Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

1 hoisting system

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Próximo SlideShare
Hoisting System
Hoisting System
Cargando en…3
×

Eche un vistazo a continuación

1 de 42 Anuncio

Más Contenido Relacionado

Presentaciones para usted (20)

A los espectadores también les gustó (20)

Anuncio

Similares a 1 hoisting system (20)

Más reciente (20)

Anuncio

1 hoisting system

  1. 1. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Drilling Engineering – PE 311 Rotary Drilling System
  2. 2. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Instructor: Tan Nguyen Class: Tuesday & Thursday Time: 11:00 AM - 12:15 PM Room: WIER 129 Office: MSEC 372 Office Hours: Tuesday & Thursday 2:00 – 4:00 pm Phone: ext-5483 E-mail: tcnguyen@nmt.edu General Information
  3. 3. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen 1. Applied Drilling Engineering – Adam T. Bourgoyne – SPE Textbook OR 2. Fundamentals of Drilling Engineering – Robert Mitchell & Stefan Miska – SPE Textbook. 3. Class notes 4. PowerPoint slides Required Materials
  4. 4. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Homework: 20% Quizzes: 20% Midterm exam: 30% Final: 30% Grading
  5. 5. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen http://www.youtube.com/watch?v=DniNIvE69SE&feature=related Movie
  6. 6. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Main Rig Components
  7. 7. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen 1. Power System 2. Hoisting System 3. Fluid Circulating System 4. Rotary System 5. Well Control System 6. Well Monitoring System Main Rig Components
  8. 8. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen 1. Rotary drilling 2. Drilling fluids 3. Drilling hydraulics 4. Drilling bits 5. Directional drilling 6. Formation and fracture pressure 7. Cements 8. Casing design 9. Tubing design 10. Other topics: under balance drilling, cutting transport, etc. Main Topics in Drilling
  9. 9. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen 1. Complete or obtain seismic, log, scouting information or other data. 2. Lease the land or obtain concession. 3. Calculate reserves or estimate from best data available. 4. If reserve estimates show payout, proceed with well. 5. Obtain permits from conservation/national authority. 6. Prepare drilling and completion program. 7. Ask for bids on footage, day work, or combination from selected drilling contractors based on drilling program. 8. If necessary, modify program to fit selected contractor equipment. Steps To Drill an Oil/Gas Well
  10. 10. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen 9. Construct road, location/platforms and other marine equipment necessary for access to site. 10. Gather all personnel concerned for meeting prior to commencing drilling (pre- spud meeting) 11. If necessary, further modify program. 12. Drill well. 13. Move off contractor if workover unit is to complete the well. 14. Complete well. 15. Install surface facilities. 16. Analysis of operations with concerned personnel. Steps To Drill an Oil/Gas Well
  11. 11. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen A drilling rig is a machine which creates holes (usually called boreholes) in the ground. Drilling rigs can be massive structures housing equipment used to drill water wells, oil wells, or natural gas wells, or they can be small enough to be moved manually by one person. Rotary table drive: rotation is achieved by turning the kelley at the drill floor. Top drive: rotation and circulation is done at the top of the drill string, on a motor that moves in a track along the derrick. Drilling Rig
  12. 12. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Drilling Rig Water well drilling rig Drilling rig preparing rock blasting
  13. 13. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Drilling Rig Oil drilling rig onshore Rotary table drive Oil drilling rig onshore Top drive
  14. 14. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Drilling Rig Rotary Table drive Drilling Top Drive Drilling
  15. 15. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen An advantage of a top drive is that it allows the drilling rig to drill longer sections of a stand of drill pipe. A rotary table type rig can only drill 30’ sections of drill pipe while a top drive can drill 90-feet drillpipe. Therefore, there are fewer connections of drill pipe and hence improving time efficiency. Drilling Rig
