SlideShare una empresa de Scribd logo
1 de 5
Descargar para leer sin conexión
Pure Appl. Chem., Vol. 74, No. 12, pp. 2247–2251, 2002.
© 2002 IUPAC

            Biotechnology and chemical weapons control*
            Mark Wheelis‡

            Section of Microbiology, University of California, 1 Shields Avenue, Davis, CA
            95616, USA

            Abstract: Biotechnology is revolutionizing the way new drugs are discovered, from a sub-
            stantially empirical art to a rational, predictive process in which targets of drugs are selected
            on the basis of known physiology, then ligands that can bind to these targets are designed.
            The same process could be used to identify promising new chemical weapons (CW) agents,
            which would be synthesized from unscheduled precursors. Biotechnology thus has the poten-
            tial of fueling CW proliferation. It can also aid the development of novel nonlethal chemical
            agents, the development of which could have a number of negative consequences for CW
            control.


INTRODUCTION
The biomedical sciences are in the midst of a revolution that began in the 1970s with the discovery of
methods of recombinant DNA technology, and is accelerating rapidly with the development of
genomics, proteomics, bioinformatics, and a host of related technologies. This has important implica-
tions for chemical arms control.
       This revolution is changing the way new drugs are discovered. Traditionally, drug discovery has
been a largely empirical art, based on the screening of natural materials for pharmacological activity,
followed by fractionation, identification of the active compound, chemical alteration to improve activ-
ity, and elucidation of the mechanism of action. Knowledge of the chemical groups responsible for
activity, and of the biochemical mechanisms of action, frequently allowed a rational or semirational
approach to the identification of other drug candidates, or derivatives with improved activity.
Nevertheless, the process has remained stubbornly empirical at its core since the discovery of penicillin
in 1928.
       The new technologies, and the detailed physiological understanding of health and disease that
they are engendering, is fostering the development of an increasingly rational approach. Fully rational
drug design is still elusive, but it is now clear that it is only a matter of time. In such a scheme, poten-
tial drug targets would be identified first on the basis of known physiology, ligands that bind to these
targets would then be designed on the basis of their structural similarity to the natural ligands, or by
computer modeling of their target binding sites. Ligands would then be synthesized, and their pharma-
cological activity determined. Already, the pharmaceutical industry is devoting a great deal of time and
resources to such processes, even though empirical methods still are a component of most drug discov-
eries.
       These new approaches are driven as much by advances in instrumentation and control as they are
by new knowledge—for example, high-speed DNA sequencers, microrobotic machines that produce
and read microarrays, that perform the reactions of combinatorial chemistry, and that conduct auto-




*Lecture presented at the IUPAC Workshop, Impact of Scientific Developments on the Chemical Weapons Convention, Bergen,
Norway, 30 June–3 July 2002. Other presentations are published in this issue, pp. 2229–2322.
‡Tel.: 1-530-752-0562; Fax: 1-530-752-3633; E-mail: mlwheelis@ucdavis.edu (email);

URL: <http://microbiology.ucdavis.edu/faculty/mwheelis/>.

                                                        2247
2248                                          M. WHEELIS

mated high-throughput screens, as well as the software that controls these machines and that compares
and analyzes the data that they produce.
      Of course, discovery of CW agents shares much with the discovery of new drugs; only the intent
and desired outcomes differ. Thus, the biomedical revolution, which promises a vast array of new drugs,
also has its dark side; the same techniques could be abused by states desiring to develop a new genera-
tion of chemical weapons [1]. This promises to seriously complicate CW control, unless States Parties
are willing and able to adapt the enforcement of the Chemical Weapons Convention (CWC) to the
changing technology.


BIOCHEMICAL TECHNOLOGY
Among the many new technologies that underlie the biotechnological revolution are some with partic-
ular relevance to the discovery of new chemical weapons. These technologies are evolving with great
rapidity, due to the immense benefits and profits that they promise, via the development of new diag-
nostic and therapeutic agents. However, the detailed understanding of the physiology of health and dis-
ease that will accrue from this will simultaneously lay the basis for the development of new CW agents,
both lethal and nonlethal. Biotechnology is also very rapidly disseminating around the world, and it will
not be long before the technical infrastructure to support an advanced biochemical weapons develop-
ment program will be widely distributed.
      Genomics is at the core of the new technology [2]. The term refers to the determination and use
of whole-genome DNA sequence information, and it rests on the rapidly expanding capability of auto-
mated, high-throughput sequencers. The availability of the sequence of the human genome makes it
possible in principle to recognize all proteins of a given class from their sequence (for instance, differ-
ent representatives of a particular type of neuroreceptor). Genomics thus greatly facilitates the recogni-
tion of promising drug or CW agent targets.
      DNA microarray technology [2] is a way of analyzing the transcriptome—the set of mRNA
molecules that determines the instantaneous rate of synthesis of each different protein. Based on
genomic sequences, glass slides or silica chips are impregnated with thousands of tiny dots, each con-
taining millions of copies of single-stranded DNA with a sequence specific to one gene in the genome.
Such chips can have one or more spots specific for each gene in the genome. The chips are then flooded
with a solution of mRNA (or a DNA copy thereof) from a cell; the RNA has been made fluorescent, so
that when it binds to the DNA on the slide, the spots become fluorescent and the amount of fluores-
cence indicates the rate at which the gene was being expressed. Such techniques are helpful in identi-
fying the function of unknown genes, as the pattern of expression in different cells, or in cells under dif-
ferent conditions can suggest a function. Microarrays can identify differences in gene expression in
different cells, and can thus help in identifying particular targets for drugs or CW agents.
      Microarray technology is also used in toxicogenomics [3], in which genomic information and
microarrays are used to predict the toxicity of chemical compounds. The changes in patterns of gene
expression that result from the exposure to toxic compounds can be quite distinctive, and thus the
response of a cell exposed to a new compound, as measured by microarrays, can give a good indication
whether it will be toxic. This is important to the pharmaceutical industry in order to avoid going into
clinical trials with a compound that will turn out to be too toxic to develop for a drug; it is obviously
also relevant to the CW designer.
      Proteomics [4,5] is the study of the entire complement of proteins of the cell. This is to some
extent approachable through microarrays that measure transcription rates; but so much of the activity of
the proteome is controlled through posttranslational modifications, or protein–protein interactions, that
direct study is necessary. Much of proteomics is currently devoted to protein separation and the mass-
spectral analysis of their fragmentation products, to allow them to be matched to gene sequences in the
genome. Protein chips, in which each spot contains millions of molecules of a particular protein, are
under construction, and a proteome chip for humans will eventually result. Such chips will allow the

