Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
www.huawei.com
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved.
WCDMA Radio
Network Capacity
Planning
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page2
Foreword
 WCDMA is a self-interference system
...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page3
Objectives
 Upon completion of this course, you...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page4
Contents
1. Traffic Model
2. Interference Analys...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page5
Contents
1. Traffic Model
1.1 Overview of traffi...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page6
QoS Type
Real-timecategory
Conversation
al
It is...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page7
Traffic Model
System Configuration
User Behaviou...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page8
The Contents of Traffic Model
 Service pattern ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page9
Contents
1. Traffic Model
1.1 Overview of traffi...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page10
CS Traffic Model
 Voice service is a typical C...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page11
CS Traffic Model Parameters
 Mean busy-hour tr...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page12
Contents
1. Traffic Model
1.1 Overview of traff...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page13
PS Traffic Model
Data Burst Data Burst Data Bur...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page14
PS Traffic Model Parameters
Traffic Model
Packe...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page15
Parameter Determining
 The basic parameters in...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page16
PS User Behaviour Parameters
User Behaviour
Pen...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page17
PS User Behaviour Parameters
 Penetration Rate...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page18
PS Traffic Model Parameters
 Data Transmission...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page19
Contents
1. Traffic Model
2. Interference Analy...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page20
Basic Principles
 In the WCDMA system, all the...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page21
Contents
2. Interference Analysis
2.1 Interfere...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page22
Interference Analysis Overview
 Why do we anal...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page23
Contents
2. Interference Analysis
2.1 Interfere...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page24
Uplink Interference Analysis
 Uplink interfere...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page25
Uplink Interference Analysis
 Receiver noise f...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page26
Uplink Interference Analysis
 : Interference f...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page27
Uplink Interference Analysis
 :Interference fr...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page28
Uplink Interference Analysis
 
 
N
N
jj
NoE...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page29
Uplink Interference Analysis
 Suppose that:
 ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page30
Uplink Interference Analysis
 According to the...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page31
Uplink Interference Analysis
 Define the uplin...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page32
Contents
2. Interference Analysis
2.1 Interfere...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page33
Downlink Interference Analysis
 Downlink inter...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page34
Downlink Interference Analysis
 Receiver noise...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page35
Downlink Interference Analysis
 :Interference ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page36
Downlink Interference Analysis
 : Interference...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page37
Downlink Interference Analysis
 Ec/Io for User...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page38
Downlink Interference Analysis
 Under the idea...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page39
Downlink Interference Analysis
 Define the dow...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page40
Downlink Interference Analysis
 According to t...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page41
Contents
1. Traffic Model
2. Interference Analy...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page42
Capacity Dimensioning FlowDimensioning Start
As...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page43
Contents
3. Capacity Dimensioning
3.1 R99 Capac...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page44
Capacity Dimensioning Differences
GSM
 Hard bl...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page45
Multidimensional ElangB Principle (1)
 Multidi...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page46
Multidimensional ElangB Principle (2)
 Case St...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page47
CS Capacity Dimensioning (1)
 CS services
 Re...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page48
CS Capacity Dimensioning (2)
 Comparison betwe...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page49
Best Effort for Packet Services
 PS Services:
...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page50
CS Capacity Dimensioning
 Average load:
 Peak...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page51
PS Capacity Dimensioning
jjj LoadFactorBurstRat...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page52
Case Study (1)
 Common parameters:
 Maximum N...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page53
Case Study (2)
 Traffic Model, GoS and load fa...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page54
Case Study (2)
 Uplink Average Load  Downlink...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page55
Case Study (3)
 Uplink Peak Load  Downlink Pe...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page56
Contents
3. Capacity Dimensioning
3.1 R99 Capac...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page57
HSDPA Capacity Dimensioning (1)
 HSDPA Capacit...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page58
HSDPA Capacity Dimensioning (2)
 Capacity Base...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page59
Case Study
 Input parameters
 Subscriber numb...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page60
Case Study
 Uplink Total Load of the Cell :
 ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page61
Contents
1. Traffic Model
2. Interference Analy...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page62
Overview
 Definition of a CE:
 A Channel Elem...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page63
Huawei Channel Elements
Features
 Channel Elem...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page64
CE Dimensioning Flow
),( _______ HSUPAULAULPSUL...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page65
CE Mappings for R99 Bearers
Channel Elements Ma...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page66
R99 CE Dimensioning Principle
 Peak CE occupie...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page67
HSDPA CE Dimensioning
 In uplink, no CE consum...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page68
CE Mappings for HSDPA Bearers
HSDPA Channel Ele...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page69
Case Study (1)
 Input Parameters
 Subscribers...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page70
Case Study (2)
 Uplink CE Dimensioning  Downl...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page71
 Uplink CE Dimensioning  Downlink CE Dimensio...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page72
Case Study (4)
 Uplink CE Dimensioning  Downl...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page73
Contents
1. Traffic Model
2. Interference Analy...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page74
IUB Transport Overview
Node B RNC
E1/T1
TDM net...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page75
IUB Protocol Stack
L1(PHY)
AAL5
SSCOP
SSCF-UNI
...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page76
IUB Bandwidth Composing
 IUB Bandwidth Composi...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page77
IUB Bandwidth Composing(Cont.)
 IUB Bandwidth ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved.
Page78
Bandwidth Dimensioning Flow
User Num / NodeB
HS...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page79
Bandwidth Dimensioning Formula
 CS and PS shar...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page80
Dimensioning Principle Case
 CS AMR Bandwidth ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page81
Dimensioning Principle Summary
HSPA IUB Overhea...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page82
CS Bandwidth Dimensioning
 CS IUB Peak Bandwid...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page83
CS Bandwidth Dimensioning(Cont.)
 CS IUB Avera...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page84
PS Bandwidth Dimensioning
 PS IUB Bandwidth Di...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page85
PS Bandwidth Dimensioning(Cont.)
