación. Luego de aplicar estas dos propiedades, escribimos: EJEMPLO: 3x 2 5x 3 3 5 x 2 x3 15x 2 3 15x 5 EJEMPLO: 8x 2 y 4xy 2 2x 5 y 3 8 4 2 x 2 x1 x 5 y 1 y 2 y 3 64x 8 y 6 SEGUNDA LEY DE LOS EXPONENTES. Los exponentes se multiplican par elevar una potencia a otra potencia. n Si m y n son enteros positivos: x m xm n Cuando se eleva una potencia a una potencia, mantenemos las bases y multiplicamos los exponentes. 3 Considera la expresión x 4 , que significa que x 4 está elevado al cubo. Esta expresión puede simplificarse como se muestra enseguida: 3 x4 x4 x4 x4 x4 4 4 x12 2 5 En forma parecida y y2 y2 y2 y2 y2 y2 2 2 2 2 y 10 Debido a que la multiplicación es en realidad una suma que se repite, es posible obtener los mismos resultados en los ejemplos anteriores al multiplicar entre sí los exponentes. 3-6
  • 7. OPERACIONES ALGEBRAICAS EJEMPLO: 6 53 53 6 518 EJEMPLO: 3 x2 y3 x2 y3 x2 y3 x2 y3 x2 x2 x2 y3 y3 y3 3 3 x2 y3 x2 3 y33 x6 y9 TERCERA LEY DE LOS EXPONENTES. Mediante las propiedades asociativa y conmutativa de la multiplicación es posible escribir Una potencia de un producto es igual al producto de las potencias de cada uno de los factores. n Simbólicamente: ab a nbn EJEMPLO: 3 2x 2x 2x 2x 2 2 2 x x x 23 x 3 8x 3 EJEMPLO: 4 4 4 4 3xy 2 3 x y2 81x 4 y 8 EJEMPLO: 3 3 3 3 2x 2 y 3 2 x2 y3 8x 6 y 9 Ene general se cumple: n n x xn Si n es número par x x n Si n es número impar EJEMPLO: 4 5 2 24 16 2 25 32 3-7
  • 8. OPERACIONES ALGEBRAICAS 4. MULTIPLICACIÓN POR POLINOMIOS La multiplicación de polinomios es una operación algebraica que tiene por objeto hallar una cantidad llamada producto dadas dos cantidades llamadas multiplicando y multiplicador, de modo que el producto sea con respecto del multiplicando en signo y valor absoluto lo que el multiplicador es respecto a la unidad positiva. Tanto el multiplicando como el multiplicador reciben el nombre de factores del producto. La multiplicación de polinomios cumple la propiedad distributiva. Es decir, que dados tres polinomios cualesquiera x, y, z se cumplirá que xy z x yz . Esta ley acostumbra a enunciarse diciendo que los factores se pueden agrupar de cualquier manera. Asimismo, el producto de polinomios también cumplía la propiedad conmutativa. Es decir, que dados los polinomios cualesquiera x, y , se cumplirá que xy yx . Esta ley acostumbra a enunciarse diciendo que el orden de los factores no altera el producto. Por lo que respecta al signo del producto de dos factores, pueden presentarse los cuatro puntos siguientes: a) Si dos factores tienen el mismo signo positivo, su producto también tendrá signo positivo. x y xy b) Si el multiplicador tiene signo positivo y el multiplicando tiene signo negativo, el producto tendrá signo negativo. x y xy c) Si el multiplicando tiene signo positivo y el multiplicador tiene signo negativo, el producto tendrá signo negativo. x y xy d) Si dos factores tienen ambos signo negativo, su producto tendrá signo positivo. x y xy Por lo que podemos concluir en la Regla de los Signos, siguiente: + + =+ + - =- - + =- - - =+ En la multiplicación algebraica pueden considerarse los tres casos siguientes: a) Multiplicación de monomios. b) Multiplicación de un polinomio por un monomio c) Multiplicación de polinomios MULTIPLICACIÓN DE MONOMIOS. Para multiplicar monomios, se multiplican sus coeficientes y a continuación se escriben las letras diferentes de los factores ordenados alfabéticamente, elevadas a un exponente igual a la suma de los exponentes que cada letra tenga en los factores. El signo del producto será el que le corresponda al aplicar la regla de los signos. 3-8
  • 9. OPERACIONES ALGEBRAICAS EJEMPLO: Multiplicar 3x 3 5x 4 SOLUCIÓN: 3x 3 5x 4 3 5 x3 4 15x 7 EJEMPLO: Multiplicar 8ab 2 3a 2 b 2 c Solución: 8ab 2 3a 2 b 2 c 8 3 a1 2 b2 2 c1 24a 3b 4 c EJEMPLO: Multiplicar 4x 5x 3 y 2 2x 2 y SOLUCIÓN: 4x 5x 3 y 2 2x 2 y 4 5 2 x1 3 2 y2 1 40x 6 y 3 EJEMPLO: Multiplicar 2a 3bc 4a 2 b 2 c 2 5abc 6ab 2 2a 3 bc 4a 2 b 2 c 2 5abc 6ab 2 2 4 5 6 a3 2 1 1 b1 2 1 2 c1 2 1 SOLUCIÓN: 240a 7 b 6 c 4 El producto es negativo por que hay un número impar de factores negativos. MULTIPLICACIÓN DE UN POLINOMIO POR UN MONOMIO Para multiplicar un polinomio por un monomio se multiplica cada uno de los términos del polinomio por el monomio, teniendo en cuenta la regla de los signos, y se suman todos los productos parciales así obtenidos. EJEMPLO: Multiplicar 3a 3 5a 2 4 3a 3a 3 5a 2 4 3a 3a 3 3a 5a 2 3a 4 3a SOLUCIÓN: 4 3 9a 15a 12a EJEMPLO: Multiplicar: x 3 3x 2 y 3xy 2 y3 2xy SOLUCIÓN: x3 3x 2 y 3xy 2 y3 2xy x3 2xy 3x 2 y 2xy 3xy 2 2xy y3 2xy 2x 4 y 6x 3 y 2 6x 2 y 3 2xy 3 3-9