                                      © 2002 IUPAC, Pure and Applied Chemistry 74, 2247–2251
Biotechnology and chemical weapons control                                     2249

determination of interactions among proteins, and will allow probing of the entire proteome for ligand
binding.
       Furthermore, it is becoming feasible to predict protein three-dimensional structure from the
genomic DNA sequence [6]. Thus, the long term may see entirely virtual drug design, with targets rec-
ognized in genomic sequences, their three-dimensional structure predicted by computer programs, their
active site modeled, and ligands designed that will bind tightly in the active site. Only the actual test-
ing of ligands as drug candidates would use real compounds.
       Combinatorial chemistry [7] allows the rapid synthesis of a range of structural variants of a
compound. It is performed in microscale computer-controlled reactors, in which sequences of reactions
generate so-called “libraries” of hundreds or thousands of related compounds. These can then be tested
for biological activity against purified proteins, cells, etc. in high-throughput screening systems, also
robotically controlled [8]. Such techniques are already in extensive use in the pharmaceutical industry,
and it is estimated that in the aggregate more than 3 million new compounds are synthesized and
screened per year.
       Computer technology is central to all of this. The microrobotics that much of the technology
relies on are computer controlled, and they generate massive amounts of data that is stored and analyzed
digitally. The management and analysis of these large biological databases is termed bioinformatics
[9].


IMPLICATIONS FOR NEW CHEMICAL WEAPONS DEVELOPMENT
A country wishing to develop a covert CW capability would be able to use biotechnology to develop
novel weapons, or variants of existing weapons. As an example, consider how nerve agents might be
developed today had they not already been discovered. Consideration of potential targets for CW would
naturally include the neuromuscular synapses that control such vital functions as respiration, and acetyl-
cholinesterase would quickly be identified as one of several key proteins for which inhibitors might be
highly lethal. Using combinatorial chemistry, thousands of structural analogs of the natural ligand for
the enzyme, acetylcholine, would be made and tested against purified acetylcholinesterase. Those that
bound tightly would be tested for lethal activity in animals. It is highly likely the V-agents (Fig. 1)




Fig. 1 Top: acetylcholine, a neurotransmitter whose accumulation in the neuromuscular synapse is transient due to
hydrolysis by acetylcholinesterase. Bottom: the V-agents, structural analogs of acetylcholine; R1 and R2 are alkyl
groups (commonly ethyl, isopropyl, or butyl). The amine is shown protonated, the form that would be found in
solution in the neuromuscular synapse.


© 2002 IUPAC, Pure and Applied Chemistry 74, 2247–2251
2250                                          M. WHEELIS

would emerge from such an approach, and quite possible that even more lethal agents than the ones cur-
rently stockpiled would be identified.
      Thus, by these means, it should be feasible to identify a number of promising candidates for new
chemical weapons, made from unscheduled precursors. Such a CW program could remain completely
invisible to the current verification regime. This suggests that it will be important for the Technical
Secretariat or the Scientific Advisory Board to continually monitor a wide range of medical biotech-
nology publications to remain current with trends in molecular pharmacology, alert to the potential for
abuse of some of this information. It will also be necessary for the Conference of States Parties, or
Review Conferences, to be willing to amend the schedules of chemicals if novel compounds emerge
that constitute serious CW threats.

NONLETHAL WEAPONS PROBLEM
Nonlethal chemical weapons (NLCW) are clearly covered by the CWC, which defines a CW agent as
“any chemical, which through its chemical action on life processes can cause death, temporary inca-
pacitation, or permanent harm to humans or animals…” However, the CWC also has an exclusion that
exempts from prohibition chemicals that are intended for “law enforcement including domestic riot
control purposes.” Thus, nonlethal chemical compounds intended for use as riot-control agents (RCAs),
and munitions to deliver them, are legal for domestic riot control under the CWC. However, “Each State
Party undertakes not to use riot control agents as a method of warfare.”
      At least one State Party (the United States) interprets the phrase “method of warfare” as imply-
ing international conflict, and thus concludes that RCAs may be used in other forms of armed conflict
(often termed “military operations other than war”), such as counterterrorism, hostage rescue, embassy
protection, etc. This has led this State Party, and probably others as well, to embark on a project to
develop new NLCW, and military-style munitions to deliver them. However, even if this very narrow
reading of the phrase “method of warfare” is accepted, it is still far from clear that the U.S. program is
legal under the CWC, as its law enforcement purpose is unclear [10].
      Beyond its dubious legality, the development and eventual deployment of NLCW is a serious
threat to the CWC for many substantive reasons:
•      it would provide a rationale for the development, production, and stockpiling of military chemi-
       cal munitions and other delivery devices, and for training troops to use them (making a mockery
       of the Article 1c prohibition of “military preparations to use chemical weapons”);
•      it would provide a nearly impenetrable cover for lethal CW development, production, and stock-
       piling;
•      synergistic pairs of NLCW may have lethal effects (and the technologies described above can help
       to discover such pairs);
•      it would provide militaries of the world with capabilities that can readily be abused—for instance,
       to modify human cognition, emotion, volition, perception, arousal, bodily control, etc;
•      it would enhance government ability to control civil disturbance—a capability of much greater
       utility to dictatorships than democracies;
•      it seriously erodes the norm against chemical weapons, and the norm against targeting noncom-
       batants; and
•      it would lead to countries entering wars with an arsenal of weapons whose use is prohibited—pre-
       cisely the situation that the CWC is designed to prevent.
      For these reasons, it is important for the Review Conference to address the problem of NLCW.
Ideally, countries that are pursuing such weapons would be persuaded that the threat they pose to the
arms control regime outweighs their military utility. If States Parties can agree on this, then the Review
Conference could agree that “method of warfare” is much broader than international conflict.