 PS IUB Bandw...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page86
HSUPA Bandwidth Dimensioning
 HSUPA IUB Bandwi...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page87
HSDPA Bandwidth Dimensioning
 HSDPA IUB Bandwi...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page88
Relation between PS/HSPA and CS
Bandwidth Dimen...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page89
Relation between PS/HSPA and CS
Bandwidth Dimen...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page90
Signaling Bandwidth Dimensioning
 Signaling IU...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page91
CCH Bandwidth Dimensioning
 CCH IUB Bandwidth ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page92
O&M Bandwidth Dimensioning
 O&M IUB Bandwidth ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page93
NodeB Bandwidth Dimensioning
 NodeB IUB Bandwi...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page94
IUB Bandwidth Dimensioning Case
 Input
 NodeB...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page95
IUB Bandwidth Dimensioning Case
(Cont.)
 Input...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page96
IUB Bandwidth Dimensioning Case
(Cont.)
Voice T...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page97
IUB Bandwidth Dimensioning Case
(Cont.)
Voice I...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved.
Page98
IUB Bandwidth Dimensioning Case
(Cont.)
Voice a...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page99
IUB Bandwidth Dimensioning Case
(Cont.)
PS64k I...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page100
IUB Bandwidth Dimensioning Case
(Cont.)
PS128k...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page101
IUB Bandwidth Dimensioning Case
(Cont.)
HSDPA ...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page102
IUB Bandwidth Dimensioning Case
(Cont.)
IUB Ba...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page103
Contents
1. Traffic Model
2. Interference Anal...
Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page104
Network Dimensioning Flow
UL/DL Link Budget
Ce...
Thank you
www.huawei.com
Próxima SlideShare
Cargando en…5
×

Owp112020 wcdma radio network capacity dimensioning issue1.22

4.143 visualizaciones

Publicado el

wcdma radio network capacity dimensioning issue1.22

Publicado en: Tecnología
  • DOWNLOAD FULL BOOKS, INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí

Owp112020 wcdma radio network capacity dimensioning issue1.22

  1. 1. www.huawei.com Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. WCDMA Radio Network Capacity Planning
  2. 2. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page2 Foreword  WCDMA is a self-interference system  WCDMA system capacity is closely related to coverage  WCDMA network capacity has the “soft capacity” feature  The WCDMA network capacity restriction factors in the radio network part include the following:  Uplink interference  Downlink power  Downlink channel code resources (OVSF)  Channel element (CE)  IUB Bandwidth
  3. 3. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page3 Objectives  Upon completion of this course, you will be able to:  Grasp the parameters of 3G traffic model  Understand the factors that restrict the WCDMA network capacity  Understand the methods and procedures of estimating multi- service capacity
  4. 4. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page4 Contents 1. Traffic Model 2. Interference Analysis 3. Capacity Dimensioning 4. CE Dimensioning 5. IUB Bandwidth Dimensioning 6. Network Dimensioning Flow
  5. 5. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page5 Contents 1. Traffic Model 1.1 Overview of traffic model 1.2 CS traffic model 1.3 PS traffic model
  6. 6. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page6 QoS Type Real-timecategory Conversation al It is necessary to maintain the time relationship between the information entities in the stream. Small time delay tolerance, requiring data rate symmetry Voice service, videophone Streaming Typically unidirectional services, high requirements on error tolerance, high requirements on data rate Streaming multimedia Nonreal-timecategory Interactive Request-response mode, data integrity must be maintained. High requirements on error tolerance, low requirements on time delay tolerance Web page browse, network game Background Data integrity should be maintained. Small delay restriction, requiring correct transmission Background download of Email
  7. 7. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page7 Traffic Model System Configuration User Behaviour Service Pattern Traffic Model Results
  8. 8. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page8 The Contents of Traffic Model  Service pattern refers to the service features  User type (indoor ,outdoor, vehicle)  User’s average moving speed  Service Type  Uplink and downlink service rates  Spreading factor  Time delay requirements of the service  User behaviour refers to the conduct of people in using the service
  9. 9. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page9 Contents 1. Traffic Model 1.1 Overview of traffic model 1.2 CS traffic model 1.3 PS traffic model
  10. 10. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page10 CS Traffic Model  Voice service is a typical CS services. Voice data arrival conforms to the Poisson distribution. Its time interval conforms to the exponent distribution  Key parameters of the model  Penetration rate  BHCA: busy-hour call attempts  Mean call duration (s)  Activity factor  Mean rate of service (kbps)
  11. 11. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page11 CS Traffic Model Parameters  Mean busy-hour traffic (Erlang) per user = BHCA  mean call duration /3600  Mean busy hour traffic volume per user (kbit) = BHCA  mean call duration  activity factor  mean rate  Mean busy hour throughput per user (bps) = mean busy hour traffic volume per user  1000/3600
  12. 12. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page12 Contents 1. Traffic Model 1.1 Overview of traffic model 1.2 CS traffic model 1.3 PS traffic model
  13. 13. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page13 PS Traffic Model Data Burst Data Burst Data Burst Packet Call Session Packet Call Packet Call Downloading Downloading Active Dormant Dormant Active
  14. 14. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page14 PS Traffic Model Parameters Traffic Model Packet Call Num/Session Packet Num/Packet Call Packet Size (bytes) Reading Time (sec) Typical Bear Rate (kbps) BLER
  15. 15. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page15 Parameter Determining  The basic parameters in the traffic model are determined in the following ways:  Obtain numerous basic parameter sample data from the existing network  Obtain the probability distribution of the parameters through processing of the sample data  Take the distribution most proximate to the standard probability as the corresponding parameter distribution through comparison with the standard distribution function
  16. 16. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page16 PS User Behaviour Parameters User Behaviour Penetration Rate BHSA User Distribution (High, Medium, Low end)
  17. 17. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page17 PS User Behaviour Parameters  Penetration Rate  BHSA  The times of single-user busy hour sessions of this service  User Distribution (High, Medium, Low end)  The users are divided into high-end, mid-end and low-end users.
