SlideShare una empresa de Scribd logo
1 de 33
Descargar para leer sin conexión
AAggeenntteess FFííssiiccooss
Agentes Físicos
2
AGENTES FÍSICOS
En la medida en que aumenta el grado de desarrollo, industrialización y nivel de vida de una
sociedad, se incrementan el número de problemas ocasionados por los agentes físicos.
Además de los efectos que los agentes físicos pueden tener sobre la salud humana, ocasiona
impactos ecológicos graves sobre las especies sensibles a ellos.
Esta situación lleva a la necesidad de tomar conciencia de la situación y definir medidas para
cuantificar, establecer límites y evitar, en el mayor grado posible, las intrusiones de los agentes
físicos en los ciclos naturales de vida.
OBJETIVOS
Adquirir las competencias relacionadas con las características, efectos, evaluación y control de
los diferentes tipos de agentes físicos: ruido, vibraciones, ambiente térmico y radiaciones.
CONOCIMIENTOS
■ Características de los Agentes Físicos.
■ Ruido.
■ Vibraciones.
■ Ambiente Térmico.
■ Radiaciones no Ionizantes.
■ Radiaciones Ionizantes.
Agentes Físicos
3
CARACTERÍSTICAS DE LOS AGENTES FÍSICOS
Los agentes físicos son manifestaciones de la energía que pueden causar daños y afectar a la
salud de los trabajadores que se encuentran expuestos a las mismas en el entorno de trabajo.
Estas manifestaciones de la energía se pueden clasificar en:
■ Energía mecánica: ruido y vibraciones.
■ Energía calorífica: ambiente térmico, que va a depender de la temperatura, la humedad y
velocidad del aire.
■ Energía electromagnética: luz y radiaciones (UV, IR, rayos X, etc.).
Clasificación de los Agentes Físicos
Los agentes físicos que pueden ocasionar algún tipo de daño a los trabajadores se encuentran
siempre presentes en mayor o menor medida, pero sólo cuando superan determinados
valores pueden perjudicar su salud.
Factores Físicos Más Frecuentes
Ruido
Se puede definir como un sonido no deseado y molesto, una
sensación sonora desagradable que en determinadas situaciones
pueden causar alteraciones físicas y psíquicas.
La exposición a altos niveles de ruido de forma prolongada es causa
de deterioro del oído, produciendo una pérdida de audición.
Puede afectar también al sistema circulatorio, a los órganos digestivos,
al ritmo respiratorio, provocar trastornos del sueño, cansancio, etc.
Todos estos trastornos disminuyen la capacidad de alerta del individuo
y pueden ser, en consecuencia, causa de accidentes.
En otros casos el ruido puede afectar a la conducta o producir una
sordera temporal, pero que en cualquier caso resulta perjudicial para
las personas que lo sufren.
Se encuentra presente en máquinas como prensas, martillos
neumáticos o amoladoras.
Agentes Físicos
4
Vibraciones
Una vibración consiste en un movimiento alternativo de vaivén de
las partículas de un cuerpo de un lado al otro de una posición
inicial de equilibrio.
Sus efectos se producen como consecuencia de una transferencia de
energía mecánica al cuerpo humano que actúa como receptor de la
misma.
Las vibraciones pueden provocar disconfort, fatiga o trastornos
psicológicos de distinto tipo, pudiendo ocasionar enfermedades y
lesiones en diferentes órganos del cuerpo humano.
Se encuentran presentes en máquinas en movimiento, como tractores,
martillos neumáticos o carretillas elevadoras.
Mala Iluminación
Provoca errores, fatiga visual, dolor de cabeza y accidentes, al
contrario una iluminación adecuada produce confort y calidad en el
trabajo.
Ambiente
Térmico
La temperatura interna del cuerpo humano es de aproximadamente
37°C. Una temperatura extremadamente fría o caliente no es favorable
para la salud y aún menos para trabajar.
La exposición de los trabajadores a temperaturas elevadas puede
ocasionar efectos fisiológicos directos sobre la salud de los mismos,
como puede ser deshidratación o resfriados, pero también puede
afectar a su conducta, aumentando la fatiga y los posibles errores que
pueda cometer, lo cuál podría provocar daños a terceros, productos o
instalaciones.
Por otro lado, un exceso de frío produce también una disminución de
la atención pudiendo provocar accidentes, además de los problemas
de hipotermia y congelación.
Este tipo de ambientes hostiles se dan con frecuencia en hornos,
cámaras frigoríficas y trabajos a la intemperie.
Agentes Físicos
5
Radiaciones
La radiación consiste en la propagación de energía en forma de
ondas electromagnéticas o partículas subatómicas a través del
vacío o de un medio material.
Tipos
No ionizantes
■ Pueden producir enrojecimiento de la piel,
quemaduras y lesiones oculares.
■ Se encuentran presentes en operaciones de
soldeo, cercanas a fuentes de calor, trabajos
a la intemperie.
Ionizantes
■ Radiaciones con energía suficiente para
ionizar la materia, extrayendo los electrones
de sus estados ligados al átomo.
■ Pueden producir tumores y alteraciones en el
material genético. Éstas se encuentran
frecuentemente en actividades nucleares o en
centros sanitarios.
Agentes Físicos
6
RUIDO
Se puede definir el sonido como “toda variación de presión que es capaz de ser percibida por
nuestro órgano de audición”, pero se entiende por ruido, “una perturbación sonora compuesta
por un conjunto de sonidos de amplitud, frecuencia y fases variables, cuya mezcla suele
provocar una sensación sonora desagradable al oído”.
El oído humano reconoce los sonidos de frecuencia comprendida aproximadamente entre 20 y
20.000 Hz.
Sonidos No Detectados por el Oído Humano
Ultrasonidos Sonidos con una frecuencia superior a 20.000 Hz.
Infrasonidos Sonidos con una frecuencia inferior a 20 Hz.
Parámetros que Definen el Sonido
El sonido está caracterizado por una serie de parámetros que se definen a continuación.
Agentes Físicos
7
Amplitud Presión máxima o mínima. Se representa por A.
Velocidad de
Propagación
■ La velocidad de propagación del sonido depende del medio en el que
tenga lugar (densidad y elasticidad).
■ Donde:
− C: velocidad de propagación del sonido, m/s.
− Co: velocidad de propagación del sonido a una temperatura de
aire de 0ºC (273 K).
− T: temperatura absoluta, K.
Longitud de
Onda
Distancia entre dos crestas o senos sucesivos. Se representa con la
letra λ.
Donde f es la frecuencia (ciclos/s, Hz).
Frecuencia
Número de variaciones completas de presión o ciclos por segundo. Se
mide en s-1
o Hertzios (Hz) y se representa por f. Se relaciona con la
longitud de onda por la expresión:
Donde C es la velocidad de propagación del sonido.
Período
Tiempo entre picos o senos sucesivos. Se mide en segundos y se
representa por la letra T. Se puede expresar el período como la inversa
de la frecuencia:
Agentes Físicos
8
Parámetros de Cuantificación del Ruido
Los parámetros fundamentales de cuantificación del ruido son:
Presión
Acústica P
■ Variación de la presión producida por el sonido sobre la presión
atmosférica.
■ Depende de la naturaleza de la fuente emisora y de la distancia entre
la fuente emisora y la fuente receptora.
■ Se mide en Pascales, Pa.
Valor Eficaz de
la Presión Prms
■ Es proporcional a la energía sonora transmitida.
■ Se utiliza para cuantificar el sonido a través de:
Potencia
Acústica W
■ Energía sonora transmitida por unidad de tiempo. Se relaciona
con la presión acústica por la siguiente expresión:
Donde:
■ ρ es la densidad del medio.
■ c la velocidad del sonido.
■ 4πr2
es el área de una superficie
esférica centrada en la fuente
omnidireccional.
■ W la potencia acústica.
■ Se mide en vatios, w.
■ Depende exclusivamente de las características de la fuente emisora.
Es el criterio idóneo para comparar varias fuentes sonoras.
Intensidad
Acústica I
■ Energía transmitida por una fuente sonora por unidad de tiempo
y unidad de superficie que atraviesa. Se mide en w/m2
.
■ Se calcula mediante la siguiente fórmula:
Agentes Físicos
9
Nivel Sonoro. El Decibelio
El intervalo de presiones acústicas asociado al intervalo de frecuencias que reconoce el oído
humano es muy amplio, aproximadamente de 20·10-6
a 200 Pa. Para evitar la complejidad que
supone el uso de un intervalo tan amplio se utiliza otra escala para medir el sonido, el
Decibelio (dB) que se define como:
Nivel de Presión Acústica
Se define el Nivel de Presión Acústica, NPA, cuya unidad es el decibelio, dB como:
Donde:
■ PEF es la Presión eficaz (Pa).
■ PEFoes la Presión de Referencia (2·10-5
Pa).
Legislación en Materia de Ruido
En cuanto a la contaminación acústica en los puestos de trabajo, el Real Decreto 286/2006, de
10 de marzo, sobre la protección de la salud y la seguridad de los trabajadores contra los
riesgos relacionados con la exposición al ruido, establece los niveles máximos permisibles
a los que un trabajador puede estar expuesto. Este RD deroga el anterior RD 1316/1989, de 27
de octubre. No es de aplicación a los sectores de la música y el ocio.
Define:
■ Valores límite de exposición a los que pueden estar sometidos los trabajadores:
LAeq,d = 87 dB(A) y Lpico = 140 dB(C).
■ Valores superiores de exposición que dan lugar a una acción:
LAeq,d = 85 dB(A) y Lpico = 137 dB (C).
■ Valores inferiores de exposición que dan lugar a una acción:
LAeq,d = 80 dB(A) y Lpico = 135 dB(C).
Agentes Físicos
10
LAeq,d
Es el nivel medio de ruido en dB(A) al que está sometido un trabajador
durante su jornada de trabajo.
Lpico Es el nivel máximo de ruido en dB a que está sometido un trabajador.
En función de estos valores habrá que llevar a cabo diferentes acciones preventivas.
De 80 a 85 dB(A) > 85 dB(A)
Plan General
Los riesgos derivados de la exposición al ruido deberán eliminarse en su
origen o reducirse al nivel más bajo posible.
Información a los
Trabajadores
■ Naturaleza de los riesgos a los que están expuestos.
■ Medidas a adoptar.
■ Valores límite de exposición y los valores de exposición que dan
lugar a una acción.
■ Resultados de las evaluaciones y mediciones del ruido junto con una
explicación y riesgos potenciales.
■ Utilización y mantenimiento de protectores y su capacidad de
atenuación.
■ Forma de detectar lesiones auditivas.
■ Circunstancias en las que tienen derecho a una vigilancia de la salud
y la finalidad de ésta.
■ Las prácticas de trabajo seguras.
Evaluaciones
Periódicas
Cada 3 años Anual
Control de la
Audición
Cada 5 años Cada 3 años
Suministro de
Protectores
Auditivos
El empresario debe:
■ Poner a disposición de los
trabajadores protectores
auditivos individuales.
■ Fomentar el uso de EPI´s.
Uso obligatorio de protectores
auditivos excepto cuando la
utilización de los mismos pueda
causar un riesgo mayor para la
seguridad o la salud.
Los lugares de trabajo en los que se superen los 85 dB(A) deben estar señalizados y cuando
sea viable se delimitarán y limitará el acceso a ellos.
Además, en los puestos que superan los 85 dB(A), se debe desarrollar un programa de
medidas técnicas destinado a disminuir la generación o la propagación del ruido, u
organizativas encaminadas a reducir la exposición de los trabajadores al ruido.
Agentes Físicos
11
En ningún caso la exposición del trabajador deberá sobrepasar los valores límite de exposición
(87 dB(A)).
Efectos del Ruido en el Hombre
Cuando se habla de los efectos producidos por el ambiente ruidoso normalmente sólo se
consideran aquellos efectos que alcanzan la pérdida de la capacidad auditiva en la
comunicación oral, situación que ocurre como consecuencia de sorderas originadas tanto en
ambientes laborales como extralaborales.
Factores Influyentes en el Tamaño de los Efectos del Ruido