                                      © 2002 IUPAC, Pure and Applied Chemistry 74, 2247–2251
Biotechnology and chemical weapons control                               2251

       To strengthen measures against the use of RCAs as chemical weapons, it would also be useful for
the Review Conference to convene a panel of experts to recommend munitions acceptable for use in
permitted law-enforcement activities (such as hand- and rifle-propelled grenades), and ones that are not
acceptable (perhaps artillery and mortar shells, missile warheads, aerial bombs, aerial sprayers). Such
an understanding would limit the ability of States Parties to use RCAs as a method of warfare, and
would prevent them from entering conflicts with a stockpile of munitions whose use is prohibited.
       Unfortunately, consensus on the above measures is unlikely, and it is probable that there will be
significant proliferation of NLCW in the near future. Thus, this issue promises to present an enduring
problem for the Convention. Indeed, in the medium and long term, it promises to be the single most
serious threat to the continued viability of the CWC.


CONCLUSION
Biotechnology is one of the most rapidly developing fields of human endeavor, and it promises to be
the defining technology of the 21st century. It has the potential for great medical and other benefits to
humanity, but its dark side includes the capability for military weapons that may ultimately become
comparable to nuclear weapons as threats to humanity [11]. The most immediate threat is its applica-
tion to the discovery of novel CW, especially NLCW. This could, in the long term, fatally undermine
the regime against CW, and is thus a threat that deserves serious consideration by the Review
Conference.


REFERENCES
  1.   M. Wheelis. Nonproliferation Rev. 9 (1), 48–53 (2002).
  2.   D. J. Lockhart and E. A. Winzler. Nature 405, 827–836 (2000).
  3.   J. F. Waring and R. G. Ulrich. Ann. Rev. Pharmacol. Toxicol. 40, 335–352 (2000).
  4.   A. Pandey and M. Mann. Nature 405, 837–846 (2000).
  5.   R. E. Banks, M. J. Dunn, D. F. Hochstrasser, J.-C. Sanchez, W. Blackstock, D. J. Pappin, P. J.
       Selby. Lancet 356, 1749–1756 (2000).
  6.   D. A. Baker and A. Sali. Science 294, 93–96 (2001).
  7.   J. Ellman, B. Stoddard, J. Wells. Proc. Natl. Acad. Sci (USA) 94, 2779–2782 (1997).
  8.   R. E. White. Ann. Rev. Pharmacol. Toxicol. 40, 133–157 (2000).
  9.   A. Bayat. BMJ 324, 1018–1022 (2002).
 10.   A. Chayes and M. Meselson. Chem. Weapons Convention Bull. 35, 13–18 (1997).
 11.   M. Meselson. Chem. Biol. Weapons Conventions Bull. 48, 16–19 (2000).




© 2002 IUPAC, Pure and Applied Chemistry 74, 2247–2251

Más contenido relacionado

La actualidad más candente

High throughput screening (hts) copy
High throughput screening (hts)   copyHigh throughput screening (hts)   copy
High throughput screening (hts) copyIqrar Ansari
 
High throughput screening
High throughput screeningHigh throughput screening
High throughput screeningManish Kumar
 
Drug Discovery Presentation
Drug Discovery PresentationDrug Discovery Presentation
Drug Discovery PresentationLucyhague
 
High Throughput Screening Technology
High Throughput Screening TechnologyHigh Throughput Screening Technology
High Throughput Screening TechnologyUniversity Of Swabi
 
Traditional and Rational Drug Designing
Traditional and Rational Drug DesigningTraditional and Rational Drug Designing
Traditional and Rational Drug DesigningManish Kumar
 
In silico drug desigining
In silico drug desiginingIn silico drug desigining
In silico drug desiginingDevesh Shukla
 
Virtual Screening in Drug Discovery
Virtual Screening in Drug DiscoveryVirtual Screening in Drug Discovery
Virtual Screening in Drug DiscoveryAbhik Seal
 
High-throughput screening (HTS)
High-throughput screening (HTS)High-throughput screening (HTS)
High-throughput screening (HTS)SudipDandapat1
 
Role of computer in the discovery of drugs
Role of computer in the discovery of drugsRole of computer in the discovery of drugs
Role of computer in the discovery of drugsAmjad Afridi
 
Computer Aided drug Design and its discovery process
Computer Aided drug Design and its discovery process Computer Aided drug Design and its discovery process
Computer Aided drug Design and its discovery process MEHEDI HASAN
 
HIGH THROUGHPUT SCREENING Technology
HIGH THROUGHPUT SCREENING  TechnologyHIGH THROUGHPUT SCREENING  Technology
HIGH THROUGHPUT SCREENING TechnologyUniversity Of Swabi
 
presentation on in silico studies
presentation on in silico studiespresentation on in silico studies
presentation on in silico studiesShaik Sana
 
Some building blocks for Rational Drug Design
Some building blocks for Rational Drug Design Some building blocks for Rational Drug Design
Some building blocks for Rational Drug Design samthamby79
 
In vitro and high throughput screening (HTS) assays
In vitro and high throughput screening (HTS) assaysIn vitro and high throughput screening (HTS) assays
In vitro and high throughput screening (HTS) assaysEFSA EU
 
Computational Drug Discovery: Machine Learning for Making Sense of Big Data i...
Computational Drug Discovery: Machine Learning for Making Sense of Big Data i...Computational Drug Discovery: Machine Learning for Making Sense of Big Data i...
Computational Drug Discovery: Machine Learning for Making Sense of Big Data i...Chanin Nantasenamat
 
Cadd (Computer-Aided Drug Designing)
Cadd (Computer-Aided Drug Designing)Cadd (Computer-Aided Drug Designing)
Cadd (Computer-Aided Drug Designing)siddharth singh
 
drug discovery & development
drug discovery & developmentdrug discovery & development
drug discovery & developmentRohit K.
 