  • 10. OPERACIONES ALGEBRAICAS EJEMPLO: 2 3 2 1 2 3 5 4 2 5 1 2 Multiplicar: a b a b ab b ab 3 4 6 5 2 SOLUCIÓN: 2 3 2 1 2 3 5 4 2 5 1 2 ab a b ab b ab 3 4 6 5 2 2 3 2 1 2 1 2 3 1 2 5 4 1 2 2 5 1 2 ab ab a b ab ab ab b ab 3 2 4 2 6 2 5 2 1 4 4 1 3 5 5 2 6 1 7 a b ab a b ab 3 8 12 5 EJEMPLO: 2 4 2 3 2 4 5 6 2 2 3 2 Multiplicar: x y x y y por a x y 3 5 6 9 2 4 2 3 2 4 5 6 x y x y y 3 5 6 2 2 3 2 SOLUCIÓN: a x y 9 4 2 7 4 2 2 5 6 5 2 3 8 a x y a x y a x y 27 15 27 MULTIPLICACIÓN DE POLINOMIOS Para multiplicar un polinomio por otro se multiplican todos los términos del multiplicando por cada uno de los términos del multiplicador, teniendo en cuenta la regla de los signos, y a continuación se efectúa la suma algebraica de todos los productos parciales así obtenidos. EJEMPLO: Multiplicar: 2a 3 3a 2 b 4ab 2 2b 3 3a 2 4ab 5b 2 2a 3 3a 2 b 4ab 2 2b 3 3a 2 4ab 5b 2 6a 5 9a 4 b 12a 3 b 2 6a 2 b 3 8a 4 b 12a 3 b 2 16a 2 b 3 8ab 4 10a 3 b 2 15a 2 b 3 20ab 4 10b 5 6a 5 a 4b 10a 3 b 2 25a 2 b 3 28ab 4 10b 5 3 - 10
  • 11. OPERACIONES ALGEBRAICAS EJEMPLO: Multiplicar: 3x 2 2x 1 4x 2 2x 2 2x 2 3x 4 SOLUCIÓN: Se multiplican los dos primeros términos 3x 2 2x 1 4x 2 2x 2 12 x 4 8x 3 4x 2 6x3 4x 2 2x 2 6x 4x 2 12 x 4 2x3 2x 2 6x 2 A continuación el resultado obtenido lo multiplicamos por el otro polinomio. 12x 4 2x 3 2x 2 6x 2 2x 2 3x 4 24x 6 - 4x 5 4x 4 12x 3 4x 2 36x 5 6x 4 6x3 18x 2 6x 48x 4 8x 3 8x 2 24x 8 24x 6 - 32 x 5 38x 4 26 x 3 30x 2 30x 8 3 - 11
  • 12. OPERACIONES ALGEBRAICAS EJERCICIO 2: Resolver los ejercicios siguientes: 1.- 2x 2 y 3 3xy 5 2.- 4xy 2 5x 2 y 4 3.- 2a a 2 b c 4.- 3x 2 y 2x 3 y 2 5xy 2 4x 2 y 2 5.- 2a b 3a 2b 6.- x4 2x 3 3 x2 2x 3 7.- a 1 a 1 8.- 2ab 2 3a 4 bc 2 9.- 3b 2 c 3 8ab 3 c 10.- 2x 2 yz 3 4x 3 y 2 1 2 2 2 11.- a b a 2 3 5 2 6 1 4 2 3 2 4 1 6 5 3 4 3 12.- x x y x y y a x y 5 3 5 10 7 3 2 3 13.- 3a 5b 6c a x 10 2 4 1 4 3 3 4 14.- x x2 y2 y x y 9 3 7 2 3 2 3 15.- a b ab 3 4 3 3 3 1 2 2 2 1 3 2 2 5 2 2 16.- m mn mn n m n mn 4 2 5 4 3 2 3 1 1 2 1 1 3 3 2 1 1 17.- x x x x x 2 3 4 4 2 5 10 1 1 1 1 18.- a b a b 2 3 3 2 1 2 2 2 1 3 19.- a ab b a b 4 3 4 2 3 - 12
  • 13. OPERACIONES ALGEBRAICAS 5. DEFINICIÓN DE PRODUCTO Y PRODUCTO NOTABLE Un producto es el resultado de multiplicar dos o más números. Los números que se multiplican se llaman factores o divisores del producto. Se llaman productos notables (o productos especiales) a ciertos productos que cumplen reglas fijas y cuyo resultado puede ser escrito por simple inspección, es decir, sin verificar la multiplicación. 5.1. Cuadrado de un binomio El cuadrado de la suma de dos números es igual al cuadrado del primer número, más el doble del producto del primer número multiplicado por el segundo, más el cuadrado del segundo. 2 2 Consideremos que x y . Tendremos que x y x y x y . Por tanto 2 2 2 x y x y x xy xy y x 2xy y2 2 Es decir x y x2 2xy y2 EJEMPLO: 2 Desarrollar x 2 SOLUCIÓN: Tendremos que el cuadrado del primer número: x 2 El doble del producto del primer número por el segundo: 2 x 2 4x 2 El cuadrado del segundo número: 2 4 2 Así pues x 2 x2 4x 4 EJEMPLO: 2 Al desarrollar 3x 2y 2 SOLUCIÓN: Tendremos que el cuadrado del primer número: 3x 9x 2 El doble del producto del primer número por el segundo: 2 3x 2y 12xy 2 El cuadrado del segundo número: 2 y 4y2 2 Así pues 3x 2y 9x 2 12xy 4y2 EJEMPLO: 2 2 Al desarrollar 4x 3y 3 2 2 2 4x 2 3y3 4x 2 2 4x 2 3y3 3y3 SOLUCIÓN: 16x 4 24x 2 y 3 9y6 El cuadrado de la diferencia de dos números es igual al cuadrado del primer número menos el doble del producto del primer número multiplicado por el segundo, más el cuadrado del segundo número. 3 - 13
  • 14. OPERACIONES ALGEBRAICAS 2 Consideremos que x y . 2 Tendremos que x y x y x y . Por tanto x y x y x2 xy xy y2 x2 2xy y2 2 Es decir x y x2 2xy y2 EJEMPLO: 2 Desarrollar x 3 2 2 2 x 3 x 2 x 3 3 SOLUCIÓN: x2 6x 9 EJEMPLO: 2 Desarrollar 2x 4y 2 2 2 2x 4 y 2x 2 2x 4y 4y SOLUCIÓN: 4x 2 16xy 16 y 2 EJEMPLO: 2 Desarrollar 2x 3 5y2 2 2 2 2x 3 5y2 2x 3 2 2x 3 5y2 5y2 SOLUCIÓN: 4x 6 20x 3 y 2 25 y 4 EJEMPLO: 2 Desarrollar 4a 2 3b3 2 2 2 2 SOLUCIÓN: 4a 3b 3 4a 2 2(4a 2 ) 3b 3 3b 3 16a 4 24a 2b3 9b6 5.2 Binomios conjugados El producto de dos números por su diferencia es igual al cuadrado del primer número menos el cuadrado del segundo número. Consideremos el producto: x y x y x y x y x2 xy xy y2 x2 y2 Es decir x y x y x2 y2 EJEMPLO: Multiplicar x 4 x 4 3 - 14