  18. 18. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page18 PS Traffic Model Parameters  Data Transmission time (s): The time in a single session of service for purpose of transmitting data.  Holding Time (s): Average duration of a single session of service  Activity Factor: eHoldingTim issionTimeDataTransm ctorActivityFa  eTypicalRatBLER fficVolumeSessionTra issionTimeDataTransm 1 1 1000/8     issionTimeDataTransmadingTimeRe)1 Session lNumPackketCal (eHoldingTim 
  19. 19. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page19 Contents 1. Traffic Model 2. Interference Analysis 3. Capacity Dimensioning 4. CE Dimensioning 5. IUB Bandwidth Dimensioning 6. Network Dimensioning Flow
  20. 20. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page20 Basic Principles  In the WCDMA system, all the cells use the same frequency, which is conducive to improve the WCDMA system capacity. However, for reason of co-frequency multiplexing, the system incurs interference between users. This multi- access interference restricts the capacity in turn.  The radio system capacity is decided by uplink and downlink. When planning the capacity, we must analyze from both uplink and downlink perspectives.
  21. 21. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page21 Contents 2. Interference Analysis 2.1 Interference Analysis Overview 2.2 Uplink Interference Analysis 2.3 Downlink Interference Analysis
  22. 22. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page22 Interference Analysis Overview  Why do we analyze interference in network dimensioning?  No matter uplink or downlink dimensioning, the Eb/No requirement should be met:  Eb/No = Ec/No × PG  Eb/No and PG is pre-defined, so we should calculate expected Ec and No through interference analysis  The interference increase which is load factor could be predicted  The load factor of each service rate is different
  23. 23. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page23 Contents 2. Interference Analysis 2.1 Interference Analysis Overview 2.2 Uplink Interference Analysis 2.3 Downlink Interference Analysis
  24. 24. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page24 Uplink Interference Analysis  Uplink interference analysis is based on the following formula: NotherownTOT PIII 
  25. 25. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page25 Uplink Interference Analysis  Receiver noise floor: PN  For Huawei NodeB, the typical value is -106.4dBm/3.84MHZ NFWTKPN  )**log(10
  26. 26. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page26 Uplink Interference Analysis  : Interference from users of this cell  Interference that every user must overcome is :  is the receiving power of the user j , is UL activity factor  Under the ideal power control :  Hence:  The interference from users of this cell is the sum of power of all the users arriving at the receiver: ownI jtotal PI  jjP   jjjTOT j NoEb R W PI PjAvg  1 10 10 / _      jj NoEb TOT j R W I P jAvg  1 10 1 1 10 / _    N jown PI 1
  27. 27. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page27 Uplink Interference Analysis  :Interference from users of adjacent cell  The interference from users of adjacent cell is difficult to analyze theoretically, because it is related to user distribution, cell layout, and antenna direction diagram.  Adjacent cell interference factor : own other I I f  otherI
  28. 28. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page28 Uplink Interference Analysis     N N jj NoEb TOT NotherownTOT P R W I fPIII jAvg    1 10 / 1 10 1 1 1 _    jj NoEb j R W L jAvg  1 10 1 1 1 10 / _     N N jTOTTOT PLfII  1 1 Define: Then:     N j NTOT Lf PI 1 11 1 Obtain:
  29. 29. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page29 Uplink Interference Analysis  Suppose that:  All the users are 12.2 kbps voice users, Eb/NoAvg = 5dB  Voice activity factor = 0.67  Adjacent cell interference factor f=0.55 j
  30. 30. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page30 Uplink Interference Analysis  According to the above mentioned relationship, the noise will rise: UL N j N TOT Lf P I NoiseRise      1 1 )1(1 1 1
  31. 31. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page31 Uplink Interference Analysis  Define the uplink load factor for one user:  Define the uplink load factor for the cell:          N jj EbvsNo N jUL R W fLf jAvg 1 10 1 1 10 1 1 1 11 _         jj EbvsNo jj R W fLf jAvg   1 10 1 1 1 11 10 _  
  32. 32. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page32 Contents 2. Interference Analysis 2.1 Interference Analysis Overview 2.2 Uplink Interference Analysis 2.3 Downlink Interference Analysis
  33. 33. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page33 Downlink Interference Analysis  Downlink interference analysis is based on the following formula: NotherownTOT PIII 
  34. 34. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page34 Downlink Interference Analysis  Receiver noise floor: PN  For commercial UE, the typical value is -101dBm/3.84MHZ NFWTKPN  )**log(10