Computer aided drug designing
Computer aided drug designingComputer aided drug designing
Computer aided drug designingMuhammed sadiq
 

La actualidad más candente (20)

High throughput screening (hts) copy
High throughput screening (hts)   copyHigh throughput screening (hts)   copy
High throughput screening (hts) copy
 
High throughput screening
High throughput screeningHigh throughput screening
High throughput screening
 
Drug Discovery Presentation
Drug Discovery PresentationDrug Discovery Presentation
Drug Discovery Presentation
 
High Throughput Screening Technology
High Throughput Screening TechnologyHigh Throughput Screening Technology
High Throughput Screening Technology
 
Traditional and Rational Drug Designing
Traditional and Rational Drug DesigningTraditional and Rational Drug Designing
Traditional and Rational Drug Designing
 
In silico drug desigining
In silico drug desiginingIn silico drug desigining
In silico drug desigining
 
Virtual Screening in Drug Discovery
Virtual Screening in Drug DiscoveryVirtual Screening in Drug Discovery
Virtual Screening in Drug Discovery
 
High-throughput screening (HTS)
High-throughput screening (HTS)High-throughput screening (HTS)
High-throughput screening (HTS)
 
Role of computer in the discovery of drugs
Role of computer in the discovery of drugsRole of computer in the discovery of drugs
Role of computer in the discovery of drugs
 
Computer Aided drug Design and its discovery process
Computer Aided drug Design and its discovery process Computer Aided drug Design and its discovery process
Computer Aided drug Design and its discovery process
 
HIGH THROUGHPUT SCREENING Technology
HIGH THROUGHPUT SCREENING  TechnologyHIGH THROUGHPUT SCREENING  Technology
HIGH THROUGHPUT SCREENING Technology
 
presentation on in silico studies
presentation on in silico studiespresentation on in silico studies
presentation on in silico studies
 
Rational drug design
Rational drug designRational drug design
Rational drug design
 
Some building blocks for Rational Drug Design
Some building blocks for Rational Drug Design Some building blocks for Rational Drug Design
Some building blocks for Rational Drug Design
 
In vitro and high throughput screening (HTS) assays
In vitro and high throughput screening (HTS) assaysIn vitro and high throughput screening (HTS) assays
In vitro and high throughput screening (HTS) assays
 
Computational Drug Discovery: Machine Learning for Making Sense of Big Data i...
Computational Drug Discovery: Machine Learning for Making Sense of Big Data i...Computational Drug Discovery: Machine Learning for Making Sense of Big Data i...
Computational Drug Discovery: Machine Learning for Making Sense of Big Data i...
 
Cadd (Computer-Aided Drug Designing)
Cadd (Computer-Aided Drug Designing)Cadd (Computer-Aided Drug Designing)
Cadd (Computer-Aided Drug Designing)
 
drug discovery & development
drug discovery & developmentdrug discovery & development
drug discovery & development
 
Docking
DockingDocking
Docking
 
Computer aided drug designing
Computer aided drug designingComputer aided drug designing
Computer aided drug designing
 

Destacado

Reconstructing Exposures From The Uk Chemical Warfare Agent Human Research Pr...
Reconstructing Exposures From The Uk Chemical Warfare Agent Human Research Pr...Reconstructing Exposures From The Uk Chemical Warfare Agent Human Research Pr...
Reconstructing Exposures From The Uk Chemical Warfare Agent Human Research Pr...guest971b1073
 
2002 Pure Appl Chem Hill Conventional Analytical Methods Cwa
2002 Pure Appl Chem Hill Conventional Analytical Methods Cwa2002 Pure Appl Chem Hill Conventional Analytical Methods Cwa
2002 Pure Appl Chem Hill Conventional Analytical Methods Cwaguest971b1073
 
Swing2
Swing2Swing2
Swing2tony
 
Welcome To Champs Of Fifa 2007
Welcome To Champs Of Fifa 2007Welcome To Champs Of Fifa 2007
Welcome To Champs Of Fifa 2007guest5ab66a
 
Nondestructive Identification Of Chemical Warfare Agents
Nondestructive Identification Of Chemical Warfare AgentsNondestructive Identification Of Chemical Warfare Agents
Nondestructive Identification Of Chemical Warfare Agentsguest971b1073
 
Apostila de-raciocc3adnio-lc3b3gico
Apostila de-raciocc3adnio-lc3b3gicoApostila de-raciocc3adnio-lc3b3gico
Apostila de-raciocc3adnio-lc3b3gicoAmillima
 
Raiz%20quadrada
Raiz%20quadradaRaiz%20quadrada
Raiz%20quadradaAmillima
 

Destacado (9)

Reconstructing Exposures From The Uk Chemical Warfare Agent Human Research Pr...
Reconstructing Exposures From The Uk Chemical Warfare Agent Human Research Pr...Reconstructing Exposures From The Uk Chemical Warfare Agent Human Research Pr...
Reconstructing Exposures From The Uk Chemical Warfare Agent Human Research Pr...
 