  • 15. OPERACIONES ALGEBRAICAS 2 SOLUCIÓN: Cuadrado del primer número: x x2 2 Cuadrado del segundo número: 4 16 Así pues, x 4 x 4 x 2 16 EJEMPLO: Multiplicar 5x 2 y 5x 2 y 2 SOLUCIÓN: Cuadrado del primer número: 5x 25x 2 2 Cuadrado del segundo número: 2 y 4y2 Así pues, 5x 2 y 5x 2 y 25x 2 4y2 EJEMPLO: Multiplicar 5x 2 3y 3 5x 2 3y 3 2 2 SOLUCIÓN: Cuadrado del primer número: 5x 25x 4 2 Cuadrado del segundo número: 3 y 3 9y6 Así pues, 5x 2 2 y 3 5x 2 2y3 25x 4 9y6 EJEMPLO: Multiplicar 3 8x 8x 3 2 SOLUCIÓN: Cuadrado del primer número de la diferencia: 3 9 2 Cuadrado del segundo número de la diferencia: 8x 64x 2 Así pues, 3 8x 8x 3 9 64x 2 5.3. Binomio con un término común El producto de dos binomios del tipo x a x b es igual al cuadrado del primer término, más el producto de la suma de los dos segundos términos por el primer término, más el producto de los segundos términos. Se trata de demostrar que x a x b x2 a b x ab . Tendremos que: x a x b x2 ax bx ab x2 a b x ab Es decir x a x b x2 a b x ab , tal como queríamos demostrar. EJEMPLO: Comprobar que x 4 x 5 x2 4 5 x 4 5. 3 - 15
  • 16. OPERACIONES ALGEBRAICAS x 4 x 5 SOLUCIÓN: Tendremos x2 4 5 x 4 5 . x 2 9x 20 EJEMPLO: Comprobar que x 2 x 3 x2 2 3x 2 3 SOLUCIÓN: Tendremos x 2 x 3 x2 2 3 x 2 3. x2 x 6 EJEMPLO: Comprobar que x 6 x 4 x2 6 4x 6 4 . 2 SOLUCIÓN: Tendremos x 6 x 4 x 6 4 x 6 4 . x 2 2x 24 EJEMPLO: Comprobar que x 5 x 3 x2 5 3x 5 3 . 2 SOLUCIÓN: Tendremos x 5 x 3 x 5 3 x 5 3 . x 2 8x 15 5.4. Cubo de un binomio El cubo de la suma de dos números es igual al cubo del primer número, más el triple del producto del cuadrado del primer número por el segundo, más el triple del producto del primer número por el cuadrado del segundo, más el cubo del segundo. 3 2 Consideremos x y x y x y x y x y x y x2 2xy y2 x y , por lo tanto x2 2xy y2 x y x2 2x 2 y xy 2 x2 y 2xy 2 y3 x2 3x 2 y 3xy 2 y3 3 Es decir x y x2 3x 2 y 3xy 2 y3 EJEMPLO: 3 Desarrollar x 2 3 SOLUCIÓN: Cubo del primer número: x x3 2 Triple del producto del cuadrado del primer número por el segundo: 3 x 2 6x 2 3 - 16
  • 17. OPERACIONES ALGEBRAICAS 2 Triple del producto del primer número por el cuadrado del segundo: 3 x 2 12x 3 Cubo del segundo número: 2 8 3 Así pues x 2 x3 6x 2 12x 8 EJEMPLO: 3 Desarrollar 3x 2y 3 SOLUCIÓN: Cubo del primer número: 3x 27x 3 2 Triple del producto del cuadrado del primer número por el segundo: 3 3x 2y 54x 2 y 2 Triple del producto del primer número por el cuadrado del segundo: 3 3x 2 y 36xy 2 3 Cubo del segundo número: 2 y 8y3 3 Así pues 3x 2y 27x 3 54x 2 y 36xy 2 8y3 EJEMPLO: 3 Desarrollar 3a 2 2b 3 3 3 2 2 3 3a 2 2b 3 3a 2 3 3a 2 2b 3 3 3a 2 2b 3 2b 3 SOLUCIÓN: 27a 6 54a 4 b 3 36a 2 b 6 8b 6 El cubo de la diferencia de dos números es igual al cubo del primer número, menos el triple del producto del cuadrado del primer número por el segundo más el triple del producto del primer número por el cuadrado del segundo, menos el cubo del segundo número. 3 2 Consideremos x y x y x y x y x y x y x2 2xy y2 x y , por lo tanto x2 2 xy y2 x y x2 2x 2 y xy 2 x2 y 2xy 2 y3 x2 3x 2 y 3xy 2 y3 3 Es decir x y x2 3x 2 y 3xy 2 y3 EJEMPLO: 3 Desarrollar x 3 3 SOLUCIÓN: Cubo del primer número: x x3 2 Triple del producto del cuadrado del primer número por el segundo: 3 x 3 9x 2 3 - 17
  • 18. OPERACIONES ALGEBRAICAS 2 Triple del producto del primer número por el cuadrado del segundo: 3 x 3 27x 3 Cubo del segundo número: 3 27 3 Así pues x 3 x3 9x 2 27x 27 EJEMPLO: 3 Desarrollar 2x 3y 3 3 2 2 3 2x 3 y 2x 3 2x 3y 3 2x 3y 3y SOLUCIÓN: 8x 3 36x 2 y 546xy 2 27 y 3 EJEMPLO: 3 Desarrollar 4a 2 2b 3 3 3 2 2 3 4a 2 2b 3 4a 2 3 4a 2 2b 3 3 4a 2 2b 3 2b 3 SOLUCIÓN: 64a 6 96a 4 b 3 48a 2 b 6 8b 6 5.5. Teorema del binomio El teorema del binomio es una fórmula (por esto se llama también fórmula del binomio) con la cual se puede escribir directamente los términos del desarrollo de una potencia entera y n positiva de un binomio. Para formarnos una idea de la estructura del desarrollo de a b : Por multiplicación directa podemos obtener 1 a b a b 2 a b a2 2ab b2 3 a b a3 3a 2b 3ab2 b3 4 a b a4 4a3b 6a 2b2 4ab3 b4 5 a b a5 5a 4b 10a3b2 10a 2b3 5ab4 b5 De acuerdo con estos desarrollos nos podemos dar una idea acerca de la ley que siguen en su formación: 1. Si el exponente del binomio es n, hay n+1 términos en el desarrollo. n 2. Para cada valor de n, el desarrollo de a b empieza con a n y termina con b n . En cada término los exponentes de a y b suman n. 3. Las potencias de a disminuyen de 1 en 1 al pasar de cada término al siguiente. La b aparece por primera vez en el segundo término con exponente 1 que aumenta de 1 en 1. El exponente de b siempre es una unidad menor que el número de orden del término. 3 - 18