Extrínsecos Intrínsecos
■ Características del ruido:
− Presión sonora.
− Frecuencia.
■ Tiempo de exposición.
■ Características propias a la persona expuesta.
Efectos del Ruido
Auditivos
■ Enmascaramiento: la percepción oral queda lesionada como
consecuencia del ruido de fondo.
■ Fatiga: disminución temporal de la sensación auditiva.
■ Hipoacusia: primer escalón de pérdida permanente. Se produce en las
frecuencias 4000-6000 Hz con independencia de las frecuencias
predominantes del sonido al que se produce la exposición.
■ Sordera profesional: pérdida permanente que alcanza 25 dB como
media en las frecuencias convencionales.
Extra-auditivos
■ Disfunciones cardio-respiratorias.
■ Variaciones en el metabolismo y sistema endocrino.
■ Efectos en el sistema nervioso central y periférico.
Agentes Físicos
12
APORTACIONES DE PELÍCULA
Acceso a través de la Plataforma
La hipoacusia ocupacional, es un daño del oído interno, causado por la exposición a la
vibración o ruido, y que es considerada enfermedad profesional.
Los sonidos que están por encima de los 90 dB pueden ocasionar una vibración tan intensa,
que pueden lesionar el oído interno, especialmente si son prolongados.
A continuación se presenta un extracto de la película “Norma Rae” donde se puede ver
como una trabajadora, pierde temporalmente la audición en su trabajo, por la exposición a
ruidos muy altos durante un periodo de tiempo prolongado.
Norma Rae. Martin Ritt. Estados Unidos, 1979.
20th Century Fox.
Medición del Ruido
El instrumento más utilizado para la determinación de los niveles sonoros es el sonómetro que
mide el nivel global de la presión sonora en dB.
También se puede utilizar un dosímetro que es portado por el trabajador y mide el nivel de
presión acústica a la que está sometido un trabajador en su puesto de trabajo.
Objetivos de la Medición del Ruido
■ Comprobar que un determinado ambiente, área, máquina o equipo no
supere el valor sonoro establecido en la normativa.
■ Análisis de frecuencias para ser utilizadas en las técnicas de control del
ruido.
■ Obtener información sobre exposiciones al ruido.
■ Determinar la potencia sonora de una máquina.
Agentes Físicos
13
Técnicas de Control del Ruido
El control del ruido es un problema complejo que hay que abordar para así analizar sus
componentes y manipular sobre ellos de tal modo que permita obtener el máximo
aprovechamiento con el mínimo costo de inversión y funcionamiento.
Control del Ruido
Grupo de Actuación Acciones del Control
Fuente
■ Proyectando y ejecutando instalaciones correctas.
■ Sustitución de la maquinaria o proceso.
■ Modificación de la maquinaria o proceso.
Medio Transmisor
■ Aislamiento de paredes simples.
■ Aislamiento para cierre compuestos.
■ Cierres múltiples.
■ Apantallamiento de la fuente.
■ Cerramiento o blindaje de la fuente.
■ Absorción del ruido.
■ Cabinas acústicas.
Receptor
Utilización de equipos de protección individual (EPI), como son
los protectores auditivos:
■ Orejeras.
■ Tapones.
Agentes Físicos
14
VIBRACIONES
Las vibraciones se definen como el movimiento oscilante de un cuerpo alrededor de una
posición de equilibrio cuando está sometido a un impulso mecánico.
Si no se ejerce ninguna fuerza sobre el cuerpo, éste, por lo general, está en reposo y no sale de
su posición de equilibrio hasta que una fuerza impulsora actúa sobre él.
“Las vibraciones comprenden cualquier movimiento transmitido al cuerpo humano por
estructuras sólidas capaz de producir un efecto nocivo o molestia.”
OIT
Características de las Vibraciones
■ Se producen en trabajos con:
− Herramientas portátiles.
− Máquinas fijas para machacar.
■ Sus efectos más significativos son del tipo:
− Vascular.
− Osteomuscular.
− Neurológico.
■ Se asocia con la exposición al ruido, pues ambos son
movimientos oscilatorios pero sus efectos son distintos.
Clasificación de las Vibraciones
Las vibraciones se pueden clasificar según los efectos que tienen sobre el organismo en
función de su frecuencia:
Categorías de las Vibraciones Efectos Principales
Muy Baja Frecuencia (<2 Hz) Mareos, náuseas.
Baja Frecuencia (2 - 40 Hz) Afecciones osteoarticulares.
Alta Frecuencia (40 - 1000 Hz) Daños angioneuróticos.
Agentes Físicos
15
Las vibraciones son transmitidas esencialmente a las manos y por las manos, pero se
transmiten a todo el cuerpo, afectando a la columna vertebral y otros órganos del tórax y
abdomen.
Según el modo de contacto entre el objeto vibrante y el cuerpo, la exposición a vibraciones se
divide en dos grupos:
Vibraciones Mano-
Brazo
■ Punto de contacto: la mano.
■ Efectos: problemas vasculares, de articulaciones, nerviosos y
musculares.
El efecto más conocido es el síndrome de Reynaud o “dedo
blanco”: hormigueo de los dedos, sensación de frío y color
blanquecino de los dedos.
■ Magnitud de la transmisión: dependerá de las características
de la vibración y de la forma de desarrollar el trabajo.
Vibraciones de Cuerpo
Entero
■ Punto de contacto: superficies de apoyo del cuerpo con
sistemas o elementos vibrantes. Según la posición:
− Sentado: espalda y glúteos.
− De pie: pies.
− En posición horizontal: espalda, cabeza y piernas.
■ Efectos: traumatismos de la columna vertebral y otros, como
dolores abdominales, mareos, falta de sueño, etc.
■ Magnitud de la transmisión: dependerá de la postura de
trabajo y la sensibilidad del individuo.
Agentes Físicos
16
Medición y Evaluación de las Vibraciones
El equipo de medida empleado para la determinación de las vibraciones es el vibrómetro,
cuya estructura es muy semejante a la de un sonómetro, como se puede ver en el siguiente
esquema:
A la hora de realizar las mediciones y la valoración de los resultados se seguirán, en función del
tipo de transmisión de la vibración, distintas normas de aplicación.
Vibraciones Mano-Brazo Vibraciones Cuerpo Entero
Medición
El muestreo utilizado se realiza en
base a la norma ISO 5349.
El muestreo utilizado se realiza en
base a la norma ISO 2631.
Se comparan los valores obtenidos con los valores de referencia establecidos
en el RD 1311/2005 “Protección de la salud y la seguridad de los trabajadores
frente a riesgos derivados o que puedan derivarse de la exposición a
vibraciones mecánicas”.
Valoración Valor de exposición diaria normalizado
para un periodo de referencia de ocho
horas:
■ Límite: 5 m/s2
.
■ Da lugar a una acción: 2,5 m/s2
.
Valor de exposición diaria
normalizado para un periodo de
referencia de ocho horas:
■ Límite: 1,15 m/s2
.
■ Da lugar a una acción: 0,5 m/s2
.
Control y Prevención de las Vibraciones
Para prevenir los efectos de las vibraciones en el cuerpo humano se puede actuar mediante
medidas de tipo:
Agentes Físicos
17
Administrativo
Disminución del tiempo diario de exposición.
Medidas
■ Organización del trabajo.
■ Establecimiento de pausas.
■ Rotación de puestos.
■ Modificación de las secuencias de montaje.
Técnico
Disminución de la intensidad que se transmite al cuerpo humano.
Grupo de
Actuación
Medidas
Fuente
■ Conseguir intensidad de vibración tolerable,
mediante diseño ergonómico de asientos y
empuñaduras.
■ Modificación de máquinas.
■ Automatización y uso de mando a distancia.
■ Diseño de máquinas y herramientas más
seguras.
■ Reducción de los parámetros vibratorios de
los focos de vibración.
■ Mantener las herramientas y las máquinas
en buenas condiciones de uso.
Medio de
Transmisión
Uso de aislantes de vibración.
Receptor
Uso de EPI:
■ Guantes.
■ Cinturón.
■ Botas.
Agentes Físicos
18
AMBIENTE TÉRMICO
El cuerpo humano dispone de un sistema termorregulador, mediante el cual su temperatura
se mantiene prácticamente constante por su balance entre la producción interna de calor y su
eliminación al medio ambiente.
El balance de calor del cuerpo humano viene dado por la expresión:
ACUMULACIÓN = METABOLISMO - PÉRDIDAS
Para que el desequilibrio no se produzca, para tiempos largos de exposición, la acumulación
debe ser nula.
Mecanismo de Intercambio de Calor
La eliminación de calor producido por el cuerpo humano al medio ambiente tiene lugar según
las leyes físicas de intercambio de calor:
La ecuación de balance térmico se expresa como:
M = ± C ± R - E
■ M: calor producido por el metabolismo.
■ C: calor intercambiado por convección.
■ R: calor intercambiado por radiación.
■ E: calor cedido por evaporación.
Convención Intercambio de calor entre una superficie y un fluido o entre dos fluidos.
Radiación
Transmisión de la energía a través del espacio por medio de ondas
electromagnéticas.
Evaporización
Cambio de estado de un líquido a vapor y su posterior difusión en
estado gaseoso en el ambiente.
La producción de calor del cuerpo se establece como la suma de dos parámetros:
Agentes Físicos
19
Metabolismo Basal
■ Calor generado por el organismo humano para mantener sus funciones
vitales.
■ El cálculo se realiza con distintos métodos, todos ellos basados en una serie de
factores: edad, peso, estatura y sexo.
− Método de Lehman: suma de los términos A y B que se obtienen de una serie
de gráficas.
− Método de Boothby-Berkson-Dunn: el cálculo se realiza a partir de los valores
de una tabla y el cálculo de la superficie cutánea mediante la fórmula de Dubois.
Metabolismo del Trabajo
■ Calor producido por la actividad desarrollada.
■ Existen dos métodos para calcular el metabolismo de trabajo:
− Por descomposición de la tarea.
− Evaluación por analogía de una actividad similar.
Evaluación de Ambientes Térmicos
De entre todos los métodos empleados se van a destacar aquellos que se consideran mejores y
más efectivos para el técnico de prevención:
■ Método de la Temperatura Efectiva.
■ Método de Fanger.
■ Métodos del Índice WBGT. De aplicación en ambientes con riesgo térmico severo.
Método de la Temperatura Efectiva
Concepto
Temperatura del aire saturado con ligero movimiento que produce en la
persona expuesta la misma sensación que las condiciones ambientales de
la exposición.
Zonas de
Confort
■ Humedad: 70% - 30%.
■ Verano: 17.2 ºC - 21.5 ºC.
■ Invierno: 18.8 ºC - 23.8 ºC.
Agentes Físicos
20
Valores
Máximos
Recomendados
■ Verano:
− Actividad ligera……………………….30 ºC.
− Actividad moderada………………... 27 ºC.
■ Invierno:
− Actividad ligera o moderada………... 24 ºC.
Limitaciones de
Aplicación
■ Que el calor transmitido por radiación sea nulo o poco elevado.
■ Que las personas se encuentren normalmente vestidas.
■ Que la actividad física desarrollada sea ligera o moderada.
Agentes Físicos
21
Diagrama
■ Se realizaron estudios considerando las condiciones de reposo corporal
o una actividad en posición sentado, en ausencia del factor de radiación
y con la presencia de corriente de aire ligera y continua.
■ Para hallar la temperatura efectiva se tienen que realizar las siguientes
etapas:
− Medir la temperatura húmeda y situar en la escala correspondiente.
− Unir el valor anterior con la temperatura seca medida. Dará una línea
que une los valores de ambas temperaturas que corta la parte
central de la gráfica.
− Buscar la intersección entre la velocidad del viento y la recta trazada.
− En el punto de intersección, seguir la línea oblicua hacia arriba si es
verano, o hacia abajo si es invierno.
− Interpretar el resultado obtenido.
Agentes Físicos
22
Método Fanger
Situación de
Confort
Situación de equilibrio térmico.
Variables de
la Ecuación
de Confort
■ Características del vestido: aislamiento y área total.
■ Características de carga energética del trabajo: producción energética
metabólica total y velocidad del aire.
