12. Resolver sistema de ecuaciones por Gauss 
Editar 0 6… 
En este ejemplo veremos como resolver un sistema de ecuaciones ...
Una vez obtenidos todos estos datos vamos a la creación de nuestro algoritmo. 
Pero este algoritmo tiene un fallo, si al h...
*Aux es una variable auxiliar que tomamos para intercambiar el valor de por el de y viceversa. 
Finalmente introduciendo e...
EJEMPLO DE ALGORITMO PARA ECUACIONES DE SEGUNDO GRADO 
En el siguiente ejemplo se procede a diseñar un algoritmo que permi...
Por lo que para introducirlo en el algoritmo se siguen los siguientes pasos. 
1. Si b2-4ac ≥0, entonces se dan las respect...
b) 
En caso contrario utilizar las fórmulas: 
a) 
b) 
Terminar la condición 
4. Escribir las variables X1 y X2 
DIAGRAMA D...
EJEMPLO DE ALGORITMO PARA EL PRODUCTORIO 
En el siguiente ejemplo se procede a diseñar un algoritmo que permita calcular e...
Si se busca el productorio de los logaritmos neperianos de los n números siendo n=10 por ejemplo. 
Entonces el resultado s...
Próxima SlideShare
Cargando en…5
×

Ecuaciones lineales diagrama de flujo

2.619 visualizaciones

Publicado el

trabajo

Publicado en: Internet
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
2.619
En SlideShare
0
De insertados
0
Número de insertados
2
Acciones
Compartido
0
Descargas
2
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Ecuaciones lineales diagrama de flujo

  1. 1. 12. Resolver sistema de ecuaciones por Gauss Editar 0 6… En este ejemplo veremos como resolver un sistema de ecuaciones por el método de Gauss, supondremos que es un Sistema Compatible Determinado. Denotaremos los coeficientes de las incógnitas con la matriz A, las incógnitas con el vecto , y el vector solución . Para ser un Sistema Compatible Determinado: - m=n - Rango A= Rango de b=n Como probablemente sepáis, el método de Gaus consiste en hacer ceros por debajo de la diagonal principal y una vez hecho, resolver por remonte el sistema. Quedaría así nuestro sistema: Empezamos a resolver por remonte. Para facilitar el proceso, llamaremos tanto a filas como a columnas “n”. Finalmente llegamos a la siguiente conclusión. son todos los coeficientes que se encuentran a la derecha de los , es decir los que van desde hasta . Ahora llamaremos a los coeficientes que van desde hasta . Al ir realizando Gauss, los coeficientes de la derecha de la diagonal principal cambiarán al multiplicar filas para anularlas con otras (excepto la primera fila). Para ello se realizará el siguiente bucle:
  2. 2. Una vez obtenidos todos estos datos vamos a la creación de nuestro algoritmo. Pero este algoritmo tiene un fallo, si al hacer combinaciones lineales nos aparece un cero en la diagonal principal. La solución es permutar esa fila por otra que no tenga ceros en esa columna. Supongamos que nos da un valor nulo y queremos cambiar esa fila por otra en la que es no nulo. Con lo cual, ahora se crearía un nuevo bucle que tendría la siguiente estructura.
  3. 3. *Aux es una variable auxiliar que tomamos para intercambiar el valor de por el de y viceversa. Finalmente introduciendo este último paso (amarillo de fondo) en nuestro algoritmo, quedaría de esta manera:
  4. 4. EJEMPLO DE ALGORITMO PARA ECUACIONES DE SEGUNDO GRADO En el siguiente ejemplo se procede a diseñar un algoritmo que permita calcular las raíces de una ecuación de segundo grado del tipo ax2+bx+c=0 El primer paso en la resolución de un algoritmo consiste en el análisis del problema: Las ecuaciones de segundo grado se resuelven mediante la siguente operación,
  5. 5. Por lo que para introducirlo en el algoritmo se siguen los siguientes pasos. 1. Si b2-4ac ≥0, entonces se dan las respectivas soluciones serán a) 1ª solución b) 2ª solución 1. Pero si por el contrario b2-4ac< 0, entonces se darán estas otras soluciones, sin raíces complejas a) 1ª solución b) 2ª solución 1. Las variables de entrada del algoritmo son: a, b, c (reales) 4. Las variables de salida del algoritmo son: X1 y X2 En el siguiente paso se realizará el diseño del algoritmo primero en pseudocódigo y seguido el diagrama de flujo . PSEUDOCÓDIGO 1. Leer las variables a ,b ,c 2. Calcular d =b2− 4ac 3.Si d ≥0 entonces utilizar las fórmulas: a)
  6. 6. b) En caso contrario utilizar las fórmulas: a) b) Terminar la condición 4. Escribir las variables X1 y X2 DIAGRAMA DE FLUJO
  7. 7. EJEMPLO DE ALGORITMO PARA EL PRODUCTORIO En el siguiente ejemplo se procede a diseñar un algoritmo que permita calcular el productorio de n valores, siendo denominados como ai yendo la “i” desde 1 a n, es decir, los valores de lo n números. Siendo ai =a1, a2, a3 .....ak.....an valores determinados EJEMPLO DEL PRODUCTORIO
  8. 8. Si se busca el productorio de los logaritmos neperianos de los n números siendo n=10 por ejemplo. Entonces el resultado seríai igual a: La diferencia con el sumatorio, es que en vez de sumar los n valores, los multiplica. DIAGRAMA DE FLUJO

×