  • 19. OPERACIONES ALGEBRAICAS 4. El primer coeficiente es la unidad, el de cualquier otro término se obtiene multiplicando en el término anterior su coeficiente por el exponente de a y dividiendo ese producto entre el número de términos anteriores al que se trata de formar. Cierta simetría constituye una característica del desarrollo del binomio. Esta simetría se puede apreciar al disponer los coeficientes en el siguiente orden que se conoce como n Triángulo de Pascal, para valores enteros no negativos de n en el desarrollo de a b . n 0 1 n 1 1 1 n 2 1 2 1 n 3 1 3 3 1 n 4 1 4 6 4 1 n 5 1 5 10 10 5 1 n 6 1 6 15 20 15 6 1 n 7 1 7 21 35 35 21 7 1 A estos números se les llama coeficientes binomiales o binómicos, dado que cada renglón se observa que el primer y último elemento es 1 porque los coeficientes del primer y último término son iguales a 1. Cada elemento se puede obtener como la suma de los dos que se encuentra a su izquierda y derecha en el renglón superior. Así, para n=6, el segundo coeficiente 6 es la suma de los elementos 1 y 5 que se encuentran a su izquierda y derecha en el renglón superior; el tercer coeficiente 15 se obtiene de manera similar como la suma de los elementos 5 y 10 del renglón superior, y así sucesivamente. EJEMPLO: 4 Desarrollar por el teorema del binomio: a 2b SOLUCIÓN: Como en este caso n=4, utilizaremos los coeficientes binomiales con las potencias correspondientes para cada término del desarrollo. Es decir, 4 4 3 1 2 2 1 3 4 a 2b 1 a 4 a 2b 6 a 2b 4 a 2b 1 2b efectuando las potencias, se tiene: 4 a 2b 1 a4 4 a3 2b 6 a 2 4b2 4 a 8b3 1 16b 4 efectuando los productos: 4 a 2b a 4 8a3b 24a 2b2 32ab3 16b 4 3 - 19
  • 20. OPERACIONES ALGEBRAICAS EJEMPLO: 4 Desarrollar por el teorema del binomio: 3a 2b SOLUCIÓN: Procediendo de manera semejante a la anterior, se tiene: 4 4 3 1 2 2 1 3 4 3a 2b 1 3a 4 3a 2b 6 3a 2b 4 3a 2b 1 2b efectuando las potencias: 4 3a 2b 1 81a 4 4 27a3 2b 6 9a 2 4b 2 4 3a 8b3 1 16b 4 4 efectuando los productos: 3a 2b 81a 4 216a3b 216a 2b 2 96ab3 16b 4 5.6. Binomio por un trinomio cuyo producto es igual a una suma o diferencia de cubos. La suma algebraica de dos términos, por un trinomio que consta del cuadrado del primer término menos el producto de los dos, más el cuadrado del segundo término, es igual a la suma de los cubos de los dos términos algebraicos. 3 Se trata de demostrar que x y3 x y x2 xy y2 . Tendremos: x2 xy y2 x y x3 x2 y xy 2 x2 y xy 2 y3 x3 y3 Es decir x y x2 xy y2 x3 y 3 , tal como queríamos demostrar. EJEMPLO: Comprobar que x 3 1 x 1 x2 x 1 2 SOLUCIÓN: x 1 x x 1 x3 x 2 x x2 x 1 x3 1 EJEMPLO: Comprobar que 27x 3 8y3 3x 2 y 9x 2 6xy 4y2 3x 2 y 9x 2 6xy 4 y 2 27 x 3 18x 2 y 12xy 2 18x 2 y 12xy 2 8y 3 SOLUCIÓN: 27 x 3 8 y3 3 - 20
  • 21. OPERACIONES ALGEBRAICAS EJEMPLO: Comprobar que 64b 6 27c 3 4b 2 3c 16b 4 12b 2 c 9c 2 2 SOLUCIÓN: 4b 3c 16b 4 12b 2c 9c 2 64b 6 48b 2c 36b 2c 2 48b 2c 36b 2c 2 27c 3 64b 6 27c 3 La diferencia de dos términos, por un trinomio que consta del cuadrado del primer término más el producto de los dos, más el cuadrado del segundo término, es igual a la diferencia de los cubos de los dos términos algebraicos. 3 Se trata de demostrar que x y3 x y x2 xy y2 . Tendremos: x y x2 xy y2 x3 x2 y xy 2 x2 y xy 2 y3 x3 y3 Es decir x y x2 xy y2 x3 y 3 , tal como queríamos demostrar. EJEMPLO: Comprobar que x 3 8 x 2 x2 2x 4 SOLUCIÓN: x 2 x2 2x 4 x 3 2x 4x 2x 4x 8 x3 8 EJEMPLO: Comprobar que 64x 3 27 y 3 4x 3y 16x 2 12xy 9y2 4x 3 y 16x 2 12xy 9 y 2 64x 3 48x 36xy 48x 36xy 27 y 3 SOLUCIÓN: 64x3 27 y3 EJEMPLO: Comprobar que 8a 6 27b 9 2a 2 3b 3 4a 4 6a 2 b 3 9b 6 2 SOLUCIÓN: 2a 3b 3 4a 4 6a 2b 3 9b 6 8a 6 12a 4b 3 18a 2b 6 12a 4b 3 18a 2b 6 27b 9 8a 6 27b9 5.7. Cuadrado de un trinomio El cuadrado de un polinomio es igual a la suma de los cuadrados de cada uno de los términos, más el doble producto de cada término por los que le siguen tomados de dos en dos. 2 a b c a2 b2 c2 2ab 2ac 2bc 3 - 21
  • 22. OPERACIONES ALGEBRAICAS EJEMPLO: 2 Efectuar 2x 3 y 5z 2 2 2 2 2x 3 y 5z 2x 3y 5z 2 2x 3 y 2 2x 5z 2 3y 5z SOLUCIÓN: 2 2 2 4x 9y 25z 12xy 20xz 30 yz EJEMPLO: 2 1 2 Efectuar x y z 3 5 SOLUCIÓN: 2 2 2 1 2 1 2 2 1 2 1 2 x y z x y z 2 x y 2 x z 2 y z 3 5 3 5 3 5 3 5 1 2 4 2 4 2 4 x y z2 xy xz yz 9 25 15 3 5 EJEMPLO: 2 Efectuar a 2b 3c 2 2 2 2 a 2b 3c a 2b 3c 2 a 2b 2a 3c 2 2b 3c SOLUCIÓN: 2 2 2 a 4b 9c 4ab 6ac 12bc 3 - 22
  • 23. OPERACIONES ALGEBRAICAS EJERCICIOS 3.3: Desarrollar los siguientes productos notables: 2 2 1. x 2 22. 2x 2 3y 2 2 2. 3 a 23. 2a 2 4 2 2 3. 2x y 24. 2a 3 2 4b 2 2 4. 3 5y 2 25. x 4 2 y3 2 5. 2a 3 2 26. 3x 3 2y2 2 6. 2a 3b 2 27. 4a 5 3b 4 2 7. 2 4a 2 28. x y x y 2 8. 3a 4b 29. m n m n 2 9. 2x 3 6b 30. a x x a 2 10. 2x 3 3y 2 31. x2 a2 x2 a2 2 11. 3x 4 2 y3 32. 2a 1 1 2a 12. 3x 2 y z3 2 33. n 1 n 1 2 34. 1 3ax 3ax 1 13. 4a 2 y 3 3c 2 d 3 35. 2m 9 2m 9 2 3 3 2 14. 2x y 4mn 36. a3 b2 a3 b 2 2 15. 3x 5 4 y6 37. y 2 3y y 2 3y 2 16. x 3 38. 1 8xy 8xy 1 2 17. 2a 4 39. 6x2 m2 x 6x2 m2 x 2 18. 4 2x 40. a m bn a m bn 2 19. 3x 2 y 41. 3x a 5 y m 5 y m 3xa 2 20. 5x 3y 42. a x 1 2b x 1 2b x 1 ax 1 2 21. x 2 y2 43. 2a b 2a b 3 - 23
