SlideShare a Scribd company logo
1 of 29
This group of organic compounds containing two functional groups, the carbonyl group and  carbon-carbon double bond. In other word we can consider imagery that is including the conjugated diene skeleton as follows.  -- Unsaturated Carbonyl   Compound
We choose the longest carbon skeleton containing the double bond and the carbonyl group and numbering it whereas the carbon of carbonyl group take the No. 1 in aldehydes, and both the carbonyl group and unsaturated bond the lowest numbers in case of ketones. Then giving the name of aldehyde or ketone as you study in aldehydes and ketones in the first year with designating the position of double bond. Nomenclature:
 
In the   -unsaturated carbonyl compounds, the carbon-carbon double bond and the carbon-oxygen double bond are separated by just one carbon-carbon single bond; that is, the double bonds are  conjugated.  Because of this conjugation, such compounds possess not only the properties of the individual functional groups, but certain other properties besides.  Structure and properties
 
 
 
The general ways to make compounds of this kind includes: the aldol condensation,; dehydrohalogenation of a-halo acids and the Perkin condensation, and Knovenagel condensation. Preparation
Examples: Acraldehyde (acrolein) (propenal)  :   Dehydration of  glycerol:  By heating glycerol with potassium hydrogen sulphate or with conc. Sulfuric acid.
Oxidation of allyl alcohol using MnO 2 : By passing acetaldehyde and formaldehyde vapours over sodium silicate as a catalyst.
By direct oxidation of propylene : By pyrolysis of diallyl ether :
Crotonaldehyde   It is prepared from acetaldehyde by aldol condensation:
Interaction of  functional group These compounds undergo both electrophilic and nucleophilic addition according to the following: Electrophilic Addition
The  C=O, -COOH, -COOR , and  -CN  groups are powerfully electron­-withdrawing groups, and therefore would be expected to deactivate a carbon­-carbon double bond toward electrophilic addition. This is found to be true:
 -­ unsaturated ketones, acids, esters, and nitriles are in general less reactive than simple alkenes toward reagents like bromine and the hydrogen halides. But this powerful electron withdrawal, which deactivates a carbon-carbon double bond toward electrophilic addition, at the same time  activates  toward nucleophilic addition. As a result, the carbon-carbon double bond of an   - ­ unsaturated ketone, acid, ester, or nitrile is susceptible to nucleophilic attack, and undergoes a set of reactions, nucleopbilic addition, that is uncommon for the simple alkenes. This reactivity toward nucleophiles is primarily due, not to a simple inductive effect of these substituents, but rather to their  conjugation with  the carbon-carbon double bond.
Examples:
The model of electrophilic addition could be explained in the following Scheme:
Intermediate I is the more stable, since the positive charge is carried by carbon atoms alone, rather than partly by the higher electronegative oxygen atom. In the second step of addition, a negative ion or basic molecule attaches itself either to the carbonyl carbon or the b-carbon of the hybrid ion 1.
Of the two possibilities, only addition to the b-carbon yields a stable product (Ill), which is simply the enol form of the saturated carbonyl compound. The enol form then undergoes tautomerization to the keto form to give the observed product (IV).
Nucleophilic addition Aqueous sodium cyanide converts a,b-unsaturated carbonyl compounds into b-cyano carbonyl compounds. The reaction amounts to addition of the elements of HCN to the carbon-carbon double bond. For example:
Ammonia or certain derivatives of ammonia (amines, hydroxylamine, phenyl­hydrazine, etc.) add to a,b-unsaturated carbonyl compounds to yield b-amino carbonyl compounds. For example:
These reactions are believed to take place by the following mechanism:
 
The Michael addition: Of special importance in synthesis is the nucleophilic addition of carbanions to a,b -unsaturated carbonyl compounds known as the Michael addition. Like the reactions of carbanions , it results in formation of carbon-carbon bonds. For example:
 
The Michael addition is believed to proceed by the following mechanism (shown for malonic ester):
The Diels-Alder reaction  -Unsaturated carbonyl compounds undergo an exceedingly useful reaction with conjugated dienes, known as the Diels-Alder reaction. This is an addition reaction in which C-I and C-4 of the conjugated diene system become attached to the doubly-bonded carbons of the unsaturated carbonyl compound to form a six­ membered ring.
 