■ Características del ambiente: temperatura seca, temperatura radiante
media, presión parcial del agua en el aire y velocidad del aire.
Índice de
Valor Medio
■ Para la valoración de los ambientes se utiliza la escala numérica de
sensación.
■ El IVM será el valor medio obtenido de las calificaciones realizadas por el
total de personas del grupo bajo estudio.
Escala Numérica de Sensación
Muy frío ………………………………………………………-3
Frío ……………………………………………………....-2
Ligeramente frío ……………………………………………-1
Neutro, confortable ………………………………………… 0
Ligeramente caluroso ……………………………………… 1
Caluroso …………………………………………………… 2
Muy caluroso………………………………………………… 3
Índice de
Insatisfacción
■ Sirve para conocer la proporción de personas satisfechas-insatisfechas
con el ambiente estudiado en función del IVM.
■ Permite tomar decisiones en cuanto a la temperatura, velocidad del aire y
tipo de ropas a recomendar para alcanzar el mayor número de personas
satisfechas.
■ Se demuestra que el mejor resultado posible comporta la insatisfacción del
5% del grupo como mínimo.
Agentes Físicos
23
Índice WBGT
Objetivo
■ Evitar que la temperatura corporal para un trabajador aclimatado y
vestido completamente, no sea superior a los 38 ºC.
■ Técnica más simple para la evaluación de los ambientes.
Índice WBGT
■ Para interiores o exteriores sin carga solar:
■ Para exteriores con carga solar:
Parámetros
TH
Temperatura húmeda, temperatura natural de termómetro de
bulbo húmedo, termómetro sin ventilación y sin apantallar las
posibles radiaciones que reciba.
TS
Temperatura seca, temperatura de termómetro de bulbo
seco.
TG Temperatura de globo, temperatura de termómetro de globo.
Agentes Físicos
24
Determinación
Ciclos
Trabajo-
Descanso
■ El valor del índice calculado se enfrenta al valor resultante del
metabolismo total para el trabajador en estudio resultando la calificación
del puesto de trabajo mediante el gráfico que se acompaña.
30
25
20
100 200 300 400 500
70
75
80
85
90
Leyenda
Continuo
75% de trabajo, 25% de descanso cada hora
50% de trabajo, 50% de descanso cada hora
25% de trabajo, 75% de descanso cada hora
Kcal/hora
■ En el caso de ambientes heterogéneos, es necesario determinar los
valores de la radiación a las alturas:
Control de Ambientes Térmicos
El control de los ambientes térmicos se alcanza actuando sobre los factores ambientales y
personales que intervienen en el balance térmico.
La actuación se debe centrar en tres puntos concretos:
Fuente de Emisión
■ Control de la fuente de calor.
■ Aislamiento.
■ Protección contra la radiación.
■ Automatización de procesos.
■ Pintado de superficies.
■ Extracciones localizadas.
Agentes Físicos
25
Medio de Propagación
■ Locales amplios y bien acondicionados:
− Movimiento del aire.
− Ventilación general: natural o forzada.
■ Alejamiento del foco de calor.
Receptor
■ Aislar al operario, creando una atmósfera para él:
− Cabina con aire acondicionado.
− Corriente de aire sobre el operario del orden de 2
m/s.
■ Regulación de los periodos de actividad y descanso.
■ Control médico.
■ Protección personal: con ropa apropiada altamente
aislante.
Agentes Físicos
26
RADIACIONES NO IONIZANTES
Las radiaciones no ionizantes no producen fenómenos de ionización, es decir, la energía
que emiten no es lo bastante fuerte como para producir efectos en los átomos de la materia
sobre la que inciden.
Este tipo de radiaciones están poco regladas. Son menos peligrosas puesto que no son
capaces de ionizar las células del cuerpo humano, aunque producen efectos sobre las
personas.
Su uso ha aumentado bastante en los últimos años, tanto en la industria como en la vida
cotidiana debido a la gran cantidad de aparatos que usan o emiten este tipo de radiación.
Características de Radiaciones no Ionizantes
■ Poder energético menor que las ionizantes.
■ Capaces de excitar la rotación y la vibración de las moléculas.
■ Su energía no es suficiente para ionizar los átomos de la materia.
Prevención y Protección contra Radiaciones no Ionizantes
■ Aumentar la distancia entre el foco emisor y el individuo.
■ Apantallar con un material apropiado la radiación.
■ Blindaje del foco emisor en el momento de la fabricación.
■ Reducción del tiempo de exposición.
■ Señalización de las zonas de exposición.
■ Uso de protecciones individuales:
− Pantalla facial.
− Gafas.
− Ropa de trabajo adecuada.
■ Realizar mediciones de los niveles de radiación.
■ Realizar reconocimientos médicos específicos y periódicos al personal expuesto.
Agentes Físicos
27
Tipos de Radiaciones no Ionizantes
Las radiaciones no ionizantes se clasifican en función de su longitud de onda.
Radiaciones Ultravioleta
La mayor fuente de emisión es el sol.
Las actividades industriales que las emiten son, sobre todo, la soldadura al arco y plasma, las
fotocopiadoras, las lámparas germicidas para desinfectar y las lámparas de mercurio usadas en
reacciones fotoquímicas.
■ Efectos:
− Afecciones de la piel: enrojecimientos, quemaduras e incluso cáncer.
− Ojos: conjuntivitis.
■ EPI:
− Gafas.
− Protectores faciales.
− Ropas protectoras.
Radiaciones Infrarrojas
Casi invisibles y con gran aporte calorífico. Presentes en operaciones industriales como hornos
de secado, hornos de fusión.
Cualquier material próximo al punto de fusión es una fuente de infrarrojos.
■ Efectos: lesiones de retina o producir opacidad en el cristalino, cataratas, lesiones
cornéales, eritemas, quemaduras, etc.
■ EPI: uso de apantallamientos y gafas protectoras.
Agentes Físicos
28
Microondas
Su principal característica es su poder calorífico y de ahí precisamente el riesgo.
Se usan ampliamente en actividades industriales, en medicina y en la vida cotidiana.
■ Efectos:
− Térmicos: afectan al sistema nervioso, cardiovascular, ojos, audición, aparato
reproductor masculino.
− No térmicos: han sido menos estudiados, pero cabe mencionar las alteraciones
genéticas por su interferencia en la transmisión de la información genética.
Láser
Haz de luz (radiación visible, infrarroja o ultravioleta) que se caracteriza por ser monocromático,
coherente y direccional.
Puede alcanzar un gran poder destructor de los tejidos al proyectar una gran cantidad de
energías sobre zonas muy pequeñas.
Se utilizan ampliamente en equipos de soldadura, comunicaciones por fibra óptica, sonidos,
artes gráficas, cirugía, etc.
■ Efectos: se concentran en los ojos y en la piel.
Luz Visible
Se encuentra entre las radiaciones infrarrojas y las ultravioletas.
■ Efectos: relacionados con la vista y en especial con la retina.
Agentes Físicos
29
RADIACIONES IONIZANTES
Las radiaciones ionizantes son aquellas radiaciones con energía suficiente para ionizar la
materia.
Pueden provenir de sustancias radiactivas, que emiten dichas radiaciones de forma
espontánea, o de generadores artificiales, tales como los generadores de rayos x o los
aceleradores de partículas.
Tipos de Radiaciones Ionizantes
Constituidas por Partículas
Cargadas
■ Rayos α.
■ Rayos β.
Electromagnéticas
■ Rayos γ.
■ Rayos x.
Para la medida de estas radiaciones se utiliza el radiómetro y el dosímetro de radiación.
Estos aparatos son llevados por el trabajador durante todo el tiempo de exposición, pudiendo
comprobar en cada momento la cantidad acumulada de radiación.
Las unidades de medida de la radiación son algo complejas, y las tradicionales se han unido a
las equivalentes en el sistema internacional de unidades (SI).
Tradicionales Sistema Internacional
■ Roentgen: utilizada para la medición de la
exposición a la radiación.
■ RAD: unidad de medida de la dosis de
radiación absorbida.
■ REM: unidad utilizada para cuantificar los
efectos biológicos de la radiación.
■ Gray (Gy): medida de la dosis absorbida,
no describe los efectos biológicos de la
radiación. Un Gy es equivalente a 100
rads. Se mide en J/kg.
■ Sievert: (Sv): utilizada para describir la
dosis equivalente en efectos biológicos.
Es equivalente a 100 rem. Se mide en
J/kg.
Agentes Físicos
30
Factores Radiobiológicos
Los efectos radiobiológicos derivados de las radiaciones son debidos a una transferencia de la
energía del rayo a la materia viva.
Factores Radiobiológicos
■ Naturaleza de la radiación.
■ Naturaleza de los tejidos.
■ Factor de distribución.
■ Factor tiempo.
Efectos Biológicos
La exposición de los tejidos vivos a las radiaciones ocasiona daños a las células. Cada día es
más frecuente la exposición a elementos radiactivos, por la creciente importancia del uso de la
energía nuclear.
Los efectos de las radiaciones ionizantes en un organismo se pueden dividir generalmente en
tres tipos:
Agudos
■ Dependen de:
− Dosis recibida.
− Volumen y tipo de tejido.
Ejemplo: Vómitos, síntomas intestinales, caída de cabello.
Tardíos
■ Consecuencia de exposiciones a dosis bajas que se dan
repetidamente durante un largo periodo de la vida profesional.
■ Aparecen varios años después de haberse sometido a radiaciones.
Ejemplos: cataratas, leucemia y otras formas de cáncer.
Genéticos
■ Producen cambios en las células reproductoras.
■ Notables efectos en las siguientes generaciones.
Agentes Físicos
31
Protección Contra las Radiaciones Ionizantes
Las exposiciones a este tipo de radiaciones pueden ocasionar daños muy graves e irreversibles
para la salud, manteniendo una relación directa y proporcional con la dosis recibida, entre ellos
la generación de cáncer y las malformaciones genéticas.
Hay que extremar las precauciones y disponer de adecuadas medidas de prevención cuando
se trabaja con este tipo de radiaciones.
La principal es señalizar y delimitar la zona, debiendo constituir una unidad aparte. Si se tiene
que trabajar con ella, hay que:
■ Reducir al máximo el tiempo de exposición.
■ Alejarse lo más posible del foco de emisión.
■ Utilizar pantallas y blindajes.
En la protección contra las radiaciones hay que partir de la distinción entre radiaciones externas
y radiaciones internas, pero siempre basándose en una serie de principios:
■ Identificación del peligro: incluye la determinación de la fuente y el conocimiento de
todas sus características, las del local o área en la que se encuentra.
■ Dividir en diferentes zonas, las áreas en las que exista riesgo por radiaciones, en relación
con el nivel de riesgo posible que exista.
■ Realizar de forma periódica y obligatoria, controles físicos y médicos, a las instalaciones
y a los trabajadores.
Protección contra las Radiaciones Ionizantes
Radiaciones Externas Radiaciones Internas
■ Alejamiento de la fuente.
■ Reducción del tiempo de exposición.
■ Pantallas protectoras.
■ Prendas y material de protección personal.
■ Señalización.
■ Aseo del cuerpo.
■ En caso de cortaduras y quemaduras,
lavar lo más rápidamente posible y
prevenir al servicio médico.
■ Confinamiento de las sustancias
radiactivas.
■ Aislamiento y protección de las superficies
de los locales, mobiliario y objetos.
■ Control para la detección radiactiva en
locales, personal y prendas de trabajo.
■ Protección individualizada de los
trabajadores.
■ Descontaminación.
Agentes Físicos
32
Prevención Médica
■ Reconocimientos obligados en el comienzo de la actividad del trabajador.
■ Reconocimientos periódicos predeterminados y específicos en los puestos de trabajo con
riesgo claro de contaminación radiactiva.
■ Control específico de adaptación de la persona al puesto de trabajo en relación a sus
condiciones de salud.
■ Seguimiento de una higiene personal rigurosa, con descontaminación individual a la
finalización de la jornada laboral.
Agentes Físicos
33
NOTAS