  • 24. OPERACIONES ALGEBRAICAS 44. 2x 3y 2x 3y 69. x 5 4 x5 6 45. 4 2a 4 2a 70. x 6 4 x6 8 46. 2m 2 3n 2 2m 2 3n 2 71. xy 3 xy 2 47. 3x 2 3x 2 72. ab 4 ab 6 48. 2x 4 2x 4 73. x 2 y 2 2 x2 y2 5 49. 2 4 y 2 4 y 74. a 3 b 5 a 3b 4 50. 3x 5 3x 5 75. a 3 a 6 51. 2x 3 y 2 2x 3 y2 76. a 2 3 52. 2x 2 3x 2x 2 3x 77. x 1 3 53. 3 4ab 3 4ab 78. m 3 3 54. x 3 x 4 3 79. n 4 55. a 5 a 2 3 80. 2x 1 56. a 3 a 8 3 81. 1 3y 57. x 2 x 3 3 82. 2 y2 58. a 6 a 2 3 83. 1 2n 59. a 4 a 5 3 60. a 1 a 4 84. 4n 3 3 61. a 2 a 3 85. a 2 2b 62. x 7 x 8 86. 2x 3y 3 63. x 2 3 x2 4 87. 1 a 2 3 64. a 2 3 a2 5 3 88. 3a 3 2y3 65. x 2 2 x2 7 3 89. 5 2x 66. x 3 5 x3 4 3 90. x 5 67. a 3 15 a 3 4 68. x 4 3 x4 2 3 - 24
  • 25. OPERACIONES ALGEBRAICAS 6. LEYES DE LOS EXPONENTES ENTEROS PARA LA DIVISIÓN am Lo siguiente indica una regla para simplificar expresiones de la forma an 35 3 3 3 3 3 3 3 3 33 32 3 3 Se puede apreciar que podemos restar los exponentes para encontrar el exponente del cociente. Por lo que para cualquier número real a excepto el 0 (cero), y para cualquier par de números completos m y n am am n con m n an EJEMPLO: Al simplificar las siguientes expresiones tenemos: 45 4 4 4 4 4 45 2 4 3 p orque 43 42 4 4 x6 x x x x x x x6 2 x 4 p orque x4 x2 x x p5 q7 p5 2 q7 5 p3 q2 p2 q5 Por si el exponente mayor está en el denominador, es decir si n es mayor que m entonces: am 1 n m an am n EJEMPLO: x2 x x 1 x2 1 1 o bien 5 x5 x x x x x x3 x x 5 2 x3 EJEMPLO: 6x 3 y 2 2 3 x x x y y 3x 2 6x 3 y 2 3x 3 1 3x 2 o bien 2xy 4 2 x y y y y y2 2xy 4 y4 2 y2 Tenemos que para todo número real a excepto el 0, y para todo número completo m m 1 a am 3 - 25
  • 26. OPERACIONES ALGEBRAICAS EJEMPLO: 2 1 3 1 Como en el caso: 4 m 42 m3 1 1 a ab a Ya que el exponente solo afecta a b b1 b Sabemos que cualquier número diferente de cero dividido entre sí mismo es igual a 1. Por a2 a2 ejemplo 2 1 . Si utilizamos la regla anterior, encontramos que 2 a2 2 a0 1 a a Podemos establecer la siguiente definición: a0=1, para cualquier número real excepto el cero. p0=1 30=1 7. DIVISIÓN DE POLINOMIOS La división algebraica es la operación que consiste en hallar uno de los factores de un producto, que recibe el nombre de cociente dado el otro factor, llamado divisor, y el producto de ambos factores llamado dividendo. De la definición anterior se deduce que el dividendo coincide con el producto del divisor por el cociente. Así por ejemplo, si dividimos 8xy 2xy 4 , se cumplirá que 4 2xy 8xy cociente dividendo divisor dividendo cociente divisor Si el residuo no fuera igual a cero, entonces: dividendo residuo cociente divisor divisor Para efectuar una división algebraica hay que tener en cuenta los signos, los exponentes y los coeficientes de las cantidades que se dividen. (+)÷(+)=+ (–)÷(–)=+ (+)÷(–)=– (–)÷(+)=– DIVISIÓN DE UN MONOMIO POR OTRO Para dividir dos monomios se divide el coeficiente del dividiendo entre el coeficiente del divisor y a continuación se escriben las letras ordenadas alfabéticamente, elevando cada letra a un exponente igual a la diferencia entre el exponente que tiene en el dividendo y el exponente que tiene en el divisor. El signo del cociente será el que corresponda al aplicar la regla de los signos. 3 - 26
  • 27. OPERACIONES ALGEBRAICAS EJEMPLO: Dividir 8x 6 4x 4 SOLUCIÓN: 8x 6 4x 4 8x 6 : 4x 4 8 : 4 x6 4 2x 2 EJEMPLO: 12x 3 y 2 z Dividir 3xy 12x 3 y 2 z SOLUCIÓN: 12 : 3 x 3 1 y 2 1 z 1 0 4x 2 yz 3xy EJEMPLO: 18a 3 b 4 c 2 Dividir 6a 3 b 2 c 2 18a 3 b 4 c 2 SOLUCIÓN: 18 : 6 a 3 3 b4 2 c2 2 3b 2 6a 3 b 2 c 2 En ocasiones el cociente de dos monomios es fraccionario y, por consiguiente, la división propiamente dicha no puede efectuarse en los siguientes casos: a) Cuando una letra está elevada a un exponente menor al que se halla elevada dicha letra en el divisor. b) Cuando el divisor contiene alguna letra que no se halla en el dividendo. EJEMPLO: 12a 2 b 3 c 2 Dividir 18a 3 b 4 c 2 d 3abcd DIVISIÓN DE UN POLINOMIO POR UN MONOMIO Para dividir un polinomio por un monomio se divide cada uno de los términos del polinomio por el monomio teniendo en cuenta la regla de los signos, y se suman los cocientes parciales así obtenidos. EJEMPLO: Dividir 4x 3 6x 2 8x 2x 4x 3 6x 2 8x 2x 4x 3 2x 6x 2 2x 8x 2x SOLUCIÓN: 2x 2 3x 4 3 - 27