 

More Related Content

What's hot

1,3 dipolar cycloaddition Reactions
1,3 dipolar cycloaddition Reactions1,3 dipolar cycloaddition Reactions
1,3 dipolar cycloaddition ReactionsHarish Chopra
 
Quinoline and isoquinoline- heterocyclic chemistry- pharmacy
Quinoline and isoquinoline- heterocyclic chemistry- pharmacyQuinoline and isoquinoline- heterocyclic chemistry- pharmacy
Quinoline and isoquinoline- heterocyclic chemistry- pharmacyAkhil Nagar
 
Carbocations and Their Stability
Carbocations and Their StabilityCarbocations and Their Stability
Carbocations and Their StabilityFARAZ RANA
 
Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Harish Chopra
 
Nucleophilic substitution sn1 sn2 nucleophile halogenoalkane in organic chemi...
Nucleophilic substitution sn1 sn2 nucleophile halogenoalkane in organic chemi...Nucleophilic substitution sn1 sn2 nucleophile halogenoalkane in organic chemi...
Nucleophilic substitution sn1 sn2 nucleophile halogenoalkane in organic chemi...DocumentStory
 
Inductive effect and mesomeric effect
Inductive effect and mesomeric effectInductive effect and mesomeric effect
Inductive effect and mesomeric effectjagan vana
 
Electrophilic aromatic substitution reactions
Electrophilic aromatic substitution reactionsElectrophilic aromatic substitution reactions
Electrophilic aromatic substitution reactionsKhan Firoz
 

What's hot (20)

Addition Reaction.pptx
Addition Reaction.pptxAddition Reaction.pptx
Addition Reaction.pptx
 
Carbanions
CarbanionsCarbanions
Carbanions
 
Photochemistry
PhotochemistryPhotochemistry
Photochemistry
 
1,3 dipolar cycloaddition Reactions
1,3 dipolar cycloaddition Reactions1,3 dipolar cycloaddition Reactions
1,3 dipolar cycloaddition Reactions
 
Quinoline and isoquinoline- heterocyclic chemistry- pharmacy
Quinoline and isoquinoline- heterocyclic chemistry- pharmacyQuinoline and isoquinoline- heterocyclic chemistry- pharmacy
Quinoline and isoquinoline- heterocyclic chemistry- pharmacy
 
Carbocations and Their Stability
Carbocations and Their StabilityCarbocations and Their Stability
Carbocations and Their Stability
 
Epoxide
EpoxideEpoxide
Epoxide
 
Carbocation ppt
Carbocation pptCarbocation ppt
Carbocation ppt
 
Addition reaction sm
Addition reaction smAddition reaction sm
Addition reaction sm
 
Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]Cycloaddition reactions [2+2]
Cycloaddition reactions [2+2]
 
Elimination reaction
Elimination reactionElimination reaction
Elimination reaction
 
Elimination reaction
Elimination reactionElimination reaction
Elimination reaction
 
Reaction intermediates
Reaction intermediatesReaction intermediates
Reaction intermediates
 
3. NaBH4
3. NaBH43. NaBH4
3. NaBH4
 
4. Wilkinson's Catalyst
4. Wilkinson's Catalyst4. Wilkinson's Catalyst
4. Wilkinson's Catalyst
 
1.5 elimination reaction
1.5 elimination reaction1.5 elimination reaction
1.5 elimination reaction
 
Nucleophilic substitution sn1 sn2 nucleophile halogenoalkane in organic chemi...
Nucleophilic substitution sn1 sn2 nucleophile halogenoalkane in organic chemi...Nucleophilic substitution sn1 sn2 nucleophile halogenoalkane in organic chemi...
Nucleophilic substitution sn1 sn2 nucleophile halogenoalkane in organic chemi...
 
Inductive effect and mesomeric effect
Inductive effect and mesomeric effectInductive effect and mesomeric effect
Inductive effect and mesomeric effect
 
Electrophilic aromatic substitution reactions
Electrophilic aromatic substitution reactionsElectrophilic aromatic substitution reactions
Electrophilic aromatic substitution reactions
 
Carbanion
CarbanionCarbanion
Carbanion
 

Similar to Unsaturated Carbonyl Compound

Och 300 aldehyde and ketones
Och 300 aldehyde and ketones Och 300 aldehyde and ketones
Och 300 aldehyde and ketones 2010kreem
 
Alkenes and their preparation-HYDROCARBONS PART 2
Alkenes and their preparation-HYDROCARBONS PART 2Alkenes and their preparation-HYDROCARBONS PART 2
Alkenes and their preparation-HYDROCARBONS PART 2ritik
 
Carbonyl Compounds 2
Carbonyl Compounds 2Carbonyl Compounds 2
Carbonyl Compounds 2gueste4c39d
 
All About Aldehydes
All About AldehydesAll About Aldehydes
All About AldehydesZy x Riaru
 
Carbonyl compounds
Carbonyl compoundsCarbonyl compounds
Carbonyl compoundsjagan vana
 
Common named reactions
Common named reactions  Common named reactions
Common named reactions shekhar suman
 
