SlideShare una empresa de Scribd logo
1 de 19
3D–The Basics
3D–The Basics


Use of 3D
Displaying and
 Constructing 3D Models
Examining 3D Software
 Tools
Use of 3D
In general, there are fundamental differences between Movie and Game generated assets.
A primary concern is polygon count and efficiency. Currently the only way to model in video
games is by using polygons, which can require a denser mesh to emulate smoother or more
natural looking models such as humans and animals. NURBS models can be created, but
need to be converted and optimized to polygons for use in the game. In pre-rendered
movies, any technique is allowed to create your models.
Movie models can be generated up to millions of polygons using several different
techniques at once. A model consisting of NURBS and polygons as well as subdivision
surface models is normal and completely acceptable.
Gaming models have to be more efficient in their use of modeled details to maintain a
manageable data set to render. The reasoning here is that an efficient streamlined
environment composed of the lower poly assets will render more smoothly and give better
frame to frame renders during gameplay. What your gaming system is in essence, is a
renderer that constantly has the task of rendering each frame of gameplay at 30 frames per
second. Some games hit the magic number of 60 frames a second. If this rate drops during
the game the result is a poor experience and hampered gameplay. This applies to PC games
as well, although they will typically have more processing power to run higher resolution
models.
With constant innovations and improvement in next-gen consoles and technology,
development of more advanced techniques and processes give us more detailed looking
models at a lower cost. One of these advances is the use of normal mapping. A normal
map acts like a bump map, in that is adds surface detail without adding polygons. Normal
maps go a step further because they actually replace the surface normal with new multi-
channel data to represent an X, Y, Z coordinate system. What this means is that we can
create a high resolution model of 2 or 3 million polygons and bake the high resolution detail
down to a normal map that retains the component space data of that high resolution
model. It is then a process to create a streamlined model that emulates the general
proportions of the high density model, but at a much more efficient poly count of 2500, for
example. Once the normal map data is applied to this low-res rendition of our high-res
monster, the model immediately looks more complex geometrically but at an affordable
rendering cost. Movie productions also use Normal Mapping techniques, but the asset that
they use the Normal Map on is typically a more detailed model than the one used in games.

Another difference between movie and game modeling is the fact that not everything needs
to be built for a movie or pre-rendered model. It is common practice for film to only build
those elements in the scene that you can actually see on the screen. In a game
environment, it is necessary to make most things viewable from 360 degrees. Can you
imagine walking around your favorite game level and not seeing the back side of 3D car you
just walked up to? Or not being able to see the back of the character you just spoke to? It
wouldn’t keep you immersed in the game very long. Well in a movie if the camera never
travels to the rear of that set or never moves around the corner, it doesn’t need to be built.
This is certainly true for aspects of the gaming world, like the far off detail of the mountains,
or implied buildings that you as a player can’t actually get to in the game.
A common practice among the two disciplines is that of creating LOD models, or Level Of
Detail models. In a game, when a character carrying a machine gun walks up to you from
the far end of a long hallway, chances are it is not a consistent model the entire journey for
the character or gun. When it is far away, a lower resolution model, with lower resolution
textures is used. The reasoning for this is that the details cannot be discerned at that
length so there is no need to use CPU time to render those higher resolution elements. As
the character approaches, there may be 2 or 3 changes that swap the model and textures
out with higher and higher resolution assets, until it has walked right up to you in camera. If
done properly, these “swap outs” go unnoticed for the most part.

Movie modeling might use aspects of LOD’s too. There are close up models and models
built for distance shots too. The main difference for film models is that rarely do the various
LOD’s have to seamlessly blend. Much of this decision making process lies in the story or
action that needs to be conveyed for that shot. For the very next shot, it may require a
completely different set of assets and details that didn’t apply to the first shot. Typically
there are three levels of modeling that occur for movie models: Block, Medium and
Detailed. Each stage identifies and solves different problems for the production.
 At the block stage, the overall proportions are identified with a simple low detail
model. This helps to define the silhouette of the model and have a low resolution asset
useful for animatics or test renders. Medium level models take the next step and begin by
adding other details onto the Block model that help to define the finished look of the
model. Additions like antennae, guns, rear view mirrors or other details that are not
defining the general shape of the model qualify. This stage helps to identify moving parts
and areas that may require special attention from a technical artist. Finally there is the
Detailed model, which contains all of the detailed parts and pieces on a higher resolution
chassis.
An example utilizing these ideas is a space-ship model that flies past the screen as it speeds
towards its destination. Because we only see the one side of the ship, this is the only part
that needs to be built. This close fly by model needs to have a high amount of detail and
geometry to look convincing.
There are no concerns for efficiently, really, in the movie created asset. As long as the
model can render, it is considered to be acceptable. For a pre-rendered sequence, render
time can be extensive, but typically there are large render farms that can tackle the job.
There is also the safety factor for these models that any render anomaly can be fixed in
Post, where the game model must work all the time at every frame it is rendered in. Other
stipulations sometime burden the game model such as the fact that at times the game asset
must be “water tight”. What this means is that all of the vertices on the model need to be
welded or merged. Render times for real-time shadows and advanced lighting can be
complicated if a model is not sealed at the vertex level, and therefore they take longer to
compute.
It is a common expression that there is a time and place for everything. Nothing could be
more true when discussing modeling for Movies or Games. There are certainly similarities
between the two mediums and many different approaches to solve the task at hand. As
game systems become more and more advanced, these two approaches may become more
and more alike. Perhaps one day there may be no distinction in the modeling process
between the two.
This Article is about the company 3D Museum that describes how they
construct and represent a 3D model.