  16. 16. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen While the bit cuts the rock at the bottom of the hole, surface pumps are forcing drilling fluids down the hole through the inside of the drill pipe and out the bit. This fluid lubricates and removes cuttings. The fluid (with the cuttings) then flows out the center of the drill bit and is forced back up the outside of the drill pipe onto the surface of the ground where it is cleaned of debris and pumped back down the hole. This is an endless cycle that is maintained as long as the drill bit is turning in the hole. In generally, there are four main systems of a rotary drilling process including: Rig power system, hoisting system, drill string components, and circulating system. Drilling Rig
  17. 17. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen The power generated by the power system is used principally for five main operations: (1) rotating, (2) hosting, (3) drilling fluid circulation, (4) rig lighting system, and (5) hydraulic systems. However, most of the generated power is consumed by the hoisting and fluid circulation systems. In most cases these two systems are not used simultaneously, so the same engines can perform both functions. Rig power system performance characteristics generally are stated in terms of output hoursepower, torque, and fuel consumption for various engine speeds. The following equations perform various design calculations: Rig Power System
  18. 18. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Rig Power System
  19. 19. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Rig Power System P – shaft power developed by engine, hp Qi – heat energy consumed by the engine, hp Et – overall power system efficiency ω – angular velocity of the shaft, rad/min; ω = 2pN with N is the shaft speed in RPM T – output torque, ft-lbf Wf – volumetric fuel consumption, gal/hour H – heating value of diesel, 19,000 BTU/lbm ρd – density of diesel, 7.2 lbm/gal 33,000 – conversion factor, ft-lbf/min/hp (1) (2) (3)
  20. 20. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Rig Power System Fuel Type Density (lbm/gal) Heating Value (Btu/lbm) diesel gasoline butane methane 7.2 6.6 4.7 --- 19,000 20,000 21,000 24,000
  21. 21. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Example 1.1. A diesel engine gives an output torque of 1740 ft-lbf at an engine speed of 1,200 rpm. If the fuel consumption rate was 31.5 gal/hr, what is the output power and overall efficiency of the engine. Solution: Angular velocity: ω = 2πN = 2π(1200) = 7,539.84 rad/min The power output: Heat energy consumed by the engine: Overal efficiency: Rig Power System
  22. 22. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen The function of the hoisting system is to get the necessary equipment in and out of the hole as rapidly as is economically possible. The principal items of equipment that are used in the hole are drillstring, casing, and miscellaneous instruments such as logging and hole deviation instruments. The major components of the hoisting system are: (1)the derrick, (2)the block and tackle system, (3)the drawworks, (4)miscellaneous hoisting equipment such as hooks, elevators, and weight indicator. Hoisting System
  23. 23. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen The function of the derrick is to provide the vertical height required to raise sections of pipe from or lower them into the hole. Derricks are rated according to their height and their ability to withstand compressive and wind loads. The greater the height of the derrick, the longer the section of pipe that can be handled. The most commonly used drillpipe is between 27-30 feet. To provide working space below the derrick floor for pressure control valves called blowout preventer, the derrick usually is elevated above the ground level by placement on a substructure. Derrick
  24. 24. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen http://www.youtube.com/watch?v=5f3STxhzICQ http://www.osha.gov/SLTC/etools/oilandgas/drilling/trippingout_in.html# Making a Trip
  25. 25. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Making a Trip Tripping Out Tripping In • Setting Slips • Breaking Out and Setting Back the Kelly • Attaching Elevators to the Elevator Links • Latching Elevators to Pipe • Working on the Monkeyboard • Breaking Out Pipe • Maneuvering Pipe to Racking Area • Elevators raised • Tripping In -- Latching Elevators to Top of Stand • Moving pipe to rotary • Pipe is made up • Slips are pulled • Slips are set • Elevators are unlatched • Process repeated for all stands • Pickup kelly and attach to drill string • Break circulation, and • Resume drilling
  26. 26. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Making a Connection / Tripping In Making a mouse hole connection
  27. 27. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Making a Connection / Tripping In Moving Kelly to Single in Mousehole Stabbing the Pipe Single Added. Ready to Drill
  28. 28. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Tripping Out Use Elevators for tripping Put Kelly in Rathole