Más contenido relacionado

Destacado

Herramientas de un tecnico en sistemas
Herramientas de un tecnico en sistemasHerramientas de un tecnico en sistemas
Herramientas de un tecnico en sistemasxlibra23
 
Revista de canvas slide
Revista de canvas slideRevista de canvas slide
Revista de canvas slidecesar espinosa
 
Replanteamiento de las actividades de expresión y apreciación artisticas
Replanteamiento de las actividades de expresión y apreciación artisticasReplanteamiento de las actividades de expresión y apreciación artisticas
Replanteamiento de las actividades de expresión y apreciación artisticasannel mera ordoñez
 
школа розвитку успішної особистості
школа розвитку успішної особистостішкола розвитку успішної особистості
школа розвитку успішної особистостіNatalia Skovorodkina
 
Gordon Y. Gabut
Gordon Y. GabutGordon Y. Gabut
Gordon Y. GabutGrn Gabut
 
Manual de sustancias quimicas ecuador
Manual de sustancias quimicas ecuadorManual de sustancias quimicas ecuador
Manual de sustancias quimicas ecuadorRonny Valarezo
 
Principios do homeschool adventista
Principios do homeschool adventistaPrincipios do homeschool adventista
Principios do homeschool adventistaPatricia Schllemer
 
Discurso: Práctica de Evaluación Entre Pares-La Reforma Energética de México ...
Discurso: Práctica de Evaluación Entre Pares-La Reforma Energética de México ...Discurso: Práctica de Evaluación Entre Pares-La Reforma Energética de México ...
Discurso: Práctica de Evaluación Entre Pares-La Reforma Energética de México ...Irvin de Jesús Rodríguez Martínez
 

Destacado (17)

Herramientas de un tecnico en sistemas
Herramientas de un tecnico en sistemasHerramientas de un tecnico en sistemas
Herramientas de un tecnico en sistemas
 
Revista de canvas slide
Revista de canvas slideRevista de canvas slide
Revista de canvas slide
 
Juegos tradicionales
Juegos tradicionalesJuegos tradicionales
Juegos tradicionales
 
Mantenimiento de artefactos
Mantenimiento de artefactosMantenimiento de artefactos
Mantenimiento de artefactos
 
Replanteamiento de las actividades de expresión y apreciación artisticas
Replanteamiento de las actividades de expresión y apreciación artisticasReplanteamiento de las actividades de expresión y apreciación artisticas
Replanteamiento de las actividades de expresión y apreciación artisticas
 
Cri-Cri
Cri-CriCri-Cri
Cri-Cri
 
школа розвитку успішної особистості
школа розвитку успішної особистостішкола розвитку успішної особистості
школа розвитку успішної особистості
 
Liberta me de mim
Liberta me de mimLiberta me de mim
Liberta me de mim
 
Gordon Y. Gabut
Gordon Y. GabutGordon Y. Gabut
Gordon Y. Gabut
 
Termo de referencia
Termo de referenciaTermo de referencia
Termo de referencia
 
Manual de sustancias quimicas ecuador
Manual de sustancias quimicas ecuadorManual de sustancias quimicas ecuador
Manual de sustancias quimicas ecuador
 
Estrela da manhã
Estrela da manhãEstrela da manhã
Estrela da manhã
 
Principios do homeschool adventista
Principios do homeschool adventistaPrincipios do homeschool adventista
Principios do homeschool adventista
 
Escudo e proteção
Escudo e proteçãoEscudo e proteção
Escudo e proteção
 
Arte rupestre
Arte rupestreArte rupestre
Arte rupestre
 
Discurso: Práctica de Evaluación Entre Pares-La Reforma Energética de México ...
Discurso: Práctica de Evaluación Entre Pares-La Reforma Energética de México ...Discurso: Práctica de Evaluación Entre Pares-La Reforma Energética de México ...
Discurso: Práctica de Evaluación Entre Pares-La Reforma Energética de México ...
 
Resultados y clasificaciones
Resultados y clasificacionesResultados y clasificaciones
Resultados y clasificaciones
 

Similar a Agentes fisicos

Condicionesdetrabajo
CondicionesdetrabajoCondicionesdetrabajo
Condicionesdetrabajomaralara
 
IMPACTO SONORO EN MINAS SUBTERRANEAS
IMPACTO SONORO EN MINAS SUBTERRANEAS IMPACTO SONORO EN MINAS SUBTERRANEAS
IMPACTO SONORO EN MINAS SUBTERRANEAS jojacoar
 
Riesgos laborales provocados por el ruido (Trabajo de Medicina del trabajo. C...
Riesgos laborales provocados por el ruido (Trabajo de Medicina del trabajo. C...Riesgos laborales provocados por el ruido (Trabajo de Medicina del trabajo. C...
Riesgos laborales provocados por el ruido (Trabajo de Medicina del trabajo. C...Angel Abel Mesado Gómez
 
Atlas de riesgo a ala salud de las instalaciones
Atlas de riesgo a ala salud de las instalacionesAtlas de riesgo a ala salud de las instalaciones
Atlas de riesgo a ala salud de las instalacionesGermainGarcia4
 
Higiene y seguridad slider
Higiene y seguridad sliderHigiene y seguridad slider
Higiene y seguridad sliderjose20masyrubi
 
Riesgos laborales ensayo expositivo yatsely
Riesgos laborales ensayo expositivo yatselyRiesgos laborales ensayo expositivo yatsely
Riesgos laborales ensayo expositivo yatselyVinotintoRM
 
Conceptos generales de ruido
Conceptos generales de ruido Conceptos generales de ruido
Conceptos generales de ruido Sebastian David
 
Virtual omar andres valencia
Virtual omar andres valenciaVirtual omar andres valencia
Virtual omar andres valenciaAndres Valencia
 
Tipos de riesgos ocupacionales
Tipos de riesgos ocupacionalesTipos de riesgos ocupacionales
Tipos de riesgos ocupacionalesargelis121610
 
Unidad 5 "Salud Industrial" Administración de la salud
Unidad 5 "Salud Industrial" Administración de la saludUnidad 5 "Salud Industrial" Administración de la salud
Unidad 5 "Salud Industrial" Administración de la saludGenesis Acosta
 

Similar a Agentes fisicos (20)

Peligro Físico
Peligro FísicoPeligro Físico
Peligro Físico
 
Condicionesdetrabajo
CondicionesdetrabajoCondicionesdetrabajo
Condicionesdetrabajo
 
Ruido y efectos sobre la salud
Ruido y efectos sobre la saludRuido y efectos sobre la salud
Ruido y efectos sobre la salud
 
Factores de-riesgo
Factores de-riesgoFactores de-riesgo
Factores de-riesgo
 
IMPACTO SONORO EN MINAS SUBTERRANEAS
IMPACTO SONORO EN MINAS SUBTERRANEAS IMPACTO SONORO EN MINAS SUBTERRANEAS
IMPACTO SONORO EN MINAS SUBTERRANEAS
 
Riesgo gregorio
Riesgo gregorioRiesgo gregorio
Riesgo gregorio
 
Tipos de riesgo ocupacional
Tipos de riesgo ocupacionalTipos de riesgo ocupacional
Tipos de riesgo ocupacional
 
Riesgos laborales provocados por el ruido (Trabajo de Medicina del trabajo. C...
Riesgos laborales provocados por el ruido (Trabajo de Medicina del trabajo. C...Riesgos laborales provocados por el ruido (Trabajo de Medicina del trabajo. C...
Riesgos laborales provocados por el ruido (Trabajo de Medicina del trabajo. C...
 