  35. 35. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page35 Downlink Interference Analysis  :Interference from downlink signal of this cell  The downlink users are identified with the mutually orthogonal OVSF codes. In the static propagation conditions without multi- path, no mutual interference exists.  In case of multi-path propagation, certain energy will be detected by the RAKE receiver, and become interference signals. We define the non-orthogonal factor to describe this phenomenon: ownI TXjown PI  )( 
  36. 36. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page36 Downlink Interference Analysis  : Interference from the downlink signal of adjacent cell  The transmitting signal of the adjacent cell NodeB will cause interference to the users in the current cell. Since the scrambling codes of users are different, such interference is non-orthogonal  Hence we obtain: otherI TXjother PfI )(
  37. 37. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page37 Downlink Interference Analysis  Ec/Io for User j is: 10/)( 10/ 10/ 10/ 10)(10 10 )( 10)( N N PCL TX j P CL TX CL j j Pf P Pf P Io Ec       
  38. 38. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page38 Downlink Interference Analysis  Under the ideal power control:  Then we can get: jj j NoEb R W Io Ecj  1 )(10 10 )/(  j TX PCL TXj NoEb j RW P fP P Nj / ) 10 (10 10/)( 10 )/(    
  39. 39. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page39 Downlink Interference Analysis  Define the downlink load factor for user j:  Define the downlink load factor for the cell: maxP PTX DL  j TX PCL TX j NoEb j j RW P f P P P P Nj / ) 10 (10 10/)( max 10 )/( max     
  40. 40. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page40 Downlink Interference Analysis  According to the above mentioned relationship, the noise will rise:   N DLMax N otherownN N total P CLPfNo P IIP P I NoiseRise /    
  41. 41. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page41 Contents 1. Traffic Model 2. Interference Analysis 3. Capacity Dimensioning 4. CE Dimensioning 5. IUB Bandwidth Dimensioning 6. Network Dimensioning Flow
  42. 42. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page42 Capacity Dimensioning FlowDimensioning Start Assumed Subscribers CS Peak Cell Load (MDE) Yes No CS Average Cell Load PS Average Cell Load =Target Cell Load? Dimensioning End Total Cell Load Load per Connection of R99 HSPA Cell Load }LoadLoadLoad,Loadmax{Load HSUPAavgPSavgCSpeakCSUL_totalcell   CCHHSDPAavgPSavgCSpeakCSDL_totalcell Load}LoadLoadLoad,Loadmax{Load  
  43. 43. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page43 Contents 3. Capacity Dimensioning 3.1 R99 Capacity Dimensioning 3.2 HSDPA Dimensioning
  44. 44. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page44 Capacity Dimensioning Differences GSM  Hard blocking  Capacity --- hardware dependent  Single service  Single GoS requirement  Capacity dimensioning ---ErlangB WCDMA  Soft blocking  Capacity --- interference dependent  Multi services (CS&PS)  Respective quality requirements of each service  Capacity dimensioning --- Multidimensional ErlangB
  45. 45. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page45 Multidimensional ElangB Principle (1)  Multidimensional ErlangB model is a Stochastic Knapsack Problem.  “Knapsack” means a system with fixed capacity, various objects arrive at the knapsack randomly and the states of multi-objects in the knapsack are stochastic process.  Then when various objects attempt to access in this system, how much is the blocking probability of every object? K classes of services Blocked calls Calls arrival Calls completion Fixed capaciy
  46. 46. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page46 Multidimensional ElangB Principle (2)  Case Study: Two dimensional ErlangB Model  The size of service 2 is twice as that of service 1  C is the fixed capacity n2 Blocking States of Class 1 C C-b1 n1 n2 Blocking States of Class 2 C C-b2 n11 2 3 4 5 6 1 2 3 1 2 3 4 5 6 1 2 3 n2 States Space C n11 2 3 4 5 6 1 2 3 
  47. 47. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page47 CS Capacity Dimensioning (1)  CS services  Real time  GoS requirements  Multidimensional ErlangB  Resource sharing  Meeting GoS requirements Channels ...... Multidimensional ErlangB Model
  48. 48. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page48 CS Capacity Dimensioning (2)  Comparison between ErlangB and Multidimensional ErlangB Multidimensional ErlangB - Resources shared High Utilization of resources ErlangB - Partitioning Resources Low Utilization of resources
  49. 49. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page49 Best Effort for Packet Services  PS Services:  Best Effort  Retransmission  Burst Traffic  PS will use the spare load apart from that used by CS Total Load CSPeak Load CS Average Load Load occupied by CS Load occupied by PS Load Time
  50. 50. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page50 CS Capacity Dimensioning  Average load:  Peak load:  Query the peak connection through ErlangB table jjj LoadFactorTrafficdAverageLoa   N jTotal dAverageLoadAverageLoa 1 jjj LoadFactorPeakConnPeakLoad  )( jTotal PeakLoadMDEPeakLoad 
  51. 51. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page51 PS Capacity Dimensioning jjj LoadFactorBurstRatetxRateTrafficdAverageLoa  )1()Re1(  Average load:  Peak load:  None  Why don’t we calculate PS peak load?  N jTotal dAverageLoadAverageLoa 1