  29. 29. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Tripping Out
  30. 30. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Block and tackle is comprised of the crown block, the travelling block, and the drilling line. The principal function of the block and tackle is to provide a mechanical advantage which permits easier handling of large loads. Block and Tackle
  31. 31. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen The mechanical advantage M of a block and tackle is defined as the ratio of the load supported by the traveling block, W, and the load imposed on the drawworks, Ff. Machenical Advantage (4)
  32. 32. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen A pulley transfers a force along a rope without changing its magnitude. In Figure a, there is a force (tension) on the rope that is equal to the weight of the object. This force or tension is the same all along the rope. For this simple pulley system, the force is equal to the weight, as shown in the picture. The mechanical advantage of this system is 1!. In the Figure b, the pulley is moveable. As the rope is pulled up, it can also move up. Now the weight is supported by both the rope end attached to the upper bar and the end held by the person! Each side of the rope is supporting the weight, so each side carries only half the weight. So the force needed to hold up the pulley in this example is 1/2 the weight! Now the mechanical advantage of this system is 2. Pully
  33. 33. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Pully a b c d
  34. 34. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Without friction between the block and the tackle, the mechanical advantage is given by Equation (1.5) tells us the ideal mechanical advantage is equal to the number of lines. For frictionless between the block and tackle, the power efficiency is given by In general, the power efficiency can be calculated Block and Tackle (5) (6) (7)
  35. 35. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen The load applied to the derrick, Fd, is the sum of the hook load, W, the tension in the dead line, Fs, and the tension in the fast line, Ff: The total derrick load is not distributed equally over all four derrick legs. Since the drawworks is located on one side of the derrick floor, the tension in the fast line is distributed over only two of the four legs. Also, the dead line affects only the leg to which it is attached. If E > 0.5, the load on leg A is greatest of all four legs. Since if any leg fails, the entire derrick also fails, it is convenient to define a maximum equivalent derrick load, Fde, which is equal to four times the maximum leg load. Block and Tackle (8)
  36. 36. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Block and Tackle (9) Maximum equivalent derrick load:
  37. 37. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen The drawworks is a complicated mechanical system with many functions: 1. To lift drill string, casing, or tubing string, or to pull in excess of these string loads to free stuck pipe. 2. Provide the braking systems on the hoist drum for lowering drill string, casing string, or tubing string into the borehole. 3. Transmit power from the prime movers to the rotary drive sprocket to drive the rotary table 4. Transmit power to the catheads for breaking out and making up drill string, casing and tubing string. Drawworks
  38. 38. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Drawworks
  39. 39. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Drawworks
  40. 40. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Efficiency Factor, E The input power to the drawworks is calculated by taking into account the efficiency of the chain drives and shafts inside the drawworks. The efficiency factor E is given by the following equation: Where K is sheave and line efficiency per sheave; K = 0.9615 is in common use.
  41. 41. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Example Example 1.2: A rig must hoist a load of 300,000 lbf. The drawworks can provide an input power to the block and tackle system as high as 500 hp. Eight lines are strung between the crown block and traveling block. Calculate: 1. The static tension in the fast line when upward motion is impending 2. The maximum hook horsepower available. 3. The maximum hoisting speed 4. The actual derrick load 5. The maximum equivalent derrick load 6. The derrick efficiency factor
  42. 42. Drilling Engineering – Fall 2012 Prepared by: Tan Nguyen Example 1. The static tension in the fast line when upward motion is impending 2. The maximum hook horsepower available. Ph = Epi = 0.844 x 500 = 420.5 hp 3. The maximum hoisting speed 4. The actual derrick load 5. The maximum equivalent derrick load 6. The derrick efficiency factor

×