Laser Scanning
The first step in building a three-dimensional (3D) model is to digitize the
object. A high-speed and high-accuracy laser scanner (Minolta Vivid 910) is
being used, which not only samples the model with high precision, but also
provides rich color information. Due to its light weight, the 3D scanner can
travel with us to other collections.
                           Data Processing
The raw 3D scan data need to be processed to produce a complete surface
model of the fossil. The crucial step is to accurately merge the individual scans
into a single mesh. Most of our processing is done in Raindrop Geomagic
Studio, but Rapidform has also been used.
 Presentation
For research purposes, high resolution 3D data is being kept, but for data
exchange via the web they reduce the filesize – this guarantees fast and
smooth loading of the 3D objects.
Rapidform offers a 3D compression and publishing tool using ICF (INUS
Compression Format). The two other file formats we are providing, Wirefusion
(WF) and 3D Compression (3DC), are based on VRML (Virtual Reality Modeling
Language). 3DC files do not preserve the vertex colors of VRML files, leaving
fossil images monotone.

Sources: http://www.siggraph.org/publications/newsletter/volume-41-
number-2/modeling-techniques-movies-vs-games,
http://en.wikipedia.org/wiki/Video_game, http://www.guardian.co.uk/life-in-
3d/gaming-and-3d-technology,
http://www.cyberjam.com/3d_interactive_media.html,
http://3dmuseum.org/?page_id=241
3D Modelling Techniques
Drafting has come a long way from blueprints into the new world of 3D Modeling where
files can be updated almost instantly, and sent online through email. CAD designers can
create computer files with CAD software which can be read by manufacturing machines to
produce products. The 3D CAD designer is the one who actually materializes the 3D model.
CAD drafting services offer a wide array of services to the public also.

With the new advancements in technology recently, almost every type of technical drawing
is done with the use of computers. Blueprints are still used in the field, and for other
reasons, but all the drawings are done on a computer. In the past if an update needed to be
made to the blueprints the draftsmen would have to either erase, or start all over. With CAD
though, the draftsmen will simply open the file, and make the necessary changes. Another
great feature is that the file can be saved to your computer, some type of external hard
drive, or online. Just make sure its somewhere safe.

The person behind the scenes of 3D modeling is the CAD designer. They use special CAD
software to create the 3D models. Within the software the developers have incorporated
tools for creating lines, circles, arcs, and other 2D related objects. Also this software has
commands for sculpting, cutting, revolving, mirroring, and other 3D tools. Also the software
has the ability to render images with color, texture, lighting, and backgrounds. With all of
this at the CAD designers disposal, anything imagined can be designed.

Drafting encompasses many different practices and principles within it. There is mechanical
drafting, architecture drafting, civil drafting, electrical drafting, structural drafting, drafting
for plumbing, 3D modeling, and drafting for just about anything you can imagine. CAD
software has designed programs for each one of these fields and has made special
accommodations for each. For example, within architectural programs there is a command
for creating walls, doors, roofs, slabs, and other architectural features. This allows the CAD
drafter to work much faster, and be more efficient within drawing.

3D models have allowed the design process to be done more accurately and efficiently than
in the past. Drafting has had many changes over the years, and updates to CAD software are
made routinely. These new type of blueprint are much more flexible and allow for changes
to be made at a moments notice. Once a design is complete it can go directly to the
manufacture to be developed. CAD is used with everything from architecture to inventions
and is the main tool used in any type of technical drawing. This technology allows engineers
to examine work before production, and has made life on the general public more safe.
Displaying and Constructing 3D Models
Modeling is the first part of the graphic pipeline. When we are modeling in 3D
we are in Cartesian space. When we are modeling we use shapes; the most
basic ones e.g. cone, cylinder, sphere, box.

In 3D animation, a polygon is the exact same thing, only these polygons are
connected to build your 3D model. Individual polygons are stitched together
along the sides or at the vertex points to create the full model. Think of it as
putting together puzzle pieces to create a whole, except that rather than
seeing a printed image on the pieces, you're instead forming a whole other
three-dimensional shape whose boundaries and volume are defined by smaller
two-dimensional shapes. Polygons are the wrapper on the chocolate Easter
bunny; the candy coating on your M&Ms.