Turismhotels
TurismhotelsTurismhotels
Turismhotels
 
Businessfocus09
Businessfocus09Businessfocus09
Businessfocus09
 
2002 Pure Appl Chem Hill Conventional Analytical Methods Cwa
2002 Pure Appl Chem Hill Conventional Analytical Methods Cwa2002 Pure Appl Chem Hill Conventional Analytical Methods Cwa
2002 Pure Appl Chem Hill Conventional Analytical Methods Cwa
 
Swing2
Swing2Swing2
Swing2
 
Welcome To Champs Of Fifa 2007
Welcome To Champs Of Fifa 2007Welcome To Champs Of Fifa 2007
Welcome To Champs Of Fifa 2007
 
Nondestructive Identification Of Chemical Warfare Agents
Nondestructive Identification Of Chemical Warfare AgentsNondestructive Identification Of Chemical Warfare Agents
Nondestructive Identification Of Chemical Warfare Agents
 
Apostila de-raciocc3adnio-lc3b3gico
Apostila de-raciocc3adnio-lc3b3gicoApostila de-raciocc3adnio-lc3b3gico
Apostila de-raciocc3adnio-lc3b3gico
 
Raiz%20quadrada
Raiz%20quadradaRaiz%20quadrada
Raiz%20quadrada
 

Similar a Biotechnology And Chemical Weapons Control

Bioinformatics role in Pharmaceutical industries
Bioinformatics role in Pharmaceutical industriesBioinformatics role in Pharmaceutical industries
Bioinformatics role in Pharmaceutical industriesMuzna Kashaf
 
MedImmune Industrial Placement Student Programme 2016
MedImmune Industrial Placement Student Programme 2016MedImmune Industrial Placement Student Programme 2016
MedImmune Industrial Placement Student Programme 2016Jonathan Duckworth
 
Genomics and proteomics in drug discovery and development
Genomics and proteomics in drug discovery and developmentGenomics and proteomics in drug discovery and development
Genomics and proteomics in drug discovery and developmentSuchittaU
 
In silico Drug Design: Prospective for Drug Lead Discovery
In silico Drug Design: Prospective for Drug Lead DiscoveryIn silico Drug Design: Prospective for Drug Lead Discovery
In silico Drug Design: Prospective for Drug Lead Discoveryinventionjournals
 
nanobiotechnology, achievements and development prospects
nanobiotechnology, achievements and development prospectsnanobiotechnology, achievements and development prospects
nanobiotechnology, achievements and development prospectsYULIU384426
 
A General Overview of Nano Medicine-Efficacy in Therapeutic Science and Curre...
A General Overview of Nano Medicine-Efficacy in Therapeutic Science and Curre...A General Overview of Nano Medicine-Efficacy in Therapeutic Science and Curre...
A General Overview of Nano Medicine-Efficacy in Therapeutic Science and Curre...Berklin
 
computational chemistry
computational chemistrycomputational chemistry
computational chemistrySAMUELAKANDE3
 
Applications of bioinformatics, main by kk sahu
Applications of bioinformatics, main by kk sahuApplications of bioinformatics, main by kk sahu
Applications of bioinformatics, main by kk sahuKAUSHAL SAHU
 
Nature nanotech 2007 165 regulatory
Nature nanotech 2007 165 regulatoryNature nanotech 2007 165 regulatory
Nature nanotech 2007 165 regulatoryMike Helmus
 
nature nanotech 2007 165 regulatory
nature nanotech 2007 165 regulatorynature nanotech 2007 165 regulatory
nature nanotech 2007 165 regulatoryMike Helmus
 
87560480 a-study-on-computer-aided-drug-design-for-m2-protein-in-h1 n1
87560480 a-study-on-computer-aided-drug-design-for-m2-protein-in-h1 n187560480 a-study-on-computer-aided-drug-design-for-m2-protein-in-h1 n1
87560480 a-study-on-computer-aided-drug-design-for-m2-protein-in-h1 n1Anitha1408
 
INNOVATIVE MEDICINES, TECHNOLOGIES AND APPROACHES FOR IMPROVING PATIENTS' HE...
INNOVATIVE MEDICINES, TECHNOLOGIES AND APPROACHES FOR  IMPROVING PATIENTS' HE...INNOVATIVE MEDICINES, TECHNOLOGIES AND APPROACHES FOR  IMPROVING PATIENTS' HE...
INNOVATIVE MEDICINES, TECHNOLOGIES AND APPROACHES FOR IMPROVING PATIENTS' HE...Jing Zang
 
Final MTBNZ.pptx
Final MTBNZ.pptxFinal MTBNZ.pptx
Final MTBNZ.pptxAri Mandler
 
Automated Functional Antibody Purification
Automated Functional Antibody PurificationAutomated Functional Antibody Purification
Automated Functional Antibody PurificationChris Suh
 

Similar a Biotechnology And Chemical Weapons Control (20)

Bioinformatics role in Pharmaceutical industries
Bioinformatics role in Pharmaceutical industriesBioinformatics role in Pharmaceutical industries
Bioinformatics role in Pharmaceutical industries
 
MedImmune Industrial Placement Student Programme 2016
MedImmune Industrial Placement Student Programme 2016MedImmune Industrial Placement Student Programme 2016
MedImmune Industrial Placement Student Programme 2016
 
Genomics and proteomics in drug discovery and development
Genomics and proteomics in drug discovery and developmentGenomics and proteomics in drug discovery and development
Genomics and proteomics in drug discovery and development
 
In silico Drug Design: Prospective for Drug Lead Discovery
In silico Drug Design: Prospective for Drug Lead DiscoveryIn silico Drug Design: Prospective for Drug Lead Discovery
In silico Drug Design: Prospective for Drug Lead Discovery
 
nanobiotechnology, achievements and development prospects
nanobiotechnology, achievements and development prospectsnanobiotechnology, achievements and development prospects
nanobiotechnology, achievements and development prospects
 