  • 28. OPERACIONES ALGEBRAICAS EJEMPLO: 6x 4 y 9x 3 y 2 12x 2 y 3 6xy 4 Dividir 3xy 6x 4 y 9x 3 y 2 12x 2 y 3 6xy 4 6x 4 y 9x 3 y 2 12x 2 y 3 6xy 4 SOLUCIÓN: 3xy 3xy 3xy 3xy 3xy 2x 3 3x 2 y 4xy 2 2y3 EJEMPLO: 3x 3 y 2 5x 2 y 6xy 2 Dividir 4x 2 y 3x 3 y 2 5x 2 y 6xy 2 3x 3 y 2 5x 2 y 6xy 2 4x 2 y 4x 2 y 4x 2 y 4x 2 y SOLUCIÓN: 3 5 3y xy 4 4 2x DIVISIÓN DE UN POLINOMIO POR UN POLINOMIO. Para dividir dos polinomios se procede de la manera siguiente: 1) Se ordena el dividendo y el divisor con respecto a una misma letra. 2) Se divide el primer término del dividendo entre el primer término del divisor, obteniéndose así el primer término del cociente 3) Se multiplica el primer término del cociente por todo el divisor y el producto así obtenido se resta del dividendo, para lo cual se le cambia de signo y se escribe cada término de su semejante. En el caso de que algún término de este producto no tenga ningún término semejante en el dividendo, es escribe dicho término en el lugar que le corresponda de acuerdo con la ordenación del dividendo y del divisor. 4) Se divide el primer término del resto entre el primer término del divisor, obteniéndose de este modo el segundo término del cociente. 5) El segundo término del cociente se multiplica por todo el divisor y el producto así obtenido se resta del dividendo, cambiándole todos los signos. 6) Se divide el primer término del segundo resto entre el primer término del divisor y se repiten las operaciones anteriores hasta obtener cero como resto. EJEMPLO: Dividir: 5x 2 xy 3y 2 15x 4 7x 3 y 6x 2 y 2 7xy 3 3y 4 3 - 28
  • 29. OPERACIONES ALGEBRAICAS 3x 2 2xy y 2 5x 2 xy 3 y 2 15x 4 7 x 3 y 6x 2 y 2 7 xy 3 3y4 15x 4 3x 3 y 9x 2 y 2 10x 3 y 3x 2 y 2 7 xy 3 3y 4 10x 3 y 2x 2 y 2 6xy 3 5x 2 y 2 xy 3 3y 4 5x 2 y 2 xy 3 3y 4 0 Para resolver la operación anterior se procedió del modo siguiente: En primer lugar se han ordenado dividendo y divisor en orden ascendente con respecto a la letra y y en orden descendente con respecto a la letra x. A continuación se ha dividido el primer término del dividendo, 15x 4 , entre el primer término del divisor, 5x 2 , obteniéndose 3x 2 , por cada uno de los términos del divisor, obteniéndose como resultado 15x 4 3x 3 y - 9x 2 y 2 , que se escribe debajo de los términos semejantes del dividendo cambiando los signos de todos los términos semejantes, obteniéndose como primer resto 10x 3 y 3x 2 y 2 7xy 3 3y 4 . Después se ha dividido 10x 3 y entre 5x 2 obteniéndose como cociente 2xy , que es el segundo término del cociente. Multiplicando 2xy por todos los términos del divisor que se obtiene como resultado 10x 3 y 2x 2 y 2 6xy 3 , que se escribe debajo de los términos semejantes del primer resto cambiando los signos de todos sus términos para efectuar la resta. A continuación se ha procedido a efectuar la reducción de términos semejantes, 2 2 obteniéndose como segundo resto 5x y xy 3 3y 4 Finalmente se ha dividido 5x 2 y 2 entre 5x 2 , obteniéndose como cociente y2 . Multiplicando y 2 por todos los términos del divisor se obtiene como producto 5x 2 y 2 xy 3 3y 4 , que se escribe debajo de los términos semejantes del segundo resto cambiando los signos de todos lo términos para efectuar la resta. A continuación se ha procedido a efectuar la reducción de términos semejantes, obteniéndose como tercer resto 0, con lo cual queda acabada la división. EJEMPLO: Dividir: x 4 5x 3 11x 2 12x 6 x2 3x 3 3 - 29
  • 30. OPERACIONES ALGEBRAICAS x2 2x 2 x2 3x 3 x 4 5x 3 11x 2 12x 6 - x 4 3x 3 3x 2 2x3 8x 2 12x 6 SOLUCIÓN: 2x3 6x 2 6x 2x 2 6x 6 2 - 2x 6x 6 0 EJEMPLO: Dividir: 1 a a 5 - 3a 2 1 2a a2 3a 3 2a 2 3a 1 a2 2a 1 a 5 3a 2 a 1 a 5 2a 4 a3 2a 4 a3 3a 2 a 1 2a 4 4a 3 2a 2 SOLUCIÓN: 3a 3 5a 2 a 1 3 2 3a 6a 3a 2 a 2a 1 2 a 2a 1 0 EJEMPLO: Dividir: 8 y 6 21x 3 y 3 x6 24xy 5 3xy x2 y2 3 - 30
  • 31. OPERACIONES ALGEBRAICAS SOLUCIÓN: x 4 3x 3 y 8x 2 y 2 42 xy 3 118 y 4 x2 3xy y2 x6 21x 3 y 3 24 xy 5 8y6 x6 3x 5 y x4 y2 3x 5 y x4 y2 21x 3 y 3 24 xy 5 8y6 3x 5 y 9 x 4 y 2 3x 3 y 3 8x 4 y 2 18x 3 y 3 24 xy 5 8y6 8x 4 y 2 24x 3 y 3 8x 2 y 4 42x 3 y 3 8x 2 y 4 24xy 5 8y6 42x 3 y 3 126x 2 y 4 42 xy 5 118x 2 y 4 18xy 5 8y6 118x 2 y 4 354xy 5 118 y 6 336xy 5 126 y 6 Se dice que una división de un polinomio por otro es inexacta cuando: a) Si después de ordenar los dos polinomios, el primer término del dividendo no es divisible entre el primer término del divisor. b) Si el último término del dividendo no es divisible entre el último término del divisor. c) Si en el primer término de algún dividendo parcial la letra ordenatriz tiene menor exponente que en el primer término del divisor. 8. DIVISIÓN SINTÉTICA La división sintética es un procedimiento práctico para hallar el cociente y el residuo de la división de un polinomio entero en x por x-a. Dividamos x 3 5x 2 3x 14 entre x 3 x2 2x 3 x 3 x3 5x 2 3x 14 x 3 3x 2 2x 2 3x 14 2x 2 6x 3x 14 3x 9 5 3 - 31