  52. 52. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page52 Case Study (1)  Common parameters:  Maximum NodeB transmission power: 20W  Subscriber number per Cell: 800  Overhead of SHO (including softer handover): 40%  Retransmission of PS is 5%  R99 PS traffic burst: 20%  Activity factor of PS is 0.9  Power allocation for CCH is 20% in downlink
  53. 53. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page53 Case Study (2)  Traffic Model, GoS and load factors: UL DL GoS Load Factors (UL) Load Factors (DL) AMR12.2k (Erl) 0.02 0.02 2% 1.18% 0.83% CS64k (Erl) 0.001 0.001 2% 4.99% 4.65% PS64k (Kbit) 50 100 N/A 4.21% 2.96% PS128k (Kbit) 0 100 N/A 5.94% PS384 (Kbit) 0 0 N/A
  54. 54. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page54 Case Study (2)  Uplink Average Load  Downlink Average Load AMR12.2k: 0.02*800*1.18%=18.88% CS64k: 0.001*800*4.99%=3.99% PS64k: 50*800*(1+5%)*(1+20%)/0.9/64/360 0*4.21%=1.02% CS&PS uplink average load: 18.88%+3.99%+1.02%=23.89% AMR12.2k: 0.02*800*(1+40%)*0.83%=18.59% CS64k: 0.001*800 *(1+40%)* 4.65%=5.2% PS64k: 100*800*(1+5%)*(1+40%)*(1+20%)/0.9 /64/3600*2.96%=2.01% PS128k: 2.02% CS&PS downlink average load: 18.59%+5.2%+2.01%+2.02%=27.82%
  55. 55. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page55 Case Study (3)  Uplink Peak Load  Downlink Peak Load AMR12.2k: Traffic=0.02*800=16Erl Peak Conn= ErlangB(16, 2%)=24 Peak Load=24*1.18%=28.32% CS64k: Traffic=0.001*800=0.8Erl Peak Conn= ErlangB(0.8, 2%)=4 Peak Load=4*4.99%=19.96% CS Peak Load: 42.53% AMR12.2k: Traffic=0.02*800*(1+40%)=22.4Erl Peak Conn= ErlangB(22.4, 2%)=31 Peak Load=31*0.83%=25.73% CS64k: Traffic=0.001*800 *(1+40%)=1.12Erl Peak Conn= ErlangB(1.12, 2%)=5 Peak Load=5*4.65%=23.25% CS Peak Load: 42.33%
  56. 56. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page56 Contents 3. Capacity Dimensioning 3.1 R99 Capacity Dimensioning 3.2 HSDPA Dimensioning
  57. 57. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page57 HSDPA Capacity Dimensioning (1)  HSDPA Capacity Dimensioning  The purpose is to obtain the required HSDPA power to satisfy the cell average throughput.  HS-DSCH will use the spare power apart from that of R99 Dedicated channels (power controlled) Common channels Power usage with dedicated channels channels t Unused power Power HS-DSCH with dynamic power allocation t Dedicated channels (power controlled) Common channels HS-DSCH Power3GPP Release 99 3GPP Release 5 Pmax-R99
  58. 58. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page58 HSDPA Capacity Dimensioning (2)  Capacity Based on Simulation  to simulate Ior/Ioc distribution in the network with certain cell range  to simulate cell throughput distribution based on Ec/Io distribution in the cell  Dimensioning Procedure 0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.22 2.98 2.04 1.39 0.96 0.66 0.45 0.31 0.21 0.14 0.1 0.07 0.05 0.03 0.02 0.01 0.01 0.01 0 0 0 0 Ioc/Ior Distributionprobability DU Cell coverage Radius=300m Conditions of Simulation Channel model-TU3 5 codes Simulation Ec/Io distribution Ior/Ioc distribution Cell coverage radius Cell average throughput Ec/Io =>throughput HSDPA Power Allocation
  59. 59. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page59 Case Study  Input parameters  Subscriber number per cell: 800  HSDPA Traffic model: 1200kbit per subs  HSDPA Retransmission rate: 10%  HSDPA Data burst rate:20%  The power for HS-SCCH: 5%  Cell radius: 1km  HSDPA cell average throughput:  The needed power for HS-DSCH including that for HS-SCCH is 18.38% kbps352%)201(%)01(1 3600 1200*800 
  60. 60. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page60 Case Study  Uplink Total Load of the Cell :  CS Peak Load: 42.53%  CS&PS average load: 23.89%  Downlink Total Load of the Cell :  CS Peak Load: 42.33%  CS&PS average load: 27.82%  HSDPA load is 18.38%  CCH load: 20% 66.20%%.MAX LoadLoadLoadLoadLoadLoad CCHHSDPAavgPSavgCSpeakCSDLtotalcell    %20%)38.188227%,33.42( },max{_ %4%.MAX LoadLoadLoadLoad avgPSavgCSpeakCSULtotalcell 53.2)8923%,53.42( },max{_   
  61. 61. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page61 Contents 1. Traffic Model 2. Interference Analysis 3. Capacity Dimensioning 4. CE Dimensioning 5. IUB Bandwidth Dimensioning 6. Network Dimensioning Flow
  62. 62. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page62 Overview  Definition of a CE:  A Channel Element is the base band resource required in the Node-B to provide capacity for one voice channel, including control plane signaling, compressed mode, transmit diversity and softer handover.  NodeB Channel Element Capacity  One BBU3900  UL 1,536 CEs with full configuration  DL 1,536 CEs with full configuration
  63. 63. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page63 Huawei Channel Elements Features  Channel Elements pooled in one NodeB  No need extra R99 CE resource for CCH  reserved CE resource for CCH  No need extra CE resource for TX diversity  No need extra CE resource for Compressed Mode  reserved resources for Compressed Mode  No need extra CE resource for Softer HO  HSDPA does not occupy R99 CE resource  separate module for HSDPA  HSUPA shares CE resource with R99 services  No additional CE resource for AGCH RGCH and HICH