Atlas de riesgo a ala salud de las instalaciones
Atlas de riesgo a ala salud de las instalacionesAtlas de riesgo a ala salud de las instalaciones
Atlas de riesgo a ala salud de las instalaciones
 
Higiene y seguridad slider
Higiene y seguridad sliderHigiene y seguridad slider
Higiene y seguridad slider
 
contaminantes fisicos
  contaminantes fisicos  contaminantes fisicos
contaminantes fisicos
 
Riesgos laborales ensayo expositivo yatsely
Riesgos laborales ensayo expositivo yatselyRiesgos laborales ensayo expositivo yatsely
Riesgos laborales ensayo expositivo yatsely
 
clase2.pdf
clase2.pdfclase2.pdf
clase2.pdf
 
Conceptos generales de ruido
Conceptos generales de ruido Conceptos generales de ruido
Conceptos generales de ruido
 
Riesgos Fisicos
Riesgos FisicosRiesgos Fisicos
Riesgos Fisicos
 
Virtual omar andres valencia
Virtual omar andres valenciaVirtual omar andres valencia
Virtual omar andres valencia
 
Tipos de riesgos ocupacionales
Tipos de riesgos ocupacionalesTipos de riesgos ocupacionales
Tipos de riesgos ocupacionales
 
Unidad 5 "Salud Industrial" Administración de la salud
Unidad 5 "Salud Industrial" Administración de la saludUnidad 5 "Salud Industrial" Administración de la salud
Unidad 5 "Salud Industrial" Administración de la salud
 
Medicina del trabajo. Hipoacusia
Medicina del trabajo. HipoacusiaMedicina del trabajo. Hipoacusia
Medicina del trabajo. Hipoacusia
 
Ruido Salud
Ruido SaludRuido Salud
Ruido Salud
 

Último

5° Proyecto 13 Cuadernillo para proyectos
5° Proyecto 13 Cuadernillo para proyectos5° Proyecto 13 Cuadernillo para proyectos
5° Proyecto 13 Cuadernillo para proyectosTrishGutirrez
 
tema5 2eso 2024 Europa entre los siglos XII y XV
tema5 2eso 2024 Europa entre los siglos XII y XVtema5 2eso 2024 Europa entre los siglos XII y XV
tema5 2eso 2024 Europa entre los siglos XII y XVChema R.
 
Salvando mi mundo , mi comunidad , y mi entorno
Salvando mi mundo , mi comunidad  , y mi entornoSalvando mi mundo , mi comunidad  , y mi entorno
Salvando mi mundo , mi comunidad , y mi entornoday561sol
 
historieta materia de ecologías producto
historieta materia de ecologías productohistorieta materia de ecologías producto
historieta materia de ecologías productommartinezmarquez30
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.karlazoegarciagarcia
 
Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.monthuerta17
 
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaPresentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaFarid Abud
 
TALLER_DE_ORALIDAD_LECTURA_ESCRITURA_Y.pptx
TALLER_DE_ORALIDAD_LECTURA_ESCRITURA_Y.pptxTALLER_DE_ORALIDAD_LECTURA_ESCRITURA_Y.pptx
TALLER_DE_ORALIDAD_LECTURA_ESCRITURA_Y.pptxMartaChaparro1
 
Descripción del Proceso de corte y soldadura
Descripción del Proceso de corte y soldaduraDescripción del Proceso de corte y soldadura
Descripción del Proceso de corte y soldaduraJose Sanchez
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejormrcrmnrojasgarcia
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdflizcortes48
 
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdfDocencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdfDemetrio Ccesa Rayme
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJOLeninCariMogrovejo
 
Programa sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfPrograma sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfHannyDenissePinedaOr
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Gonella
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfJosé Hecht
 

Último (20)

5° Proyecto 13 Cuadernillo para proyectos
5° Proyecto 13 Cuadernillo para proyectos5° Proyecto 13 Cuadernillo para proyectos
5° Proyecto 13 Cuadernillo para proyectos
 
tema5 2eso 2024 Europa entre los siglos XII y XV
tema5 2eso 2024 Europa entre los siglos XII y XVtema5 2eso 2024 Europa entre los siglos XII y XV
tema5 2eso 2024 Europa entre los siglos XII y XV
 
Salvando mi mundo , mi comunidad , y mi entorno
Salvando mi mundo , mi comunidad  , y mi entornoSalvando mi mundo , mi comunidad  , y mi entorno
Salvando mi mundo , mi comunidad , y mi entorno
 
historieta materia de ecologías producto
historieta materia de ecologías productohistorieta materia de ecologías producto
historieta materia de ecologías producto
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
 
Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.
 
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaPresentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
 
Sesión ¿Amor o egoísmo? Esa es la cuestión
Sesión  ¿Amor o egoísmo? Esa es la cuestiónSesión  ¿Amor o egoísmo? Esa es la cuestión
Sesión ¿Amor o egoísmo? Esa es la cuestión
 
TALLER_DE_ORALIDAD_LECTURA_ESCRITURA_Y.pptx
TALLER_DE_ORALIDAD_LECTURA_ESCRITURA_Y.pptxTALLER_DE_ORALIDAD_LECTURA_ESCRITURA_Y.pptx
TALLER_DE_ORALIDAD_LECTURA_ESCRITURA_Y.pptx
 
Descripción del Proceso de corte y soldadura
Descripción del Proceso de corte y soldaduraDescripción del Proceso de corte y soldadura
Descripción del Proceso de corte y soldadura
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejor
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdf
 
Unidad 1 | Metodología de la Investigación
Unidad 1 | Metodología de la InvestigaciónUnidad 1 | Metodología de la Investigación
Unidad 1 | Metodología de la Investigación
 
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdfDocencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
 
AO TEATRO, COM ANTÓNIO MOTA! _
AO TEATRO, COM ANTÓNIO MOTA!             _AO TEATRO, COM ANTÓNIO MOTA!             _
AO TEATRO, COM ANTÓNIO MOTA! _
 
Programa sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfPrograma sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdf
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
 