A General Overview of Nano Medicine-Efficacy in Therapeutic Science and Curre...
A General Overview of Nano Medicine-Efficacy in Therapeutic Science and Curre...A General Overview of Nano Medicine-Efficacy in Therapeutic Science and Curre...
A General Overview of Nano Medicine-Efficacy in Therapeutic Science and Curre...
 
computational chemistry
computational chemistrycomputational chemistry
computational chemistry
 
Gdt 2-126
Gdt 2-126Gdt 2-126
Gdt 2-126
 
Gdt 2-126 (1)
Gdt 2-126 (1)Gdt 2-126 (1)
Gdt 2-126 (1)
 
Toxicity testing
Toxicity testingToxicity testing
Toxicity testing
 
Applications of bioinformatics, main by kk sahu
Applications of bioinformatics, main by kk sahuApplications of bioinformatics, main by kk sahu
Applications of bioinformatics, main by kk sahu
 
verlinde1994.pdf
verlinde1994.pdfverlinde1994.pdf
verlinde1994.pdf
 
Nature nanotech 2007 165 regulatory
Nature nanotech 2007 165 regulatoryNature nanotech 2007 165 regulatory
Nature nanotech 2007 165 regulatory
 
nature nanotech 2007 165 regulatory
nature nanotech 2007 165 regulatorynature nanotech 2007 165 regulatory
nature nanotech 2007 165 regulatory
 
Salisha ppt (1) (1)
Salisha ppt (1) (1)Salisha ppt (1) (1)
Salisha ppt (1) (1)
 
87560480 a-study-on-computer-aided-drug-design-for-m2-protein-in-h1 n1
87560480 a-study-on-computer-aided-drug-design-for-m2-protein-in-h1 n187560480 a-study-on-computer-aided-drug-design-for-m2-protein-in-h1 n1
87560480 a-study-on-computer-aided-drug-design-for-m2-protein-in-h1 n1
 
INNOVATIVE MEDICINES, TECHNOLOGIES AND APPROACHES FOR IMPROVING PATIENTS' HE...
INNOVATIVE MEDICINES, TECHNOLOGIES AND APPROACHES FOR  IMPROVING PATIENTS' HE...INNOVATIVE MEDICINES, TECHNOLOGIES AND APPROACHES FOR  IMPROVING PATIENTS' HE...
INNOVATIVE MEDICINES, TECHNOLOGIES AND APPROACHES FOR IMPROVING PATIENTS' HE...
 
Final MTBNZ.pptx
Final MTBNZ.pptxFinal MTBNZ.pptx
Final MTBNZ.pptx
 
new drug discovery studies
new drug discovery studiesnew drug discovery studies
new drug discovery studies
 
Automated Functional Antibody Purification
Automated Functional Antibody PurificationAutomated Functional Antibody Purification
Automated Functional Antibody Purification
 

Último

Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 

Último (20)

Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 

Biotechnology And Chemical Weapons Control

  • 1. Pure Appl. Chem., Vol. 74, No. 12, pp. 2247–2251, 2002. © 2002 IUPAC Biotechnology and chemical weapons control* Mark Wheelis‡ Section of Microbiology, University of California, 1 Shields Avenue, Davis, CA 95616, USA Abstract: Biotechnology is revolutionizing the way new drugs are discovered, from a sub- stantially empirical art to a rational, predictive process in which targets of drugs are selected on the basis of known physiology, then ligands that can bind to these targets are designed. The same process could be used to identify promising new chemical weapons (CW) agents, which would be synthesized from unscheduled precursors. Biotechnology thus has the poten- tial of fueling CW proliferation. It can also aid the development of novel nonlethal chemical agents, the development of which could have a number of negative consequences for CW control. INTRODUCTION The biomedical sciences are in the midst of a revolution that began in the 1970s with the discovery of methods of recombinant DNA technology, and is accelerating rapidly with the development of genomics, proteomics, bioinformatics, and a host of related technologies. This has important implica- tions for chemical arms control. This revolution is changing the way new drugs are discovered. Traditionally, drug discovery has been a largely empirical art, based on the screening of natural materials for pharmacological activity, followed by fractionation, identification of the active compound, chemical alteration to improve activ- ity, and elucidation of the mechanism of action. Knowledge of the chemical groups responsible for activity, and of the biochemical mechanisms of action, frequently allowed a rational or semirational approach to the identification of other drug candidates, or derivatives with improved activity. Nevertheless, the process has remained stubbornly empirical at its core since the discovery of penicillin in 1928. The new technologies, and the detailed physiological understanding of health and disease that they are engendering, is fostering the development of an increasingly rational approach. Fully rational drug design is still elusive, but it is now clear that it is only a matter of time. In such a scheme, poten- tial drug targets would be identified first on the basis of known physiology, ligands that bind to these targets would then be designed on the basis of their structural similarity to the natural ligands, or by computer modeling of their target binding sites. Ligands would then be synthesized, and their pharma- cological activity determined. Already, the pharmaceutical industry is devoting a great deal of time and resources to such processes, even though empirical methods still are a component of most drug discov- eries. These new approaches are driven as much by advances in instrumentation and control as they are by new knowledge—for example, high-speed DNA sequencers, microrobotic machines that produce and read microarrays, that perform the reactions of combinatorial chemistry, and that conduct auto- *Lecture presented at the IUPAC Workshop, Impact of Scientific Developments on the Chemical Weapons Convention, Bergen, Norway, 30 June–3 July 2002. Other presentations are published in this issue, pp. 2229–2322. ‡Tel.: 1-530-752-0562; Fax: 1-530-752-3633; E-mail: mlwheelis@ucdavis.edu (email); URL: <http://microbiology.ucdavis.edu/faculty/mwheelis/>. 2247
  • 2. 2248 M. WHEELIS mated high-throughput screens, as well as the software that controls these machines and that compares and analyzes the data that they produce. Of course, discovery of CW agents shares much with the discovery of new drugs; only the intent and desired outcomes differ. Thus, the biomedical revolution, which promises a vast array of new drugs, also has its dark side; the same techniques could be abused by states desiring to develop a new genera- tion of chemical weapons [1]. This promises to seriously complicate CW control, unless States Parties are willing and able to adapt the enforcement of the Chemical Weapons Convention (CWC) to the changing technology. BIOCHEMICAL TECHNOLOGY Among the many new technologies that underlie the biotechnological revolution are some with partic- ular relevance to the discovery of new chemical weapons. These technologies are evolving with great rapidity, due to the immense benefits and profits that they promise, via the development of new diag- nostic and therapeutic agents. However, the detailed understanding of the physiology of health and dis- ease that will accrue from this will simultaneously lay the basis for the development of new CW agents, both lethal and nonlethal. Biotechnology is also very rapidly disseminating around the world, and it will not be long before the technical infrastructure to support an advanced biochemical weapons develop- ment program will be widely distributed. Genomics is at the core of the new technology [2]. The term refers to the determination and use of whole-genome DNA sequence information, and it rests on the rapidly expanding capability of auto- mated, high-throughput sequencers. The availability of the sequence of the human genome makes it possible in principle to recognize all proteins of a given class from their sequence (for instance, differ- ent representatives of a particular type of neuroreceptor). Genomics thus greatly facilitates the recogni- tion of promising drug or CW agent targets. DNA microarray technology [2] is a way of analyzing the transcriptome—the set of mRNA molecules that determines the instantaneous rate of synthesis of each different protein. Based on genomic sequences, glass slides or silica chips are impregnated with thousands of tiny dots, each con- taining millions of copies of single-stranded DNA with a sequence specific to one gene in the genome. Such chips can have one or more spots specific for each gene in the genome. The chips are then flooded with a solution of mRNA (or a DNA copy thereof) from a cell; the RNA has been made fluorescent, so that when it binds to the DNA on the slide, the spots become fluorescent and the amount of fluores- cence indicates the rate at which the gene was being expressed. Such techniques are helpful in identi- fying the function of unknown genes, as the pattern of expression in different cells, or in cells under dif- ferent conditions can suggest a function. Microarrays can identify differences in gene expression in different cells, and can thus help in identifying particular targets for drugs or CW agents. Microarray technology is also used in toxicogenomics [3], in which genomic information and microarrays are used to predict the toxicity of chemical compounds. The changes in patterns of gene expression that result from the exposure to toxic compounds can be quite distinctive, and thus the response of a cell exposed to a new compound, as measured by microarrays, can give a good indication whether it will be toxic. This is important to the pharmaceutical industry in order to avoid going into clinical trials with a compound that will turn out to be too toxic to develop for a drug; it is obviously also relevant to the CW designer. Proteomics [4,5] is the study of the entire complement of proteins of the cell. This is to some extent approachable through microarrays that measure transcription rates; but so much of the activity of the proteome is controlled through posttranslational modifications, or protein–protein interactions, that direct study is necessary. Much of proteomics is currently devoted to protein separation and the mass- spectral analysis of their fragmentation products, to allow them to be matched to gene sequences in the genome. Protein chips, in which each spot contains millions of molecules of a particular protein, are under construction, and a proteome chip for humans will eventually result. Such chips will allow the © 2002 IUPAC, Pure and Applied Chemistry 74, 2247–2251