  64. 64. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page64 CE Dimensioning Flow ),( _______ HSUPAULAULPSULAverageCSULPeakCSTotalUL CECECECECEMaxCE  ),( _______ DLADLPSDLAverageCSDLPeakCSTotalDL CECECECEMaxCE  Dimensioning Start CS Average CE Channel Elements per NodeB Dimensioning End --Subscribers per NodeB --Traffic model PS Average CECS Peak CE (MDE) HSPA CE
  65. 65. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page65 CE Mappings for R99 Bearers Channel Elements Mapping for R99 Bearers Bearer Uplink Downlink AMR12.2k 1 1 CS64k 3 2 PS64k 3 2 PS128k 5 4 PS144k 5 4 PS384k 10 8
  66. 66. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page66 R99 CE Dimensioning Principle  Peak CE occupied by CS can be obtained through multidimensional ErlangB algorithm  Average CE needed by CS and PS depend on the traffic of each service, i.e.  Average CE = Traffic * CE Factor CE Resources ...... AMR12.2k CS64k Multdimensional ErlangB Model Total CE CS Peak CE CS Average CE CE occupied by CS CE occupied by PS and HSPA CE Time CE resource shared among each service
  67. 67. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page67 HSDPA CE Dimensioning  In uplink, no CE consumption for HS-DPCCH if corresponding UL DCH channel exists  In uplink, CE consumed by one A-DCH depends on its bearing rate  In downlink, A-DCH is treated as R99 DCH.  No additional CE needed for HS-DSCH and HS-SCCH One HSDPA link need one A-DCH in uplink and downlink respectively Associated Dedicated Channels Site 1 Site 2
  68. 68. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page68 CE Mappings for HSDPA Bearers HSDPA Channel Elements Consumption Traffic Uplink Downlink HSDPA Traffic --- 0 CE HS-DPCCH 0 CE --- UL A-DCH (DPCCH) 3 CE --- DL A-DCH (DPCCH) --- 1 CE
  69. 69. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page69 Case Study (1)  Input Parameters  Subscribers number per NodeB: 2000  Overhead of SHO: 30%  R99 PS traffic burst: 20%  Retransmission rate of R99 PS: 5%  PS Channel element utilization rate: 0.7  Average throughput requirement per user of HSDPA: 400kbps  HSDPA traffic burst is 25%  Retransmission rate of HSDPA is 10% Traffic Model UL DL GoS AMR12.2k (Erl) 0.02 0.02 2% CS64k (Erl) 0.001 0.001 2% PS64k (kbit) 50 100 N/A PS128k (kbit) 0 80 N/A HSPA (kbit) 0 1200 N/A
  70. 70. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page70 Case Study (2)  Uplink CE Dimensioning  Downlink CE Dimensioning AMR12.2: Traffic =0.02*2000*(1+30%) = 52Erl Peak CE =ErlangB(52,0.02)*1= 63 CE Average CE =52*1=52 CE CS64: Traffic =0.001*2000*(1+30%) = 2.6Erl Peak CE =ErlangB(2.6,0.02)*3 = 21 CE Average CE =2.6*3=9 CE Total peak CE for CS: 80CE Total average CE for CS: 52+9=61CE AMR12.2: Traffic =0.02*2000*(1+30%) = 52Erl Peak CE =ErlangB(52,0.02)*1 = 63CE Average CE =52*1=52CE Traffic of VP: Traffic =0.001*2000*(1+30%) = 2.6Erl Peak CE =ErlangB(2.6,0.02)*2 =14CE Average CE =2.6*2=6CE Total peak CE for CS: 74CE Total average CE for CS: 52+6=58CE
  71. 71. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page71  Uplink CE Dimensioning  Downlink CE Dimensioning CE for PS64k: Total CE for R99 PS services: 4CE 4CE5%)(1*20%)(1*30%)(1*3* 3600*0.7*64 50*2000  CE for PS64k: CE for PS128k: Total CE for R99 PS services: 4+4=8CE CE for HSDPA A-DCH: 3CE10%)(1*%)52(1*1* 3600*400 1200*2000  4CE5%)(1*20%)(1*30%)(1*2* 3600*0.7*64 100*2000  4CE5%)(1*20%)(1*30%)(1*4* 3600*0.7*128 80*2000  Case Study (3)
  72. 72. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page72 Case Study (4)  Uplink CE Dimensioning  Downlink CE Dimensioning Total CE Total CE CEMAX CECE CEMaxCE ULAveragePSULAverageCS ULPeakCSTotalUL 80)461,80( ) ,( ____ ___    CE743)858Max(74, )CECECE ,CE(MaxCE DL_ADL_PSDL_Average_CS DL_Peak_CSTotal_DL   
  73. 73. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page73 Contents 1. Traffic Model 2. Interference Analysis 3. Capacity Dimensioning 4. CE Dimensioning 5. IUB Bandwidth Dimensioning 6. Network Dimensioning Flow
  74. 74. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page74 IUB Transport Overview Node B RNC E1/T1 TDM network E1/T1 Node B RNC FE IP network FE Node B RNC E1/T1 TDM network E1/T1  ATM over E1/T1  IP over E1/T1  IP over Ethernet
  75. 75. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page75 IUB Protocol Stack L1(PHY) AAL5 SSCOP SSCF-UNI NBAP AAL5 SSCOP SSCF-UNI Q.2150.2 ALCAP AAL2 ATM EDCH-FP HSDSCH-FP PCH-FP FACH-FP RACH-FP DCH-FP Control Plane User Plane L1(PHY) SCTP NBAP IP Control Plane User Plane MAC UDP ATM IP over Ethernet Q.2630.2 EDCH-FP HSDSCH-FP PCH-FP FACH-FP RACH-FP DCH-FP L1(PHY) SCTP NBAP IP (IPHC) Control Plane User Plane PPP (MUX+Compression) UDP IP over E1/T1 EDCH-FP HSDSCH-FP PCH-FP FACH-FP RACH-FP DCH-FP Radio Network Layer Transport Layer FP-MUX Radio Network Transport Network Radio NetworkRadio Network
  76. 76. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page76 IUB Bandwidth Composing  IUB Bandwidth Composing  Radio Network layer User Plane Data  DCH User Data Bandwidth – CS Voice Traffic Bandwidth – CS VP Traffic Bandwidth – R99 PS Traffic Bandwidth – SRB Signaling Bandwidth  HSPA Service Traffic Bandwidth  Common Transport Channel Data Bandwidth – RACH / FACH /PCH  FP Control Frame