Agentes fisicos

  • 2. Agentes Físicos 2 AGENTES FÍSICOS En la medida en que aumenta el grado de desarrollo, industrialización y nivel de vida de una sociedad, se incrementan el número de problemas ocasionados por los agentes físicos. Además de los efectos que los agentes físicos pueden tener sobre la salud humana, ocasiona impactos ecológicos graves sobre las especies sensibles a ellos. Esta situación lleva a la necesidad de tomar conciencia de la situación y definir medidas para cuantificar, establecer límites y evitar, en el mayor grado posible, las intrusiones de los agentes físicos en los ciclos naturales de vida. OBJETIVOS Adquirir las competencias relacionadas con las características, efectos, evaluación y control de los diferentes tipos de agentes físicos: ruido, vibraciones, ambiente térmico y radiaciones. CONOCIMIENTOS ■ Características de los Agentes Físicos. ■ Ruido. ■ Vibraciones. ■ Ambiente Térmico. ■ Radiaciones no Ionizantes. ■ Radiaciones Ionizantes.
  • 3. Agentes Físicos 3 CARACTERÍSTICAS DE LOS AGENTES FÍSICOS Los agentes físicos son manifestaciones de la energía que pueden causar daños y afectar a la salud de los trabajadores que se encuentran expuestos a las mismas en el entorno de trabajo. Estas manifestaciones de la energía se pueden clasificar en: ■ Energía mecánica: ruido y vibraciones. ■ Energía calorífica: ambiente térmico, que va a depender de la temperatura, la humedad y velocidad del aire. ■ Energía electromagnética: luz y radiaciones (UV, IR, rayos X, etc.). Clasificación de los Agentes Físicos Los agentes físicos que pueden ocasionar algún tipo de daño a los trabajadores se encuentran siempre presentes en mayor o menor medida, pero sólo cuando superan determinados valores pueden perjudicar su salud. Factores Físicos Más Frecuentes Ruido Se puede definir como un sonido no deseado y molesto, una sensación sonora desagradable que en determinadas situaciones pueden causar alteraciones físicas y psíquicas. La exposición a altos niveles de ruido de forma prolongada es causa de deterioro del oído, produciendo una pérdida de audición. Puede afectar también al sistema circulatorio, a los órganos digestivos, al ritmo respiratorio, provocar trastornos del sueño, cansancio, etc. Todos estos trastornos disminuyen la capacidad de alerta del individuo y pueden ser, en consecuencia, causa de accidentes. En otros casos el ruido puede afectar a la conducta o producir una sordera temporal, pero que en cualquier caso resulta perjudicial para las personas que lo sufren. Se encuentra presente en máquinas como prensas, martillos neumáticos o amoladoras.
  • 4. Agentes Físicos 4 Vibraciones Una vibración consiste en un movimiento alternativo de vaivén de las partículas de un cuerpo de un lado al otro de una posición inicial de equilibrio. Sus efectos se producen como consecuencia de una transferencia de energía mecánica al cuerpo humano que actúa como receptor de la misma. Las vibraciones pueden provocar disconfort, fatiga o trastornos psicológicos de distinto tipo, pudiendo ocasionar enfermedades y lesiones en diferentes órganos del cuerpo humano. Se encuentran presentes en máquinas en movimiento, como tractores, martillos neumáticos o carretillas elevadoras. Mala Iluminación Provoca errores, fatiga visual, dolor de cabeza y accidentes, al contrario una iluminación adecuada produce confort y calidad en el trabajo. Ambiente Térmico La temperatura interna del cuerpo humano es de aproximadamente 37°C. Una temperatura extremadamente fría o caliente no es favorable para la salud y aún menos para trabajar. La exposición de los trabajadores a temperaturas elevadas puede ocasionar efectos fisiológicos directos sobre la salud de los mismos, como puede ser deshidratación o resfriados, pero también puede afectar a su conducta, aumentando la fatiga y los posibles errores que pueda cometer, lo cuál podría provocar daños a terceros, productos o instalaciones. Por otro lado, un exceso de frío produce también una disminución de la atención pudiendo provocar accidentes, además de los problemas de hipotermia y congelación. Este tipo de ambientes hostiles se dan con frecuencia en hornos, cámaras frigoríficas y trabajos a la intemperie.
  • 5. Agentes Físicos 5 Radiaciones La radiación consiste en la propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacío o de un medio material. Tipos No ionizantes ■ Pueden producir enrojecimiento de la piel, quemaduras y lesiones oculares. ■ Se encuentran presentes en operaciones de soldeo, cercanas a fuentes de calor, trabajos a la intemperie. Ionizantes ■ Radiaciones con energía suficiente para ionizar la materia, extrayendo los electrones de sus estados ligados al átomo. ■ Pueden producir tumores y alteraciones en el material genético. Éstas se encuentran frecuentemente en actividades nucleares o en centros sanitarios.
  • 6. Agentes Físicos 6 RUIDO Se puede definir el sonido como “toda variación de presión que es capaz de ser percibida por nuestro órgano de audición”, pero se entiende por ruido, “una perturbación sonora compuesta por un conjunto de sonidos de amplitud, frecuencia y fases variables, cuya mezcla suele provocar una sensación sonora desagradable al oído”. El oído humano reconoce los sonidos de frecuencia comprendida aproximadamente entre 20 y 20.000 Hz. Sonidos No Detectados por el Oído Humano Ultrasonidos Sonidos con una frecuencia superior a 20.000 Hz. Infrasonidos Sonidos con una frecuencia inferior a 20 Hz. Parámetros que Definen el Sonido El sonido está caracterizado por una serie de parámetros que se definen a continuación.
  • 7. Agentes Físicos 7 Amplitud Presión máxima o mínima. Se representa por A. Velocidad de Propagación ■ La velocidad de propagación del sonido depende del medio en el que tenga lugar (densidad y elasticidad). ■ Donde: − C: velocidad de propagación del sonido, m/s. − Co: velocidad de propagación del sonido a una temperatura de aire de 0ºC (273 K). − T: temperatura absoluta, K. Longitud de Onda Distancia entre dos crestas o senos sucesivos. Se representa con la letra λ. Donde f es la frecuencia (ciclos/s, Hz). Frecuencia Número de variaciones completas de presión o ciclos por segundo. Se mide en s-1 o Hertzios (Hz) y se representa por f. Se relaciona con la longitud de onda por la expresión: Donde C es la velocidad de propagación del sonido. Período Tiempo entre picos o senos sucesivos. Se mide en segundos y se representa por la letra T. Se puede expresar el período como la inversa de la frecuencia:
  • 8. Agentes Físicos 8 Parámetros de Cuantificación del Ruido Los parámetros fundamentales de cuantificación del ruido son: Presión Acústica P ■ Variación de la presión producida por el sonido sobre la presión atmosférica. ■ Depende de la naturaleza de la fuente emisora y de la distancia entre la fuente emisora y la fuente receptora. ■ Se mide en Pascales, Pa. Valor Eficaz de la Presión Prms ■ Es proporcional a la energía sonora transmitida. ■ Se utiliza para cuantificar el sonido a través de: Potencia Acústica W ■ Energía sonora transmitida por unidad de tiempo. Se relaciona con la presión acústica por la siguiente expresión: Donde: ■ ρ es la densidad del medio. ■ c la velocidad del sonido. ■ 4πr2 es el área de una superficie esférica centrada en la fuente omnidireccional. ■ W la potencia acústica. ■ Se mide en vatios, w. ■ Depende exclusivamente de las características de la fuente emisora. Es el criterio idóneo para comparar varias fuentes sonoras. Intensidad Acústica I ■ Energía transmitida por una fuente sonora por unidad de tiempo y unidad de superficie que atraviesa. Se mide en w/m2 . ■ Se calcula mediante la siguiente fórmula:
  • 9. Agentes Físicos 9 Nivel Sonoro. El Decibelio El intervalo de presiones acústicas asociado al intervalo de frecuencias que reconoce el oído humano es muy amplio, aproximadamente de 20·10-6 a 200 Pa. Para evitar la complejidad que supone el uso de un intervalo tan amplio se utiliza otra escala para medir el sonido, el Decibelio (dB) que se define como: Nivel de Presión Acústica Se define el Nivel de Presión Acústica, NPA, cuya unidad es el decibelio, dB como: Donde: ■ PEF es la Presión eficaz (Pa). ■ PEFoes la Presión de Referencia (2·10-5 Pa). Legislación en Materia de Ruido En cuanto a la contaminación acústica en los puestos de trabajo, el Real Decreto 286/2006, de 10 de marzo, sobre la protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido, establece los niveles máximos permisibles a los que un trabajador puede estar expuesto. Este RD deroga el anterior RD 1316/1989, de 27 de octubre. No es de aplicación a los sectores de la música y el ocio. Define: ■ Valores límite de exposición a los que pueden estar sometidos los trabajadores: LAeq,d = 87 dB(A) y Lpico = 140 dB(C). ■ Valores superiores de exposición que dan lugar a una acción: LAeq,d = 85 dB(A) y Lpico = 137 dB (C). ■ Valores inferiores de exposición que dan lugar a una acción: LAeq,d = 80 dB(A) y Lpico = 135 dB(C).
  • 10. Agentes Físicos 10 LAeq,d Es el nivel medio de ruido en dB(A) al que está sometido un trabajador durante su jornada de trabajo. Lpico Es el nivel máximo de ruido en dB a que está sometido un trabajador. En función de estos valores habrá que llevar a cabo diferentes acciones preventivas. De 80 a 85 dB(A) > 85 dB(A) Plan General Los riesgos derivados de la exposición al ruido deberán eliminarse en su origen o reducirse al nivel más bajo posible. Información a los Trabajadores ■ Naturaleza de los riesgos a los que están expuestos. ■ Medidas a adoptar. ■ Valores límite de exposición y los valores de exposición que dan lugar a una acción. ■ Resultados de las evaluaciones y mediciones del ruido junto con una explicación y riesgos potenciales. ■ Utilización y mantenimiento de protectores y su capacidad de atenuación. ■ Forma de detectar lesiones auditivas. ■ Circunstancias en las que tienen derecho a una vigilancia de la salud y la finalidad de ésta. ■ Las prácticas de trabajo seguras. Evaluaciones Periódicas Cada 3 años Anual Control de la Audición Cada 5 años Cada 3 años Suministro de Protectores Auditivos El empresario debe: ■ Poner a disposición de los trabajadores protectores auditivos individuales. ■ Fomentar el uso de EPI´s. Uso obligatorio de protectores auditivos excepto cuando la utilización de los mismos pueda causar un riesgo mayor para la seguridad o la salud. Los lugares de trabajo en los que se superen los 85 dB(A) deben estar señalizados y cuando sea viable se delimitarán y limitará el acceso a ellos. Además, en los puestos que superan los 85 dB(A), se debe desarrollar un programa de medidas técnicas destinado a disminuir la generación o la propagación del ruido, u organizativas encaminadas a reducir la exposición de los trabajadores al ruido.