  • 3. Biotechnology and chemical weapons control 2249 determination of interactions among proteins, and will allow probing of the entire proteome for ligand binding. Furthermore, it is becoming feasible to predict protein three-dimensional structure from the genomic DNA sequence [6]. Thus, the long term may see entirely virtual drug design, with targets rec- ognized in genomic sequences, their three-dimensional structure predicted by computer programs, their active site modeled, and ligands designed that will bind tightly in the active site. Only the actual test- ing of ligands as drug candidates would use real compounds. Combinatorial chemistry [7] allows the rapid synthesis of a range of structural variants of a compound. It is performed in microscale computer-controlled reactors, in which sequences of reactions generate so-called “libraries” of hundreds or thousands of related compounds. These can then be tested for biological activity against purified proteins, cells, etc. in high-throughput screening systems, also robotically controlled [8]. Such techniques are already in extensive use in the pharmaceutical industry, and it is estimated that in the aggregate more than 3 million new compounds are synthesized and screened per year. Computer technology is central to all of this. The microrobotics that much of the technology relies on are computer controlled, and they generate massive amounts of data that is stored and analyzed digitally. The management and analysis of these large biological databases is termed bioinformatics [9]. IMPLICATIONS FOR NEW CHEMICAL WEAPONS DEVELOPMENT A country wishing to develop a covert CW capability would be able to use biotechnology to develop novel weapons, or variants of existing weapons. As an example, consider how nerve agents might be developed today had they not already been discovered. Consideration of potential targets for CW would naturally include the neuromuscular synapses that control such vital functions as respiration, and acetyl- cholinesterase would quickly be identified as one of several key proteins for which inhibitors might be highly lethal. Using combinatorial chemistry, thousands of structural analogs of the natural ligand for the enzyme, acetylcholine, would be made and tested against purified acetylcholinesterase. Those that bound tightly would be tested for lethal activity in animals. It is highly likely the V-agents (Fig. 1) Fig. 1 Top: acetylcholine, a neurotransmitter whose accumulation in the neuromuscular synapse is transient due to hydrolysis by acetylcholinesterase. Bottom: the V-agents, structural analogs of acetylcholine; R1 and R2 are alkyl groups (commonly ethyl, isopropyl, or butyl). The amine is shown protonated, the form that would be found in solution in the neuromuscular synapse. © 2002 IUPAC, Pure and Applied Chemistry 74, 2247–2251
  • 4. 2250 M. WHEELIS would emerge from such an approach, and quite possible that even more lethal agents than the ones cur- rently stockpiled would be identified. Thus, by these means, it should be feasible to identify a number of promising candidates for new chemical weapons, made from unscheduled precursors. Such a CW program could remain completely invisible to the current verification regime. This suggests that it will be important for the Technical Secretariat or the Scientific Advisory Board to continually monitor a wide range of medical biotech- nology publications to remain current with trends in molecular pharmacology, alert to the potential for abuse of some of this information. It will also be necessary for the Conference of States Parties, or Review Conferences, to be willing to amend the schedules of chemicals if novel compounds emerge that constitute serious CW threats. NONLETHAL WEAPONS PROBLEM Nonlethal chemical weapons (NLCW) are clearly covered by the CWC, which defines a CW agent as “any chemical, which through its chemical action on life processes can cause death, temporary inca- pacitation, or permanent harm to humans or animals…” However, the CWC also has an exclusion that exempts from prohibition chemicals that are intended for “law enforcement including domestic riot control purposes.” Thus, nonlethal chemical compounds intended for use as riot-control agents (RCAs), and munitions to deliver them, are legal for domestic riot control under the CWC. However, “Each State Party undertakes not to use riot control agents as a method of warfare.” At least one State Party (the United States) interprets the phrase “method of warfare” as imply- ing international conflict, and thus concludes that RCAs may be used in other forms of armed conflict (often termed “military operations other than war”), such as counterterrorism, hostage rescue, embassy protection, etc. This has led this State Party, and probably others as well, to embark on a project to develop new NLCW, and military-style munitions to deliver them. However, even if this very narrow reading of the phrase “method of warfare” is accepted, it is still far from clear that the U.S. program is legal under the CWC, as its law enforcement purpose is unclear [10]. Beyond its dubious legality, the development and eventual deployment of NLCW is a serious threat to the CWC for many substantive reasons: • it would provide a rationale for the development, production, and stockpiling of military chemi- cal munitions and other delivery devices, and for training troops to use them (making a mockery of the Article 1c prohibition of “military preparations to use chemical weapons”); • it would provide a nearly impenetrable cover for lethal CW development, production, and stock- piling; • synergistic pairs of NLCW may have lethal effects (and the technologies described above can help to discover such pairs); • it would provide militaries of the world with capabilities that can readily be abused—for instance, to modify human cognition, emotion, volition, perception, arousal, bodily control, etc; • it would enhance government ability to control civil disturbance—a capability of much greater utility to dictatorships than democracies; • it seriously erodes the norm against chemical weapons, and the norm against targeting noncom- batants; and • it would lead to countries entering wars with an arsenal of weapons whose use is prohibited—pre- cisely the situation that the CWC is designed to prevent. For these reasons, it is important for the Review Conference to address the problem of NLCW. Ideally, countries that are pursuing such weapons would be persuaded that the threat they pose to the arms control regime outweighs their military utility. If States Parties can agree on this, then the Review Conference could agree that “method of warfare” is much broader than international conflict. © 2002 IUPAC, Pure and Applied Chemistry 74, 2247–2251
  • 5. Biotechnology and chemical weapons control 2251 To strengthen measures against the use of RCAs as chemical weapons, it would also be useful for the Review Conference to convene a panel of experts to recommend munitions acceptable for use in permitted law-enforcement activities (such as hand- and rifle-propelled grenades), and ones that are not acceptable (perhaps artillery and mortar shells, missile warheads, aerial bombs, aerial sprayers). Such an understanding would limit the ability of States Parties to use RCAs as a method of warfare, and would prevent them from entering conflicts with a stockpile of munitions whose use is prohibited. Unfortunately, consensus on the above measures is unlikely, and it is probable that there will be significant proliferation of NLCW in the near future. Thus, this issue promises to present an enduring problem for the Convention. Indeed, in the medium and long term, it promises to be the single most serious threat to the continued viability of the CWC. CONCLUSION Biotechnology is one of the most rapidly developing fields of human endeavor, and it promises to be the defining technology of the 21st century. It has the potential for great medical and other benefits to humanity, but its dark side includes the capability for military weapons that may ultimately become comparable to nuclear weapons as threats to humanity [11]. The most immediate threat is its applica- tion to the discovery of novel CW, especially NLCW. This could, in the long term, fatally undermine the regime against CW, and is thus a threat that deserves serious consideration by the Review Conference. REFERENCES 1. M. Wheelis. Nonproliferation Rev. 9 (1), 48–53 (2002). 2. D. J. Lockhart and E. A. Winzler. Nature 405, 827–836 (2000). 3. J. F. Waring and R. G. Ulrich. Ann. Rev. Pharmacol. Toxicol. 40, 335–352 (2000). 4. A. Pandey and M. Mann. Nature 405, 837–846 (2000). 5. R. E. Banks, M. J. Dunn, D. F. Hochstrasser, J.-C. Sanchez, W. Blackstock, D. J. Pappin, P. J. Selby. Lancet 356, 1749–1756 (2000). 6. D. A. Baker and A. Sali. Science 294, 93–96 (2001). 7. J. Ellman, B. Stoddard, J. Wells. Proc. Natl. Acad. Sci (USA) 94, 2779–2782 (1997). 8. R. E. White. Ann. Rev. Pharmacol. Toxicol. 40, 133–157 (2000). 9. A. Bayat. BMJ 324, 1018–1022 (2002). 10. A. Chayes and M. Meselson. Chem. Weapons Convention Bull. 35, 13–18 (1997). 11. M. Meselson. Chem. Biol. Weapons Conventions Bull. 48, 16–19 (2000). © 2002 IUPAC, Pure and Applied Chemistry 74, 2247–2251