  • 32. OPERACIONES ALGEBRAICAS 2 Podemos apreciar que el cociente x 2x 3 es un polinomio en x de un grado menor que el del dividendo; que el coeficiente del primer término del cociente es igual al coeficiente del primer término del dividendo y que el residuo es 5. Sin efectuar la división, el cociente y el residuo pueden hallarse por la siguiente regla práctica: 1) El cociente de un polinomio en x cuyo grado es 1 menos que el grado del dividendo. 2) El coeficiente del primer término del cociente es igual al coeficiente del primer término del dividendo. 3) El coeficiente de un término cualquiera del cociente se obtiene multiplicando el coeficiente del término anterior por el segundo término del binomio divisor, cambiando el signo y sumando este producto con el coeficiente del término que ocupa el mismo lugar en el dividendo. 4) El residuo se obtiene multiplicando el coeficiente del último término del divisor, cambiando de signo y sumando este producto con el término independiente del dividendo. EJEMPLO: Dividamos x 3 5x 2 3x 14 entre x 3 SOLUCIÓN: Dividendo Divisor x3 5x 2 3x 14 x 3 1 5 3 14 3 1 3 3 2 3 6 3 3 9 1 -2 -3 +5 2 Resultado x 2x 3 residuo: 5 EJEMPLO: 2x 3 5x 2 7 x 8 Efectuar por división sintética x 4 SOLUCIÓN: Dividendo Divisor 2 5 7 8 x 4 2 4 8 3 4 12 19 4 76 4 2 3 19 68 Resultado 2x 2 3x 19 residuo: 68 3 - 32
  • 33. OPERACIONES ALGEBRAICAS EJEMPLO: Efectuar por división sintética x 2 8x 5 x 2 SOLUCIÓN: Dividendo Divisor 1 8 5 x 2 1 2 2 10 2 20 2 1 - 10 25 Resultado x 10 residuo: 25 EJEMPLO: Efectuar por división sintética x 5 16x 3 202x 81 entre x 4 SOLUCIÓN: Como este polinomio es incompleto, pues le faltan los términos x 4 y x 2 , al escribir los coeficientes ponemos 0 en los lugares que debían ocupar los coeficientes de estos términos. Dividendo Divisor 1 0 - 16 0 - 202 81 x 4 4 16 0 0 808 4 1 4 0 0 - 202 727 Como el dividendo es de 5° grado, el cociente es de 4° grado los coeficientes del cociente son 1, 4, 0, 0 y -202, el cociente es x 4 4x 3 202 y el residuo es -727 3 - 33
  • 34. OPERACIONES ALGEBRAICAS 9. FACTORIZACIÓN Factorizar una expresión algebraica es hallar dos o más factores cuyo producto es igual a la expresión propuesta. La factorización puede considerarse como la operación inversa a la multiplicación, pues el propósito de ésta última es hallar el producto de dos o más factores; mientras que en la factorización, se buscan los factores de un producto dado. Se llaman factores o divisores de una expresión algebraica, a los términos que multiplicados entre sí dan como producto la primera expresión. Factorización 24 2 2 2 3 24 2 3 4 24 4 6 24 8 3 24 12 2 Multiplicación Al factorizar una expresión, escribimos la expresión como un producto de sus factores. Supongamos que tenemos dos números 3 y 5 y se pide que los multipliquemos, escribiremos 3 5 15 . En el proceso inverso, tenemos el producto 15 y se nos pide que lo factoricemos; entonces tendremos 15 3 5 Al factorizar el número 20, tendremos 20 4 5 o 20 10 2 . Advierte que 20 4 5 y 20 10 2 no están factorizados por completo. Contienen factores que no son números primos. Los primeros números primos son 2, 3, 5, 7, 11, etc. Puesto que ninguna de esas factorizaciones está completa, notamos que en la primera factorización 4 2 2 , de modo que 20 2 2 5 mientras que la segunda factorización 10 2 5 , de modo que 20 2 5 2 , en cualquier caso la factorización completa para 20 es 2 2 5 . De ahora en adelante cuando digamos factorizar un número, queremos decir factorizarlo por completo. Además se supone que los factores numéricos son números primos. De 1 esta manera no factorizamos 20 como 20 80 . 4 Con estos preliminares fuera del camino, ahora podemos factorizar algunas expresiones algebraicas. 3 - 34
  • 35. OPERACIONES ALGEBRAICAS 9.1. Factor común. Para comenzar, comparemos las multiplicaciones con los factores y veamos si podemos descubrir un patrón. 4x 4 y 4 x y 5a 10b 5 a 2b 2x 2 6x 2x x 3 2 3a 6ab 3a a 2b Usan la propiedad distributiva. Cuando multiplicamos, tenemos que: a b c ab ac . Cuando factorizamos ab ac ab c . Para factorizar un binomio, debemos hallar un factor (en este caso a) que sea común a todos los términos. El primer paso para tener una expresión completamente factorizada es seleccionar el máximo factor común, ax n . Aquí tenemos como hacerlo: Máximo factor común (MFC).- El término ax n , es el MFC de un polinomio sí: 1. a es el máximo entero que divide cada uno de los coeficientes del polinomio, y 2. n es el mínimo exponente de x en todos los términos del polinomio. De este modo para factorizar 6x 3 18x 2 , podríamos escribir 6x 3 18x 2 3x 2x 2 6x Pero no está factorizado por completo por que 2x 2 6x puede factorizarse aún más. Aquí el mayor entero que divide a 16 y 8 es 6, y el mínimo exponente de x en todos los 3 términos es x 2 . De esta manera la factorización completa es 6x 18x 2 6x 2 x 3 . 2 Donde 6x es el MFC. EJEMPLO: 8x 24 8 x 8 3 Factorizar 8x 3 EJEMPLO: 6 y 12 6 y 6 2 Factorizar 6y 2 EJEMPLO: 10x 2 25x 3 5x 2 2 5x 2 5x Factorizar 2 5x 2 5x 3 - 35