  • 11. Agentes Físicos 11 En ningún caso la exposición del trabajador deberá sobrepasar los valores límite de exposición (87 dB(A)). Efectos del Ruido en el Hombre Cuando se habla de los efectos producidos por el ambiente ruidoso normalmente sólo se consideran aquellos efectos que alcanzan la pérdida de la capacidad auditiva en la comunicación oral, situación que ocurre como consecuencia de sorderas originadas tanto en ambientes laborales como extralaborales. Factores Influyentes en el Tamaño de los Efectos del Ruido Extrínsecos Intrínsecos ■ Características del ruido: − Presión sonora. − Frecuencia. ■ Tiempo de exposición. ■ Características propias a la persona expuesta. Efectos del Ruido Auditivos ■ Enmascaramiento: la percepción oral queda lesionada como consecuencia del ruido de fondo. ■ Fatiga: disminución temporal de la sensación auditiva. ■ Hipoacusia: primer escalón de pérdida permanente. Se produce en las frecuencias 4000-6000 Hz con independencia de las frecuencias predominantes del sonido al que se produce la exposición. ■ Sordera profesional: pérdida permanente que alcanza 25 dB como media en las frecuencias convencionales. Extra-auditivos ■ Disfunciones cardio-respiratorias. ■ Variaciones en el metabolismo y sistema endocrino. ■ Efectos en el sistema nervioso central y periférico.
  • 12. Agentes Físicos 12 APORTACIONES DE PELÍCULA Acceso a través de la Plataforma La hipoacusia ocupacional, es un daño del oído interno, causado por la exposición a la vibración o ruido, y que es considerada enfermedad profesional. Los sonidos que están por encima de los 90 dB pueden ocasionar una vibración tan intensa, que pueden lesionar el oído interno, especialmente si son prolongados. A continuación se presenta un extracto de la película “Norma Rae” donde se puede ver como una trabajadora, pierde temporalmente la audición en su trabajo, por la exposición a ruidos muy altos durante un periodo de tiempo prolongado. Norma Rae. Martin Ritt. Estados Unidos, 1979. 20th Century Fox. Medición del Ruido El instrumento más utilizado para la determinación de los niveles sonoros es el sonómetro que mide el nivel global de la presión sonora en dB. También se puede utilizar un dosímetro que es portado por el trabajador y mide el nivel de presión acústica a la que está sometido un trabajador en su puesto de trabajo. Objetivos de la Medición del Ruido ■ Comprobar que un determinado ambiente, área, máquina o equipo no supere el valor sonoro establecido en la normativa. ■ Análisis de frecuencias para ser utilizadas en las técnicas de control del ruido. ■ Obtener información sobre exposiciones al ruido. ■ Determinar la potencia sonora de una máquina.
  • 13. Agentes Físicos 13 Técnicas de Control del Ruido El control del ruido es un problema complejo que hay que abordar para así analizar sus componentes y manipular sobre ellos de tal modo que permita obtener el máximo aprovechamiento con el mínimo costo de inversión y funcionamiento. Control del Ruido Grupo de Actuación Acciones del Control Fuente ■ Proyectando y ejecutando instalaciones correctas. ■ Sustitución de la maquinaria o proceso. ■ Modificación de la maquinaria o proceso. Medio Transmisor ■ Aislamiento de paredes simples. ■ Aislamiento para cierre compuestos. ■ Cierres múltiples. ■ Apantallamiento de la fuente. ■ Cerramiento o blindaje de la fuente. ■ Absorción del ruido. ■ Cabinas acústicas. Receptor Utilización de equipos de protección individual (EPI), como son los protectores auditivos: ■ Orejeras. ■ Tapones.
  • 14. Agentes Físicos 14 VIBRACIONES Las vibraciones se definen como el movimiento oscilante de un cuerpo alrededor de una posición de equilibrio cuando está sometido a un impulso mecánico. Si no se ejerce ninguna fuerza sobre el cuerpo, éste, por lo general, está en reposo y no sale de su posición de equilibrio hasta que una fuerza impulsora actúa sobre él. “Las vibraciones comprenden cualquier movimiento transmitido al cuerpo humano por estructuras sólidas capaz de producir un efecto nocivo o molestia.” OIT Características de las Vibraciones ■ Se producen en trabajos con: − Herramientas portátiles. − Máquinas fijas para machacar. ■ Sus efectos más significativos son del tipo: − Vascular. − Osteomuscular. − Neurológico. ■ Se asocia con la exposición al ruido, pues ambos son movimientos oscilatorios pero sus efectos son distintos. Clasificación de las Vibraciones Las vibraciones se pueden clasificar según los efectos que tienen sobre el organismo en función de su frecuencia: Categorías de las Vibraciones Efectos Principales Muy Baja Frecuencia (<2 Hz) Mareos, náuseas. Baja Frecuencia (2 - 40 Hz) Afecciones osteoarticulares. Alta Frecuencia (40 - 1000 Hz) Daños angioneuróticos.
  • 15. Agentes Físicos 15 Las vibraciones son transmitidas esencialmente a las manos y por las manos, pero se transmiten a todo el cuerpo, afectando a la columna vertebral y otros órganos del tórax y abdomen. Según el modo de contacto entre el objeto vibrante y el cuerpo, la exposición a vibraciones se divide en dos grupos: Vibraciones Mano- Brazo ■ Punto de contacto: la mano. ■ Efectos: problemas vasculares, de articulaciones, nerviosos y musculares. El efecto más conocido es el síndrome de Reynaud o “dedo blanco”: hormigueo de los dedos, sensación de frío y color blanquecino de los dedos. ■ Magnitud de la transmisión: dependerá de las características de la vibración y de la forma de desarrollar el trabajo. Vibraciones de Cuerpo Entero ■ Punto de contacto: superficies de apoyo del cuerpo con sistemas o elementos vibrantes. Según la posición: − Sentado: espalda y glúteos. − De pie: pies. − En posición horizontal: espalda, cabeza y piernas. ■ Efectos: traumatismos de la columna vertebral y otros, como dolores abdominales, mareos, falta de sueño, etc. ■ Magnitud de la transmisión: dependerá de la postura de trabajo y la sensibilidad del individuo.
  • 16. Agentes Físicos 16 Medición y Evaluación de las Vibraciones El equipo de medida empleado para la determinación de las vibraciones es el vibrómetro, cuya estructura es muy semejante a la de un sonómetro, como se puede ver en el siguiente esquema: A la hora de realizar las mediciones y la valoración de los resultados se seguirán, en función del tipo de transmisión de la vibración, distintas normas de aplicación. Vibraciones Mano-Brazo Vibraciones Cuerpo Entero Medición El muestreo utilizado se realiza en base a la norma ISO 5349. El muestreo utilizado se realiza en base a la norma ISO 2631. Se comparan los valores obtenidos con los valores de referencia establecidos en el RD 1311/2005 “Protección de la salud y la seguridad de los trabajadores frente a riesgos derivados o que puedan derivarse de la exposición a vibraciones mecánicas”. Valoración Valor de exposición diaria normalizado para un periodo de referencia de ocho horas: ■ Límite: 5 m/s2 . ■ Da lugar a una acción: 2,5 m/s2 . Valor de exposición diaria normalizado para un periodo de referencia de ocho horas: ■ Límite: 1,15 m/s2 . ■ Da lugar a una acción: 0,5 m/s2 . Control y Prevención de las Vibraciones Para prevenir los efectos de las vibraciones en el cuerpo humano se puede actuar mediante medidas de tipo:
  • 17. Agentes Físicos 17 Administrativo Disminución del tiempo diario de exposición. Medidas ■ Organización del trabajo. ■ Establecimiento de pausas. ■ Rotación de puestos. ■ Modificación de las secuencias de montaje. Técnico Disminución de la intensidad que se transmite al cuerpo humano. Grupo de Actuación Medidas Fuente ■ Conseguir intensidad de vibración tolerable, mediante diseño ergonómico de asientos y empuñaduras. ■ Modificación de máquinas. ■ Automatización y uso de mando a distancia. ■ Diseño de máquinas y herramientas más seguras. ■ Reducción de los parámetros vibratorios de los focos de vibración. ■ Mantener las herramientas y las máquinas en buenas condiciones de uso. Medio de Transmisión Uso de aislantes de vibración. Receptor Uso de EPI: ■ Guantes. ■ Cinturón. ■ Botas.
  • 18. Agentes Físicos 18 AMBIENTE TÉRMICO El cuerpo humano dispone de un sistema termorregulador, mediante el cual su temperatura se mantiene prácticamente constante por su balance entre la producción interna de calor y su eliminación al medio ambiente. El balance de calor del cuerpo humano viene dado por la expresión: ACUMULACIÓN = METABOLISMO - PÉRDIDAS Para que el desequilibrio no se produzca, para tiempos largos de exposición, la acumulación debe ser nula. Mecanismo de Intercambio de Calor La eliminación de calor producido por el cuerpo humano al medio ambiente tiene lugar según las leyes físicas de intercambio de calor: La ecuación de balance térmico se expresa como: M = ± C ± R - E ■ M: calor producido por el metabolismo. ■ C: calor intercambiado por convección. ■ R: calor intercambiado por radiación. ■ E: calor cedido por evaporación. Convención Intercambio de calor entre una superficie y un fluido o entre dos fluidos. Radiación Transmisión de la energía a través del espacio por medio de ondas electromagnéticas. Evaporización Cambio de estado de un líquido a vapor y su posterior difusión en estado gaseoso en el ambiente. La producción de calor del cuerpo se establece como la suma de dos parámetros:
  • 19. Agentes Físicos 19 Metabolismo Basal ■ Calor generado por el organismo humano para mantener sus funciones vitales. ■ El cálculo se realiza con distintos métodos, todos ellos basados en una serie de factores: edad, peso, estatura y sexo. − Método de Lehman: suma de los términos A y B que se obtienen de una serie de gráficas. − Método de Boothby-Berkson-Dunn: el cálculo se realiza a partir de los valores de una tabla y el cálculo de la superficie cutánea mediante la fórmula de Dubois. Metabolismo del Trabajo ■ Calor producido por la actividad desarrollada. ■ Existen dos métodos para calcular el metabolismo de trabajo: − Por descomposición de la tarea. − Evaluación por analogía de una actividad similar. Evaluación de Ambientes Térmicos De entre todos los métodos empleados se van a destacar aquellos que se consideran mejores y más efectivos para el técnico de prevención: ■ Método de la Temperatura Efectiva. ■ Método de Fanger. ■ Métodos del Índice WBGT. De aplicación en ambientes con riesgo térmico severo. Método de la Temperatura Efectiva Concepto Temperatura del aire saturado con ligero movimiento que produce en la persona expuesta la misma sensación que las condiciones ambientales de la exposición. Zonas de Confort ■ Humedad: 70% - 30%. ■ Verano: 17.2 ºC - 21.5 ºC. ■ Invierno: 18.8 ºC - 23.8 ºC.
  • 20. Agentes Físicos 20 Valores Máximos Recomendados ■ Verano: − Actividad ligera……………………….30 ºC. − Actividad moderada………………... 27 ºC. ■ Invierno: − Actividad ligera o moderada………... 24 ºC. Limitaciones de Aplicación ■ Que el calor transmitido por radiación sea nulo o poco elevado. ■ Que las personas se encuentren normalmente vestidas. ■ Que la actividad física desarrollada sea ligera o moderada.
  • 21. Agentes Físicos 21 Diagrama ■ Se realizaron estudios considerando las condiciones de reposo corporal o una actividad en posición sentado, en ausencia del factor de radiación y con la presencia de corriente de aire ligera y continua. ■ Para hallar la temperatura efectiva se tienen que realizar las siguientes etapas: − Medir la temperatura húmeda y situar en la escala correspondiente. − Unir el valor anterior con la temperatura seca medida. Dará una línea que une los valores de ambas temperaturas que corta la parte central de la gráfica. − Buscar la intersección entre la velocidad del viento y la recta trazada. − En el punto de intersección, seguir la línea oblicua hacia arriba si es verano, o hacia abajo si es invierno. − Interpretar el resultado obtenido.
