

Enviar búsqueda

Cargar
Go_ Get iT! .pdf
•
0 recomendaciones•22 vistas

Gagan ChouhanSeguir
Refer this if you are a java developer and want to learn Golang quicklyLeer menos

Leer más
Software

Denunciar
Compartir

Denunciar
Compartir

1 de 43Descargar ahoraDescargar para leer sin conexión

Recomendados
Go Programming language, golang
Go Programming language, golangBasil N G

JavaScript Getting Started
JavaScript Getting StartedHazem Hagrass

Dart workshop
Dart workshopVishnu Suresh

Go. Why it goes
Go. Why it goesSergey Pichkurov

A quick introduction to go
A quick introduction to goDhanush Gopinath

Should i Go there
Should i Go thereShimi Bandiel

Programming basics
Programming basicsBipin Adhikari

Go. why it goes v2
Go. why it goes v2Sergey Pichkurov

Más contenido relacionado
Similar a Go_ Get iT! .pdf
Learning groovy -EU workshop
Learning groovy -EU workshopadam1davis

Jade
Jadesiva ram

The GO programming language
The GO programming languageMarco Sabatini

Golang
GolangFelipe Mamud

Mender.io | Develop embedded applications faster | Comparing C and Golang
Mender.io | Develop embedded applications faster | Comparing C and GolangMender.io

Ruby meets Go
Ruby meets GoNTT Communications Technology Development

04-JS.pptx
04-JS.pptxRazanMazen4

04-JS.pptx
04-JS.pptxRazanMazen4

04-JS.pptx
04-JS.pptxRazanMazen4

Smalltalk, the dynamic language
Smalltalk, the dynamic languagemohamedsamyali

Building parsers in JavaScript
Building parsers in JavaScriptKenneth Geisshirt

Go 1.10 Release Party - PDX Go
Go 1.10 Release Party - PDX GoRodolfo Carvalho

go language- haseeb.pptx
go language- haseeb.pptxArsalanMaqsood1

C programming tutorial for Beginner
C programming tutorial for Beginnersophoeutsen2

02 functions, variables, basic input and output of c++
02 functions, variables, basic input and output of c++Manzoor ALam

Web development basics (Part-3)
Web development basics (Part-3)Rajat Pratap Singh

Not Your Fathers C - C Application Development In 2016
Not Your Fathers C - C Application Development In 2016maiktoepfer

Ready to go
Ready to goAtin Mukherjee

Javascript Programming according to Industry Standards.pptx
Javascript Programming according to Industry Standards.pptxMukundSonaiya1

Extending Node.js using C++
Extending Node.js using C++Kenneth Geisshirt

Similar a Go_ Get iT! .pdf (20)
Learning groovy -EU workshop
Learning groovy -EU workshop

Jade
Jade

The GO programming language
The GO programming language

Golang
Golang

Mender.io | Develop embedded applications faster | Comparing C and Golang
Mender.io | Develop embedded applications faster | Comparing C and Golang

Ruby meets Go
Ruby meets Go

04-JS.pptx
04-JS.pptx

04-JS.pptx
04-JS.pptx

04-JS.pptx
04-JS.pptx

Smalltalk, the dynamic language
Smalltalk, the dynamic language

Building parsers in JavaScript
Building parsers in JavaScript

Go 1.10 Release Party - PDX Go
Go 1.10 Release Party - PDX Go

go language- haseeb.pptx
go language- haseeb.pptx

C programming tutorial for Beginner
C programming tutorial for Beginner

02 functions, variables, basic input and output of c++
02 functions, variables, basic input and output of c++

Web development basics (Part-3)
Web development basics (Part-3)

Not Your Fathers C - C Application Development In 2016
Not Your Fathers C - C Application Development In 2016

Ready to go
Ready to go

Javascript Programming according to Industry Standards.pptx
Javascript Programming according to Industry Standards.pptx

Extending Node.js using C++
Extending Node.js using C++

Último
Consequences and Principles of Software Quality
Consequences and Principles of Software QualityYann-Gaël Guéhéneuc

Alluxio Monthly Webinar | Why a Multi-Cloud Strategy Matters for Your AI Plat...
Alluxio Monthly Webinar | Why a Multi-Cloud Strategy Matters for Your AI Plat...Alluxio, Inc.