  77. 77. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page77 IUB Bandwidth Composing(Cont.)  IUB Bandwidth Composing  Radio Network Layer Control Plane Data  NBAP Common Procedures  NBAP Dedicated Procedures  Transport Network Layer Control Plane Data  O&M Channel Bandwidth  Either of UL and DL physical layer average bandwidth is 64Kbits/s  Protocol Processing Overhead
  78. 78. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page78 Bandwidth Dimensioning Flow User Num / NodeB HSPA Traffic CS IUB Bandwidth PS IUB Bandwidth Service Bandwidth HSPA IUB Bandwidth CCH Bandwidth Signaling Bandwidth O&M Channel Bandwidth IUB Bandwidth input Dimensioning Procedure output CS Traffic Voice Traffic VP Traffic Traffic The Qos of CS Service PS Traffic PS64 Throughput PS128 Throughput PS384 Throughput PS Retransmission
  79. 79. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page79 Bandwidth Dimensioning Formula  CS and PS share IUB bandwidth  CS Peak Bandwidth- MDE Algorithm  The Bandwidth for PS and HSPA-BE Service M&OCCHSignalling HSPAAvg_CSAvg_PSPeak_CSTotal IubIubIub )]IubIubIub(,Iub[M axIub +++ ++= PS/HSPA Occupied Bandwidth O&M Bandwidth CCH Bandwidth CS Occupied Bandwidth Time IubBandwidth CS Average Bandwidth CS Peak Bandwidth Total Bandwidth Signaling Bandwidth
  80. 80. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page80 Dimensioning Principle Case  CS AMR Bandwidth Dimensioning
  81. 81. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page81 Dimensioning Principle Summary HSPA IUB Overhead ATM IP over E1/T1 IP over Ethernet Uplink 27% 7% 7% Downlink 35% 10% 10% CCH IUB Overhead ATM IP over E1/T1 IP over Ethernet UL Bandwidth for 1 RACH / Cell 60 kbps 50 kbps 50 kbps DL Bandwidth for 1 SCCPCH(FACH/PCH) / Cell 73 kbps 70 kbps 70 kbps R99 Service Type IUB Bandwidth IUB Overhead ATM IP over E1/T1 IP over Ethernet ATM IP over E1/T1 IP over Ethernet AMR12.2k 22 kbps 20 kbps 20 kbps 80% 64% 64% CS64k 88 kbps 70 kbps 71 kbps 38% 9% 11% PS64k 92 kbps 74 kbps 75 kbps 44% 16% 17% PS128k 180 kbps 140 kbps 144 kbps 41% 9% 13% PS384k 540 kbps 415 kbps 418 kbps 41% 8% 9%
  82. 82. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page82 CS Bandwidth Dimensioning  CS IUB Peak Bandwidth Dimensioning  Use MDE Algorithm to Estimate CS IUB Peak Bandwidth  MDE consider Bandwidth Sharing (below table show the Comparison with before ErlangB)  MDE consider Gos Requirement of different service Service Traffic GoS Required Iub Bandwidth ErlangB Algorithm MDE Algorithm Individual Total AMR 12.2kbps 50 Erl 2% 1.19Mbps 2.15Mbps 2.09Mbps CS 64kbps 10 Erl 2% 0.96Mbps
  83. 83. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page83 CS Bandwidth Dimensioning(Cont.)  CS IUB Average Bandwidth Dimensioning  The below formula is used to estimate CS IUB Average Bandwidth: ])_1(*_*__*_[∑_ i iiiAverageCS FactorSHOFactorActivityServiceBWIubServiceTrafficIub  CS Average Iub Bandwidth+ Soft HO factorIub Bandwidth of VP Service + Soft HO factorIub Bandwidth of Voice Service Voice Traffic VP Traffic
  84. 84. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page84 PS Bandwidth Dimensioning  PS IUB Bandwidth Dimensioning  PS IUB Bandwidth Dimensioning must consider the below factors:  When PS is BE Service, PS can share IUB Bandwidth with CS  Retransmission for PS  PS actual data rate is bursting, sometimes the service data rate is high, sometimes the data rate is low
  85. 85. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page85 PS Bandwidth Dimensioning(Cont.)  PS IUB Bandwidth Dimensioning  PS IUB Bandwidth Dimensioning formula: ] )Factor_SHO1(*)i_Ratio_Burst1(* )i_Ratio_ontransmissiRe1(*i_service_BW_Iub*i_Service_Traffic[ Iub i Average_PS ∑ ++ + = PS Average IUB Bandwidth + SHO Factor + Burst Ratio + Retransmission Ratio IUB Bandwidth of PS Service 1 Traffic of PS Service 1 . . . PS Service i
  86. 86. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page86 HSUPA Bandwidth Dimensioning  HSUPA IUB Bandwidth Dimensioning  Usually, HSPA is used to bear BE Service, so the Dimensioning Algorithm is similar to PS: )_1(*)_1(*)Re1(* )_1(*)/_(*)/( RatioSHORatioBurstontransmissi OverheadHSUPANodeBSubsNumSubTrafficIub HSUPAHSUPA HSUPAHSUPA   HSUPA IUB Bandwidth + SHO Factor + Burst Ratio + Retransmission Ratio + IUB Overhead Traffic of HSUPA
  87. 87. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page87 HSDPA Bandwidth Dimensioning  HSDPA IUB Bandwidth Dimensioning  HSDPA can not support Soft Handover, so the HSDPA IUB Bandwidth Dimensioning will not consider the SHO Factor: )_1(*)Re1(* )_1(*)/_(*)/( HSDPAHSDPA HSDPAHSDPA RatioBurstontransmissi OverheadHSDPANodeBSubsNumSubTrafficIub   HSDPA Iub Bandwidth + Burst Ratio + Retransmission Ratio + Iub OverheadTraffic of HSDPA
  88. 88. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page88 Relation between PS/HSPA and CS Bandwidth Dimensiong  IUB User Plane Bandwidth Dimensioning
  89. 89. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page89 Relation between PS/HSPA and CS Bandwidth Dimensiong(Cont.)  IUB User Plane Bandwidth Dimensioning  Usually, PS/HSPA is BE Service, so these service can use the rest IUB Bandwidth of CS )](,[ ___ HSPAAvgPSAvgCSPeakCStraffic IubIubIubIubMaxIub 