  • 22. Agentes Físicos 22 Método Fanger Situación de Confort Situación de equilibrio térmico. Variables de la Ecuación de Confort ■ Características del vestido: aislamiento y área total. ■ Características de carga energética del trabajo: producción energética metabólica total y velocidad del aire. ■ Características del ambiente: temperatura seca, temperatura radiante media, presión parcial del agua en el aire y velocidad del aire. Índice de Valor Medio ■ Para la valoración de los ambientes se utiliza la escala numérica de sensación. ■ El IVM será el valor medio obtenido de las calificaciones realizadas por el total de personas del grupo bajo estudio. Escala Numérica de Sensación Muy frío ………………………………………………………-3 Frío ……………………………………………………....-2 Ligeramente frío ……………………………………………-1 Neutro, confortable ………………………………………… 0 Ligeramente caluroso ……………………………………… 1 Caluroso …………………………………………………… 2 Muy caluroso………………………………………………… 3 Índice de Insatisfacción ■ Sirve para conocer la proporción de personas satisfechas-insatisfechas con el ambiente estudiado en función del IVM. ■ Permite tomar decisiones en cuanto a la temperatura, velocidad del aire y tipo de ropas a recomendar para alcanzar el mayor número de personas satisfechas. ■ Se demuestra que el mejor resultado posible comporta la insatisfacción del 5% del grupo como mínimo.
  • 23. Agentes Físicos 23 Índice WBGT Objetivo ■ Evitar que la temperatura corporal para un trabajador aclimatado y vestido completamente, no sea superior a los 38 ºC. ■ Técnica más simple para la evaluación de los ambientes. Índice WBGT ■ Para interiores o exteriores sin carga solar: ■ Para exteriores con carga solar: Parámetros TH Temperatura húmeda, temperatura natural de termómetro de bulbo húmedo, termómetro sin ventilación y sin apantallar las posibles radiaciones que reciba. TS Temperatura seca, temperatura de termómetro de bulbo seco. TG Temperatura de globo, temperatura de termómetro de globo.
  • 24. Agentes Físicos 24 Determinación Ciclos Trabajo- Descanso ■ El valor del índice calculado se enfrenta al valor resultante del metabolismo total para el trabajador en estudio resultando la calificación del puesto de trabajo mediante el gráfico que se acompaña. 30 25 20 100 200 300 400 500 70 75 80 85 90 Leyenda Continuo 75% de trabajo, 25% de descanso cada hora 50% de trabajo, 50% de descanso cada hora 25% de trabajo, 75% de descanso cada hora Kcal/hora ■ En el caso de ambientes heterogéneos, es necesario determinar los valores de la radiación a las alturas: Control de Ambientes Térmicos El control de los ambientes térmicos se alcanza actuando sobre los factores ambientales y personales que intervienen en el balance térmico. La actuación se debe centrar en tres puntos concretos: Fuente de Emisión ■ Control de la fuente de calor. ■ Aislamiento. ■ Protección contra la radiación. ■ Automatización de procesos. ■ Pintado de superficies. ■ Extracciones localizadas.
  • 25. Agentes Físicos 25 Medio de Propagación ■ Locales amplios y bien acondicionados: − Movimiento del aire. − Ventilación general: natural o forzada. ■ Alejamiento del foco de calor. Receptor ■ Aislar al operario, creando una atmósfera para él: − Cabina con aire acondicionado. − Corriente de aire sobre el operario del orden de 2 m/s. ■ Regulación de los periodos de actividad y descanso. ■ Control médico. ■ Protección personal: con ropa apropiada altamente aislante.
  • 26. Agentes Físicos 26 RADIACIONES NO IONIZANTES Las radiaciones no ionizantes no producen fenómenos de ionización, es decir, la energía que emiten no es lo bastante fuerte como para producir efectos en los átomos de la materia sobre la que inciden. Este tipo de radiaciones están poco regladas. Son menos peligrosas puesto que no son capaces de ionizar las células del cuerpo humano, aunque producen efectos sobre las personas. Su uso ha aumentado bastante en los últimos años, tanto en la industria como en la vida cotidiana debido a la gran cantidad de aparatos que usan o emiten este tipo de radiación. Características de Radiaciones no Ionizantes ■ Poder energético menor que las ionizantes. ■ Capaces de excitar la rotación y la vibración de las moléculas. ■ Su energía no es suficiente para ionizar los átomos de la materia. Prevención y Protección contra Radiaciones no Ionizantes ■ Aumentar la distancia entre el foco emisor y el individuo. ■ Apantallar con un material apropiado la radiación. ■ Blindaje del foco emisor en el momento de la fabricación. ■ Reducción del tiempo de exposición. ■ Señalización de las zonas de exposición. ■ Uso de protecciones individuales: − Pantalla facial. − Gafas. − Ropa de trabajo adecuada. ■ Realizar mediciones de los niveles de radiación. ■ Realizar reconocimientos médicos específicos y periódicos al personal expuesto.
  • 27. Agentes Físicos 27 Tipos de Radiaciones no Ionizantes Las radiaciones no ionizantes se clasifican en función de su longitud de onda. Radiaciones Ultravioleta La mayor fuente de emisión es el sol. Las actividades industriales que las emiten son, sobre todo, la soldadura al arco y plasma, las fotocopiadoras, las lámparas germicidas para desinfectar y las lámparas de mercurio usadas en reacciones fotoquímicas. ■ Efectos: − Afecciones de la piel: enrojecimientos, quemaduras e incluso cáncer. − Ojos: conjuntivitis. ■ EPI: − Gafas. − Protectores faciales. − Ropas protectoras. Radiaciones Infrarrojas Casi invisibles y con gran aporte calorífico. Presentes en operaciones industriales como hornos de secado, hornos de fusión. Cualquier material próximo al punto de fusión es una fuente de infrarrojos. ■ Efectos: lesiones de retina o producir opacidad en el cristalino, cataratas, lesiones cornéales, eritemas, quemaduras, etc. ■ EPI: uso de apantallamientos y gafas protectoras.
  • 28. Agentes Físicos 28 Microondas Su principal característica es su poder calorífico y de ahí precisamente el riesgo. Se usan ampliamente en actividades industriales, en medicina y en la vida cotidiana. ■ Efectos: − Térmicos: afectan al sistema nervioso, cardiovascular, ojos, audición, aparato reproductor masculino. − No térmicos: han sido menos estudiados, pero cabe mencionar las alteraciones genéticas por su interferencia en la transmisión de la información genética. Láser Haz de luz (radiación visible, infrarroja o ultravioleta) que se caracteriza por ser monocromático, coherente y direccional. Puede alcanzar un gran poder destructor de los tejidos al proyectar una gran cantidad de energías sobre zonas muy pequeñas. Se utilizan ampliamente en equipos de soldadura, comunicaciones por fibra óptica, sonidos, artes gráficas, cirugía, etc. ■ Efectos: se concentran en los ojos y en la piel. Luz Visible Se encuentra entre las radiaciones infrarrojas y las ultravioletas. ■ Efectos: relacionados con la vista y en especial con la retina.
  • 29. Agentes Físicos 29 RADIACIONES IONIZANTES Las radiaciones ionizantes son aquellas radiaciones con energía suficiente para ionizar la materia. Pueden provenir de sustancias radiactivas, que emiten dichas radiaciones de forma espontánea, o de generadores artificiales, tales como los generadores de rayos x o los aceleradores de partículas. Tipos de Radiaciones Ionizantes Constituidas por Partículas Cargadas ■ Rayos α. ■ Rayos β. Electromagnéticas ■ Rayos γ. ■ Rayos x. Para la medida de estas radiaciones se utiliza el radiómetro y el dosímetro de radiación. Estos aparatos son llevados por el trabajador durante todo el tiempo de exposición, pudiendo comprobar en cada momento la cantidad acumulada de radiación. Las unidades de medida de la radiación son algo complejas, y las tradicionales se han unido a las equivalentes en el sistema internacional de unidades (SI). Tradicionales Sistema Internacional ■ Roentgen: utilizada para la medición de la exposición a la radiación. ■ RAD: unidad de medida de la dosis de radiación absorbida. ■ REM: unidad utilizada para cuantificar los efectos biológicos de la radiación. ■ Gray (Gy): medida de la dosis absorbida, no describe los efectos biológicos de la radiación. Un Gy es equivalente a 100 rads. Se mide en J/kg. ■ Sievert: (Sv): utilizada para describir la dosis equivalente en efectos biológicos. Es equivalente a 100 rem. Se mide en J/kg.
  • 30. Agentes Físicos 30 Factores Radiobiológicos Los efectos radiobiológicos derivados de las radiaciones son debidos a una transferencia de la energía del rayo a la materia viva. Factores Radiobiológicos ■ Naturaleza de la radiación. ■ Naturaleza de los tejidos. ■ Factor de distribución. ■ Factor tiempo. Efectos Biológicos La exposición de los tejidos vivos a las radiaciones ocasiona daños a las células. Cada día es más frecuente la exposición a elementos radiactivos, por la creciente importancia del uso de la energía nuclear. Los efectos de las radiaciones ionizantes en un organismo se pueden dividir generalmente en tres tipos: Agudos ■ Dependen de: − Dosis recibida. − Volumen y tipo de tejido. Ejemplo: Vómitos, síntomas intestinales, caída de cabello. Tardíos ■ Consecuencia de exposiciones a dosis bajas que se dan repetidamente durante un largo periodo de la vida profesional. ■ Aparecen varios años después de haberse sometido a radiaciones. Ejemplos: cataratas, leucemia y otras formas de cáncer. Genéticos ■ Producen cambios en las células reproductoras. ■ Notables efectos en las siguientes generaciones.
  • 31. Agentes Físicos 31 Protección Contra las Radiaciones Ionizantes Las exposiciones a este tipo de radiaciones pueden ocasionar daños muy graves e irreversibles para la salud, manteniendo una relación directa y proporcional con la dosis recibida, entre ellos la generación de cáncer y las malformaciones genéticas. Hay que extremar las precauciones y disponer de adecuadas medidas de prevención cuando se trabaja con este tipo de radiaciones. La principal es señalizar y delimitar la zona, debiendo constituir una unidad aparte. Si se tiene que trabajar con ella, hay que: ■ Reducir al máximo el tiempo de exposición. ■ Alejarse lo más posible del foco de emisión. ■ Utilizar pantallas y blindajes. En la protección contra las radiaciones hay que partir de la distinción entre radiaciones externas y radiaciones internas, pero siempre basándose en una serie de principios: ■ Identificación del peligro: incluye la determinación de la fuente y el conocimiento de todas sus características, las del local o área en la que se encuentra. ■ Dividir en diferentes zonas, las áreas en las que exista riesgo por radiaciones, en relación con el nivel de riesgo posible que exista. ■ Realizar de forma periódica y obligatoria, controles físicos y médicos, a las instalaciones y a los trabajadores. Protección contra las Radiaciones Ionizantes Radiaciones Externas Radiaciones Internas ■ Alejamiento de la fuente. ■ Reducción del tiempo de exposición. ■ Pantallas protectoras. ■ Prendas y material de protección personal. ■ Señalización. ■ Aseo del cuerpo. ■ En caso de cortaduras y quemaduras, lavar lo más rápidamente posible y prevenir al servicio médico. ■ Confinamiento de las sustancias radiactivas. ■ Aislamiento y protección de las superficies de los locales, mobiliario y objetos. ■ Control para la detección radiactiva en locales, personal y prendas de trabajo. ■ Protección individualizada de los trabajadores. ■ Descontaminación.
  • 32. Agentes Físicos 32 Prevención Médica ■ Reconocimientos obligados en el comienzo de la actividad del trabajador. ■ Reconocimientos periódicos predeterminados y específicos en los puestos de trabajo con riesgo claro de contaminación radiactiva. ■ Control específico de adaptación de la persona al puesto de trabajo en relación a sus condiciones de salud. ■ Seguimiento de una higiene personal rigurosa, con descontaminación individual a la finalización de la jornada laboral.