  • 36. OPERACIONES ALGEBRAICAS EJEMPLO: 6x 3 12x 2 18x 6 x x 2 6 x 2x 6x 3 Factorizar 6x x 2 2x 3 EJEMPLO: 10x 6 15x 5 20x 4 30x 2 5x 2 2x 4 5x 2 3x 3 5x 2 4x 2 5x 2 6 Factorizar 5x 2 2x 4 3x 3 4x 2 6 EJEMPLO: 2x 3 4x 4 8x 5 2 x 3 1 2 x 3 2x 2 x 3 4x 2 Factorizar 2 x 3 1 2x 3 4x 2 EJEMPLO: 3 2 1 5 1 1 1 x x 3x 2 x 5 Factorizar 4 4 4 4 4 4 1 3x 2 x 5 4 9.2. Diferencia de cuadrados. Aquí tenemos un producto notable A B A B A2 B 2 podemos utilizar esta relación para factorizar una diferencia de cuadrados. A 2 B2 A B A B EJEMPLO: x2 4 x 2 22 Factorizar x 2 x 2 EJEMPLO: 2 2 Factorizar 4x 2 25 2x 5 2x 5 2x 5 EJEMPLO: 8 4 2 2 Factorizar 9a b 49 3a 4 b 2 7 3a 4 b 2 7 3a 4 b 2 7 9.3. Trinomios con término de segundo grado. Del estudio de los productos notables sabemos que el cuadrado de un binomio es un trinomio; tales trinomios se llaman trinomios cuadrados perfectos. 3 - 36
  • 37. OPERACIONES ALGEBRAICAS 2 x 3 x2 6x 9 2 x 3 x2 6x 9 2 Los trinomios x 6x 9, x 2 6x 9 , son trinomios cuadrados porque son cuadrados de un binomio. Los siguientes puntos ayudan a identificar un trinomio cuadrado. A. Dos de los términos deben de ser cuadrados A 2 y B 2 B. No debe haber signo de menos en A 2 o en B 2 C. Si multiplicamos A y B y duplicamos el resultado, obtenemos el tercer término 2AB o su inverso aditivo -2AB. ¿Es x 2 6x 11 un trinomio cuadrado? La respuesta es no porqué solo hay un término al cuadrado (x2) y (11) no es cuadrado de algún número. Para factorizar trinomios cuadrados podemos utilizar las siguientes relaciones: A2 2 AB B2 ( A B) 2 A2 2 AB B2 ( A B) 2 Hay que recordar que se deben de sacar primero los factores comunes, si es posible. E J E R C I C I O 4 : Factorizar : 1.- x 2 14x 49 2.- x2 6x 9 3.- 16x 2 56xy 49 y 2 4.- 9x 2 18xy 9y2 5.- 36m 2 48mn 16n 2 6.- 16x 2 40x 25 7.- x2 4xy 4y2 8.- x2 2x 1 9.4. Suma y diferencia de cubos. Es fácil verificar, mediante la multiplicación del segundo miembro de cada ecuación, las siguientes fórmulas de factorización para la suma y la diferencia de dos cubos. A3 B3 A B A2 AB B2 A3 B3 A B A2 AB B2 3 - 37
  • 38. OPERACIONES ALGEBRAICAS EJEMPLO: Factorizar y 3 27 , observemos primero que se puede escribir en otra forma: y 3 33 Así, advertimos que se trata de la diferencia de dos cubos. Si aplicamos la fórmula de factorización y usamos los siguientes valores A=y, y B=3, obtenemos: y3 27 y3 33 y 3 y2 3y 9 EJEMPLO: 3 Factorizar 8x 3 27 2x 33 2x 3 4x 2 6x 9 EJEMPLO: Factorizar t 3 1 t 1 t2 t 1 9.5. Por Agrupación. Podemos utilizar la propiedad distributiva para factorizar algunos polinomios con cuatro términos. Consideremos x 3 x2 2x 2 . No hay ningún factor diferente de 1. Sin 3 embargo podemos factorizar a x x 2 y 2x 2 por separado: x3 x2 x2 x 1 2x 2 2x 1 Por lo tanto x3 x2 2x 2 x2 x 1 2 x 1 . Podemos utilizar la propiedad distributiva una vez más y sacamos el factor común: x+1 x2 x 1 2 x 1 x 1 2 x2 Este método se llama factorización por grupos (o por agrupación). No todas las expresiones con cuatro términos se pueden factorizar con este método. EJEMPLO: 6x 3 9x 2 4x 6 6x 3 9x 2 4x 6 2 3x 2x 3 2 2x 3 2 2x 3 3x 2 EJEMPLO: Factorizar x3 x2 x 1 x3 x2 x 1 2 x x 1 1x 1 2 x 1 x 1 3 - 38
  • 39. OPERACIONES ALGEBRAICAS EJEMPLO: Factorizar x3 2x 2 x 2 x3 2x 2 x 2 x2 x 2 1 x 2 2 x x 2 1x 2 2 x 2 x 1 x 2 x 1 x 1 EJEMPLO: Factorizar x2 y2 ay 2 ab bx 2 y2 x2 a b x2 a 2 2 x a y b 3 - 39
  • 40. OPERACIONES ALGEBRAICAS RESPUESTA DEL EJERCICIO 1: 1.- 2y2 y 1 6y2 2y 1 2.- 4x 2 3x 1 5x 2 x 1 3.- z2 4z 1 2z 2 z 1 4.- y2 3y 5 y2 4y 3 5.- 2xy 2 6xy x 2xy x 6.- 5ax 2 3ax 4 2ax 2 3 7.- 2x y z x 2y z x y 2z x 3y 4z 8.- a b c a b c a b c a b c 9.- 2g 3h k 2g 3h k 2g 2h 2k 3g h k 10.- 2x 2 y z x 2y z 3x 2 y z x 4 y 5z RESULTADOS DEL EJERCICIO 2: 1.- 2x 2 y 3 3xy 5 6x 3 y 8 2.- 4xy 2 5x 2 y 4 20x 3 y 6 3.- 2a a 2 b c 2a a 2 2a b 2a c 2a 3 2ab 2ac 3x 2 y 2x 3 y 2 5xy 2 4x 2 y 2 3x 2 y 2x 3 y 2 3x 2 y 5xy 2 3x 2 y 4x 2 y 2 4.- 6x 5 y 3 15x 3 y 3 12x 4 y 3 5.- 2a b 3a 2b 6a 2 ab 2b 2 6.- x4 2x 3 3 x2 2x 3 x6 4x 5 7x 4 6x 3 3x 2 6x 9 2 3 a 12 3 7.- a 1 a 1 a 15 8.- 2ab 2 3a 4 bc 2 6a 5b 3c 2 9.- 3b 2 c 3 8ab 3 c 24ab 5 c 4 10.- 2x 2 yz 3 4x 3 y 2 8x 5 y 3 z 3 3 - 40