  90. 90. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page90 Signaling Bandwidth Dimensioning  Signaling IUB Bandwidth Dimensioning Bandwidth Dimensioning need to consider follow signalings:  NBAP Signaling  ALCAP Signaling(ATM Transport)  FP Control Frame  SRB(RRC Signaling) Usually, we think Signaling Bandwidth is 10% of Traffic Bandwidth
  91. 91. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page91 CCH Bandwidth Dimensioning  CCH IUB Bandwidth Dimensioning  DL : FACH and PCH map to one SCCPCH, typical IUB Bandwidth is 70 kbps (IP) / 74 kbps (ATM) per one SCCPCH  UL : RACH, typical IUB Bandwidth is 50 kbps (IP) / 60 kbps (ATM)  Case : 1 NodeB (Configuration : S1/1/1), DL IUB Bandwidth Dimensionning  70 kbps * 3 Cells = 210 kbps (IP)  74 kbps * 3 Cells = 222 kbps (ATM)
  92. 92. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page92 O&M Bandwidth Dimensioning  O&M IUB Bandwidth Dimensioning  NodeB  UL IUB Bandwidth: 64kbps  DL IUB Bandwidth: 64kbps
  93. 93. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page93 NodeB Bandwidth Dimensioning  NodeB IUB Bandwidth Dimensioning M&OdownlinkuplinkTotal Iub)Iub,Iub(MaxIub += UL_SignallingUL_CCHUL_TrafficUL IubIubIubIub ++= DL_SignallingDL_CCHDL_TrafficDL IubIubIubIub ++=
  94. 94. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page94 IUB Bandwidth Dimensioning Case  Input  NodeB Configuration : S1/1/1  User Num of the NodeB : 2000  SHO Factor : 30% (except Softer Handover)  R99 PS Burst Ratio : 20%  HSPA Burst Ratio : 25%  R99 PS Retransmission Ratio : 5%  HSPA Retransmission Ratio : 1%  Voice Activity Factor : 0.5
  95. 95. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page95 IUB Bandwidth Dimensioning Case (Cont.)  Input Traffic Model of Single User for Busy Time UL DL GoS Requirement AMR12.2k 20 mErl 20 mErl 2% CS64k 1 mErl 1 mErl 2% PS64k 50 kbits 100 kbits N/A PS128k 0 200 kbits N/A HSPA 1000 kbits 5000 kbits N/A
  96. 96. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page96 IUB Bandwidth Dimensioning Case (Cont.) Voice Traffic Volume: 0.02Erl * 2000 * (1+30%) = 52 Erl VP Traffic Volume: 0.001Erl*2000*(1+30%) = 2.6 Erl CS IUB Bandwidth Dimensioning - IP SubTrafficVoice /_ NodeBSubsNum /_ FactorSHO_ SubTrafficVP /_ NodeBSubsNum /_ FactorSHO_
  97. 97. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page97 IUB Bandwidth Dimensioning Case (Cont.) Voice IUB Average Bandwidth: 52 * (20 * 0.5) = 520kbps VP IUB Average Bandwidth: 2.6 * 71 = 185 kbps CS IUB Bandwidth Dimensioning - IP NodeBTrafficVoice /_ BandwidthVoice_ FactorActivity_ NodeBTrafficVP /_ BandwidthVP_
  98. 98. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page98 IUB Bandwidth Dimensioning Case (Cont.) Voice and VP IUB Peak Bandwidth: CS Peak IUB Bandwidth = 63 * 20* 0.5+ 4 * 71 = 914kbps Voice and VP IUB Average Bandwidth: CS Average Bandwidth = 520 + 185 = 705 kbps CS IUB Bandwidth Dimensioning - IP NodeBiceNumberPeakConnVo / NodeBNumberPeakConnVP / BandwidthVP_ BandwidthVoice_ BandwidthAverageVoice __ BandwidthAverageVP __ FactorActivity_
  99. 99. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page99 IUB Bandwidth Dimensioning Case (Cont.) PS64k IUB Bandwidth 106.6kbps75*5%)(1*20%)(1*30%)(1* 3600*64 100*2000  PS IUB Bandwidth Dimensioning - IP ThroughputDL_NodeBSubsNum /_ HourOne _MBR FactorSHO_ RatioBurst _ ratiosionretransmis _ BandwidthKPS _64
  100. 100. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page100 IUB Bandwidth Dimensioning Case (Cont.) PS128k IUB Bandwidth 204.8kbps144*5%)(1*20%)(1*30%)(1* 3600*128 200*2000  PS IUB Bandwidth Dimensioning - IP ThroughputDL_NodeBSubsNum /_ HourOne _MBR FactorSHO_ RatioBurst _ ratiosionretransmis _ BandwidthKPS _128 R99 PS IUB Bandwidth R99 PS Bandwidth = 106.6 + 204.8 = 311.4 kbps
  101. 101. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page101 IUB Bandwidth Dimensioning Case (Cont.) HSDPA IUB Bandwidth kbps6.8573%)01(1*1%)(1*%)52(1* 3600 5000*2000  HSPA IUB Bandwidth Dimensioning - IP ThroughputDL_NodeBSubsNum /_ HourOne _ RatioBurst _ ratiosionretransmis _ OverheadIUB_
  102. 102. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page102 IUB Bandwidth Dimensioning Case (Cont.) IUB Bandwidth Dimensioning - IP DL IUB Bandwidth Max[914K ,(705k+311.4k+3857.6k)] *110% +70k*3+64k = 5.6354 Mbps BandwidthPeakCS __ BandwidthAverageCS __ BandwidthPSR __99 BandwidthHSDPA_ BandwidthSignalling_ BandwidthCCH _ BandwidthMO _&
  103. 103. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page103 Contents 1. Traffic Model 2. Interference Analysis 3. Capacity Dimensioning 4. CE Dimensioning 5. IUB Bandwidth Dimensioning 6. Network Dimensioning Flow
  104. 104. Copyright © 2008 Huawei Technologies Co., Ltd. All rights reserved. Page104 Network Dimensioning Flow UL/DL Link Budget Cell Radius=Min (RUL, RDL) UL/DL Capacity Dimensioning Satisfy Capacity Requirement? Capacity Requirement Adjust Carrier/NodeB No Yes CE Dimensioning Output NodeB Amount/ NodeB Configuration Coverage Requirement start End IUB Bandwidth Dimensioning
  105. 105. Thank you www.huawei.com

×