Hydrocarbon class 11th .pptx
Hydrocarbon class 11th .pptxHydrocarbon class 11th .pptx
Hydrocarbon class 11th .pptxLakshay Singh
 
Alkene & its preparation
Alkene & its preparationAlkene & its preparation
Alkene & its preparationAlvyPervezZidan
 
PREPARATION & REACTIONS OF ALKENES
PREPARATION & REACTIONS OF ALKENESPREPARATION & REACTIONS OF ALKENES
PREPARATION & REACTIONS OF ALKENESNidhi Sharma
 
nucleophilic addition reaction sem ii poc i
nucleophilic addition reaction sem ii poc inucleophilic addition reaction sem ii poc i
nucleophilic addition reaction sem ii poc iAtulBendale2
 
Diels alder and stability of conjucated dienes
Diels alder and stability of conjucated dienesDiels alder and stability of conjucated dienes
Diels alder and stability of conjucated dienesMaruthamuthu Murugesan
 
Naming of organic compounds i, 23 (1,2)
Naming of organic compounds i, 23 (1,2)Naming of organic compounds i, 23 (1,2)
Naming of organic compounds i, 23 (1,2)K. Shahzad Baig
 
c15hydrocarbons-161113170003.pptx
c15hydrocarbons-161113170003.pptxc15hydrocarbons-161113170003.pptx
c15hydrocarbons-161113170003.pptxShresthSingh15
 
Chem sem iii unit-iii aldehyde part-i
Chem sem iii unit-iii aldehyde part-iChem sem iii unit-iii aldehyde part-i
Chem sem iii unit-iii aldehyde part-iShivshankarMore1
 

Similar to Unsaturated Carbonyl Compound (20)

Och 300 aldehyde and ketones
Och 300 aldehyde and ketones Och 300 aldehyde and ketones
Och 300 aldehyde and ketones
 
Organic 3
Organic 3Organic 3
Organic 3
 
Chapter 3 Alkenes
Chapter 3 AlkenesChapter 3 Alkenes
Chapter 3 Alkenes
 
Latha Chemistry ppt.pptx
Latha Chemistry ppt.pptxLatha Chemistry ppt.pptx
Latha Chemistry ppt.pptx
 
Alkenes and their preparation-HYDROCARBONS PART 2
Alkenes and their preparation-HYDROCARBONS PART 2Alkenes and their preparation-HYDROCARBONS PART 2
Alkenes and their preparation-HYDROCARBONS PART 2
 
Carbonyl Compounds 2
Carbonyl Compounds 2Carbonyl Compounds 2
Carbonyl Compounds 2
 
All About Aldehydes
All About AldehydesAll About Aldehydes
All About Aldehydes
 
Carbonyl compounds
Carbonyl compoundsCarbonyl compounds
Carbonyl compounds
 
Common named reactions
Common named reactions  Common named reactions
Common named reactions
 
Hydrocarbon class 11th .pptx
Hydrocarbon class 11th .pptxHydrocarbon class 11th .pptx
Hydrocarbon class 11th .pptx
 
alkyne
alkynealkyne
alkyne
 
Alkene & its preparation
Alkene & its preparationAlkene & its preparation
Alkene & its preparation
 
Solved aldehydes and ketones
Solved aldehydes and ketones Solved aldehydes and ketones
Solved aldehydes and ketones
 
PREPARATION & REACTIONS OF ALKENES
PREPARATION & REACTIONS OF ALKENESPREPARATION & REACTIONS OF ALKENES
PREPARATION & REACTIONS OF ALKENES
 
chapter 15 HC,s.pptx
chapter 15 HC,s.pptxchapter 15 HC,s.pptx
chapter 15 HC,s.pptx
 
nucleophilic addition reaction sem ii poc i
nucleophilic addition reaction sem ii poc inucleophilic addition reaction sem ii poc i
nucleophilic addition reaction sem ii poc i
 
Diels alder and stability of conjucated dienes
Diels alder and stability of conjucated dienesDiels alder and stability of conjucated dienes
Diels alder and stability of conjucated dienes
 
Naming of organic compounds i, 23 (1,2)
Naming of organic compounds i, 23 (1,2)Naming of organic compounds i, 23 (1,2)
Naming of organic compounds i, 23 (1,2)
 
c15hydrocarbons-161113170003.pptx
c15hydrocarbons-161113170003.pptxc15hydrocarbons-161113170003.pptx
c15hydrocarbons-161113170003.pptx
 
Chem sem iii unit-iii aldehyde part-i
Chem sem iii unit-iii aldehyde part-iChem sem iii unit-iii aldehyde part-i
Chem sem iii unit-iii aldehyde part-i
 