Unified Project Portfolio Management Achieving a Single Source of Truth with ...
Unified Project Portfolio Management Achieving a Single Source of Truth with ...OnePlan Solutions

Team 24 Survival Guide Vancouver Atlassian Community
Team 24 Survival Guide Vancouver Atlassian CommunityBrendanByers3

Keycloak as the New Identity Provider for UCS - Felix Botner & Erik Damrose -...
Keycloak as the New Identity Provider for UCS - Felix Botner & Erik Damrose -...Univention GmbH

انتزاع و هزینه - انتزاع و تاثیرات آن در توسعه و نگهداری نرمافزار
انتزاع و هزینه - انتزاع و تاثیرات آن در توسعه و نگهداری نرمافزارsohilww

CSS Notes in PDF, Easy to understand. For beginner to advanced. ...
CSS Notes in PDF, Easy to understand. For beginner to advanced. ...syedfaisal759877

Workshop híbrido: Stream Processing con Flink
Workshop híbrido: Stream Processing con Flinkconfluent

2024 Trends Transforming Enterprise Resource Planning
2024 Trends Transforming Enterprise Resource PlanningBatchMaster Software Pvt. Ltd.

Top 5 AI Trends Transforming Software Development in 2024.pdf
Top 5 AI Trends Transforming Software Development in 2024.pdfAezion Inc. Custom Software Development

Atlassian AI - Ahmedabad Atlassian Community
Atlassian AI - Ahmedabad Atlassian CommunityMaitrey Patel

Orion Context Broker introduction 20240227
Orion Context Broker introduction 20240227Fermin Galan

Outlook on UCS 5.2 - Ingo Steuwer - Univention Summit 2024
Outlook on UCS 5.2 - Ingo Steuwer - Univention Summit 2024Univention GmbH

Cybersecurity Measures For Remote Workers.pdf
Cybersecurity Measures For Remote Workers.pdfCIOWomenMagazine

Building Research Applications with Globus PaaS
Building Research Applications with Globus PaaSGlobus

Emvigo Capability Deck_2024 - Key highlights regarding Emvigo's Capabilities
Emvigo Capability Deck_2024 - Key highlights regarding Emvigo's CapabilitiesEmvigo Technologies

Select the Most Appropriate POS Software Development Services for Your Busine...
Select the Most Appropriate POS Software Development Services for Your Busine...JPLoft Solutions

Reliable, Remote Computation at All Scales
Reliable, Remote Computation at All ScalesGlobus

The Death Star & The Ultimate Vulnerability.pptx
The Death Star & The Ultimate Vulnerability.pptxJamie Coleman

Introduction to Research Automation with Globus
Introduction to Research Automation with GlobusGlobus

Último (20)
Consequences and Principles of Software Quality
Consequences and Principles of Software Quality

Alluxio Monthly Webinar | Why a Multi-Cloud Strategy Matters for Your AI Plat...
Alluxio Monthly Webinar | Why a Multi-Cloud Strategy Matters for Your AI Plat...

Unified Project Portfolio Management Achieving a Single Source of Truth with ...
Unified Project Portfolio Management Achieving a Single Source of Truth with ...

Team 24 Survival Guide Vancouver Atlassian Community
Team 24 Survival Guide Vancouver Atlassian Community

Keycloak as the New Identity Provider for UCS - Felix Botner & Erik Damrose -...
Keycloak as the New Identity Provider for UCS - Felix Botner & Erik Damrose -...

انتزاع و هزینه - انتزاع و تاثیرات آن در توسعه و نگهداری نرمافزار
انتزاع و هزینه - انتزاع و تاثیرات آن در توسعه و نگهداری نرمافزار

CSS Notes in PDF, Easy to understand. For beginner to advanced. ...
CSS Notes in PDF, Easy to understand. For beginner to advanced. ...