Recently uploaded

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 

Recently uploaded (20)

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 

Unsaturated Carbonyl Compound

  • 1. This group of organic compounds containing two functional groups, the carbonyl group and carbon-carbon double bond. In other word we can consider imagery that is including the conjugated diene skeleton as follows.  -- Unsaturated Carbonyl Compound
  • 2. We choose the longest carbon skeleton containing the double bond and the carbonyl group and numbering it whereas the carbon of carbonyl group take the No. 1 in aldehydes, and both the carbonyl group and unsaturated bond the lowest numbers in case of ketones. Then giving the name of aldehyde or ketone as you study in aldehydes and ketones in the first year with designating the position of double bond. Nomenclature:
  • 3.  
  • 4. In the  -unsaturated carbonyl compounds, the carbon-carbon double bond and the carbon-oxygen double bond are separated by just one carbon-carbon single bond; that is, the double bonds are conjugated. Because of this conjugation, such compounds possess not only the properties of the individual functional groups, but certain other properties besides. Structure and properties
  • 5.  
  • 6.  
  • 7.  
  • 8. The general ways to make compounds of this kind includes: the aldol condensation,; dehydrohalogenation of a-halo acids and the Perkin condensation, and Knovenagel condensation. Preparation
  • 9. Examples: Acraldehyde (acrolein) (propenal) : Dehydration of glycerol: By heating glycerol with potassium hydrogen sulphate or with conc. Sulfuric acid.
  • 10. Oxidation of allyl alcohol using MnO 2 : By passing acetaldehyde and formaldehyde vapours over sodium silicate as a catalyst.
  • 11. By direct oxidation of propylene : By pyrolysis of diallyl ether :
  • 12. Crotonaldehyde It is prepared from acetaldehyde by aldol condensation:
  • 13. Interaction of functional group These compounds undergo both electrophilic and nucleophilic addition according to the following: Electrophilic Addition
  • 14. The C=O, -COOH, -COOR , and -CN groups are powerfully electron­-withdrawing groups, and therefore would be expected to deactivate a carbon­-carbon double bond toward electrophilic addition. This is found to be true:
  • 15.  -­ unsaturated ketones, acids, esters, and nitriles are in general less reactive than simple alkenes toward reagents like bromine and the hydrogen halides. But this powerful electron withdrawal, which deactivates a carbon-carbon double bond toward electrophilic addition, at the same time activates toward nucleophilic addition. As a result, the carbon-carbon double bond of an  - ­ unsaturated ketone, acid, ester, or nitrile is susceptible to nucleophilic attack, and undergoes a set of reactions, nucleopbilic addition, that is uncommon for the simple alkenes. This reactivity toward nucleophiles is primarily due, not to a simple inductive effect of these substituents, but rather to their conjugation with the carbon-carbon double bond.
  • 17. The model of electrophilic addition could be explained in the following Scheme:
  • 18. Intermediate I is the more stable, since the positive charge is carried by carbon atoms alone, rather than partly by the higher electronegative oxygen atom. In the second step of addition, a negative ion or basic molecule attaches itself either to the carbonyl carbon or the b-carbon of the hybrid ion 1.
  • 19. Of the two possibilities, only addition to the b-carbon yields a stable product (Ill), which is simply the enol form of the saturated carbonyl compound. The enol form then undergoes tautomerization to the keto form to give the observed product (IV).
  • 20. Nucleophilic addition Aqueous sodium cyanide converts a,b-unsaturated carbonyl compounds into b-cyano carbonyl compounds. The reaction amounts to addition of the elements of HCN to the carbon-carbon double bond. For example:
  • 21. Ammonia or certain derivatives of ammonia (amines, hydroxylamine, phenyl­hydrazine, etc.) add to a,b-unsaturated carbonyl compounds to yield b-amino carbonyl compounds. For example:
  • 22. These reactions are believed to take place by the following mechanism:
  • 23.  
  • 24. The Michael addition: Of special importance in synthesis is the nucleophilic addition of carbanions to a,b -unsaturated carbonyl compounds known as the Michael addition. Like the reactions of carbanions , it results in formation of carbon-carbon bonds. For example:
  • 25.  
  • 26. The Michael addition is believed to proceed by the following mechanism (shown for malonic ester):
  • 27. The Diels-Alder reaction  -Unsaturated carbonyl compounds undergo an exceedingly useful reaction with conjugated dienes, known as the Diels-Alder reaction. This is an addition reaction in which C-I and C-4 of the conjugated diene system become attached to the doubly-bonded carbons of the unsaturated carbonyl compound to form a six­ membered ring.
  • 28.  
  • 29.