Workshop híbrido: Stream Processing con Flink
Workshop híbrido: Stream Processing con Flink

2024 Trends Transforming Enterprise Resource Planning
2024 Trends Transforming Enterprise Resource Planning

Top 5 AI Trends Transforming Software Development in 2024.pdf
Top 5 AI Trends Transforming Software Development in 2024.pdf

Atlassian AI - Ahmedabad Atlassian Community
Atlassian AI - Ahmedabad Atlassian Community

Orion Context Broker introduction 20240227
Orion Context Broker introduction 20240227

Outlook on UCS 5.2 - Ingo Steuwer - Univention Summit 2024
Outlook on UCS 5.2 - Ingo Steuwer - Univention Summit 2024

Cybersecurity Measures For Remote Workers.pdf
Cybersecurity Measures For Remote Workers.pdf

Building Research Applications with Globus PaaS
Building Research Applications with Globus PaaS

Emvigo Capability Deck_2024 - Key highlights regarding Emvigo's Capabilities
Emvigo Capability Deck_2024 - Key highlights regarding Emvigo's Capabilities

Select the Most Appropriate POS Software Development Services for Your Busine...
Select the Most Appropriate POS Software Development Services for Your Busine...

Reliable, Remote Computation at All Scales
Reliable, Remote Computation at All Scales

The Death Star & The Ultimate Vulnerability.pptx
The Death Star & The Ultimate Vulnerability.pptx

Introduction to Research Automation with Globus
Introduction to Research Automation with Globus

Go_ Get iT! .pdf

	1. GoLang
By: Gagan Chouhan
A Quick Guide

	2. Why Go?
● Go is open-source but backed up by a large corporation
● Many big companies used it for their projects including Google, Dropbox,
Cloudﬂare, Docker etc.
● Go is fast to (learn, develop, compile, deploy, run)
● Go is a Modern Language
● Go is Simple
● Go is Concurrent
● Go is safe

	3. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	4. Go ﬁle layout
package main
import "fmt"
func main() {
fmt.Println("Hello, Go!")
}
Hello Go Program

	5. Packages
● Packages that we are going to use in this tutorial
○ fmt :- format
○ log :- logging
○ math :- similar to java.math
○ time :- time related functionality

	6. Imports
● Syntax of import statement :-
import "fmt"
import (
"fmt"
)

	7. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	8. Types
● bool
● string
● int int8 int16 int32 int64
● uint uint8 uint16 uint32 uint64 uintptr
● byte // alias for uint8
● rune // alias for int32 (in java char)
● float32 float64
● complex64 complex128
● And Pointer of these types ex: *int

	9. ● var variable string
variable = "Variable"
● var variable string = "Variable"
● var variable = "Variable"
● variable := "Variable"
Variables, Constants declaration
● Variable declaration

	10. ● const variable string = "Variable"
● const variable = "Variable"
Variables, Constants declaration
● Constant declaration

	11. Naming rules: Convention
● Use camelCase
● Acronyms should be all capitals, as in ServeHTTP
● Single letter represents index: i, j, k
● Short but descriptive names: cust not customer
● avoid repeating package name:
○ log.Info() // good
○ log.LogInfo() // bad

	12. Naming rules: Convention
● Don’t name like getters or setters
○ custSvc.cust() // good
○ custSvc.getCust() // bad
● Add er to Interface
○ type Stringer interfaces {
String() string
}

	13. Naming rules: Scope
● Any variable, function etc. name starts with capital letter is considered public
or in golang terms “exported”
○ var variable string = “Variable”
//not exported only visible locally
○ var Variable string = “Variable”
//exported and can be accessed publicly

	14. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	15. Conditionals
● If (NO BRACKETS)
○ if true {
}
○ if true {
} else if false {
}

	16. Conditionals
● switch (similar to older switch)
○ switch c {
case "one":
case "two":
case "three":
}
//break is not needed here

	17. Conditionals
● switch (instead of if-else)
t := time.Now()
switch {
case t.Hour() < 12:
fmt.Println("It's before noon")
default:
fmt.Println("It's after noon")
}

	18. Loops
● for
○ for init; condition; post {
// run commands till condition is true
}
○ for {
// I will run forever
}

	19. Loops
● for
○ for condition {
// run commands till condition is true
// similar to while
}
○ for k,v := range vv {
// I will run for each item
}

	20. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	21. ● With one return value
○ func add(x int, y int) int {
return x + y
}
● With multiple return values
○ func swap (x int, y int) (int, int) {
return y, x
}
Functions: creating

	22. ● Single returning
○ z := add (x, y)
● Multi returning
○ a, b := swap(x, y)
● Exported functions
○ fmt.Println(“Hello Go!”)
//fmt is package name
Functions: Using

	23. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	24. Packages: creating
● Package is a bundle of code
● If there are multiple ﬁles that deals with some area, like math deals with
mathematical calculation they should be in same package
● Name and import path should be short descriptive
● No underscores ‘_’ or hyphen ‘-’ example strconv is a
● Folder name should be same as the package name in the code

	25. Packages: Sharing
● How to use a third party package ? “go get” it instead
○ go get github.com/robfig/cron this will import the repo to your
local machine
○ And add the package in import statement
import “github.com/robfig/cron”
● You created a project just push the repository. Any one who is having access
to the repo will be able to import it.

	26. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	27. ● Size is ﬁxed
● As soon as we declare array all values are assigned zero values (default)
○ primes := [6]int{2, 3, 5, 7, 11, 13}
○ var names [2]string
Arrays: deﬁning array

	28. ● A slice is a dynamically-sized, ﬂexible view into the elements of an array.
● In practice, slices are much more common than arrays
● We can initialize a slice in following ways.
○ var s []int = primes[1:4] //4 is excluded
○ var s []int = primes[2:]
○ var s []int = primes[:4]
○ a := make([]int, 5)
Slices: deﬁning

	29. ● Map is very similar to the map in java
● It is Type safe
● Keys need to be comparable, the equality operators == and != apply to
operands that are comparable.
● We can initialize a map[key]value in following ways.
○ var mymap map[string]int = make(map[string]int)
○ var mymap = make(map[string]int)
○ mymap := make(map[string]int)
Map: deﬁning

	30. ● for range loop is there
○ for i, v := range names {
fmt.Printf("%v, %vn", i, v)
}
● If names is a map i -> key, v-> value
Arrays, Slice, Map: iteration

	31. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	32. ● We can deﬁne our own data type:-
○ type Minutes int
○ type Hours int
○ type Weight float64
○ type Liters float32
Type deﬁnition:user deﬁned types

	33. ● A struct is a composite type can have multiple ﬁelds
○ type Person struct {
FirstName string
LastName string
Age int
}
○ person1 = Person{}
○ person1 = Person{ FirstName: "Steve ", LastName: "Jobs", Age: 28}
○ person1 = Person{ "Steve ", "Jobs", 28}
Type deﬁnition: structs

	34. ● Isn’t a method same as function?
No! A method is something that belongs to some object
● How do I deﬁne it
○ func (h Hours) ToMinutes() Minutes {
return Minutes(int(h) * 60)
} //here h is called receiver which Before this our defined type
● Similarly you can deﬁne methods for structs
Types: methods

	35. ● Similarly you can deﬁne methods for structs
● Example: calender.Date.go, calender.Event.go
Types: methods

	36. ● Similarly you can deﬁne methods for structs
● Example: calender.Date.go, calender.Event.go
Types: methods

	37. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	38. ● A defer statement pushes a function call onto a list. The list of saved calls is
executed after the surrounding function returns
● Example: ﬁleio.go
Failure and Recovery:
defer

	39. ● Panic is a built-in function that stops the ordinary ﬂow of control and begins
panicking.
● When the function F calls panic,
a. execution of F stops
b. any deferred functions in F are executed normally
c. and then F returns to its caller
● Example: ﬁleio.go
Failure and Recovery:
panic

	40. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	41. ● A goroutine is a lightweight thread managed by the Go runtime
● How to call? Just go followed by function call
a. go say("world")
● Channels are something through which you can send and receive values with
the channel operator
a. c chan int
● Ch <- v (sending value to a channel)
● Receiving value through a channel <-ch
Goroutines and Channels

	42. Things we are going to cover
● Go ﬁle layout, packages and imports, IDE
● Types, Variables, Constants, Naming Rules
● Conditionals and Loops
● Functions
● Creating Packages
● Arrays, Slices and map, for...range
● Structs, Deﬁned types, Methods and interfaces
● Failure and recovery
● Goroutines and channels
● How to Write Go Code

	43. ● Refer https://golang.org/doc/code.html
● https://go.dev/doc/effective_go
How to write go code

Descargar ahora

Acerca deAtención al clienteCondicionesPrivacidadCopyrightPreferencias de cookiesNo vender ni compartir mis datos personalesEverand
EnglishIdioma actualEnglish
Español
Portugues
Français
Deutsche

© 2024 SlideShare de Scribd