More polygons in a model can mean more detail and smoother renders, but it
can also mean longer render times and more problems caused by overlapping
lines and vertices.

Application Programming Interface
(API):
Application Programming Interface (API) is a set of functions and rules that a
computer use to communicate with each other to do certain jobs, just like how
a player communicates to a game by pressing a certain button to do certain
action. (application programming interface, eg Direct3D, OpenGL; graphics
pipeline, egmodelling, lighting, viewing, projection, clipping, scan conversion,
texturing and shading,display; rendering techniques (radiosity, ray tracing);
rendering engines; distributed rendering techniques;lighting; textures; fogging;
shadowing; vertex and pixel shaders; level of detail.)
Direct 3D:
Direct 3D is only available for windows 95 and up and that it renders 3D
graphics especially in gaming as it uses the Graphics card. It all started in 1992
with ServanKeondjian who started a company called RenderMorphics and they
developed a 3D graphical Application programming interface (API for short), It
was used in medical imaging and CAD (computer aided design) software. Two
versions of this API were released. And in February 1995 Microsoft bought
RenderMorphics. When Direct3D was used to render they used a thing called a
Buffer to render 3D geometry but the process was AWKWARD and had
complex stages that you have to do manually and so Open GL was made to
make it simpler.


Rendering:
Rendering is a way to display 3d objects, lighting and textures together, to
create an image or animation from the data sent by the 3D modeling program.
There are 4 types of renders:

      Rasterize
      Raycasting
      Raytracing
      Radiosity


Rasterize:
Rasterize is majorly used on real time applications such as games. It is done
similarly to what most technologies in digital graphics of any sort uses to
display a render, instead of rendering the whole scene pixel by pixel, it renders
the geomertries that you see on screen and it will change accordingly. A good
example of rasterizing would be Oblivion as you travel across the land of
Tamriel.
Raycasting:
Raycasting is similar to Raytracing since they both share similar algorithms. The
only thing that distinguishes the two is that Raycasting is a faster version of
Raytracing and that it cannot render secondary rays, where as Raytracing can.


Raytracing:
Ray tracing is a technique that renders out an image by casting out rays onto
the scene and as the rays cast upon the geometry, the colour value of that
pixel is calculated. It can produce high degree of visual realism, but it will cost
time to render the scene. It is capable of simulating different variety of visual

                                           o
effects such as reflection (an example w uld a glass), scattering (where the
light rays hits the geometry and it bounces back and scatters) and refraction
(refraction is used on water or air and it will change depending on the change
of direction).

Example of using raytracing:




Ray tracing is best used on still images, special effects, and TV, sadly it is not
suited to be used on games.
Radiocity:
Radiosity is a technical term in which it is uses two types of lights, an incident
light (in which the light source hits onto the subject) and a reflective light
(where the light reflects off from the subject’s surface). This is used especially
on interior design.

Example of using Radiosity:




and a video example http://www.youtube.com/watch?v=NO3uvnbwCKM


How to apply sample fog on 3DS Max :
Go to Rendering > Environment (hotkey 8)




Underneath the atmosphere section, click add…
and select Fog




You can change the density of how far or near the fog will appear as you
render the scene
I think this is not the best way of producing HQ fog and that this should be
done through Adobe After Effects.


How to make textures not blurr in
viewport:
First apply the textures on the material editor by dragging and dropping the
textures onto the shaders or click on the maps section and then the diffuse slot
and select the file
Next we need to click on customize > preferences




click on the viewport tab > configure driver
and tick “Match Bitmap Size as Closely as Possible” on the Background Texture
Size section and also tick the same thing again on the Download Texture Size
section as well
and finally all you need to do is click on the material editor again and click the
texture that you want to see more clearer, to refresh it.




Progressive and Interlace scanning:

So what is Progressing and Interlace scan?

Interlace and progressive scanning describes how images are displayed on our
TV screens. The image is displayed rapidly and updating the screen all the time,
this associates with computer monitors as well.

Progressive scan:
•The image is displayed rapidly and drawn in sequence
•Requires a higher refresh rate
•Associated with computer monitors
•Latest HD TV’s can display Progressive Scan
•Can display fast moving images
•Requires a high bandwidth (more data per image)

Frame Buffer:

•This is the area of video memory which is stored ready tp be transmitted to
the monitor device. To display moving images (flipbook)
•High resolution and more bit depth requires more video memory to store
images.

Interlace scanning:

• Unlike Progressive scanning, the interlace scanning takes half the bandwidth
of non interlaced scanning (progressive).
•Interlacing is used by all the analogue TV broadcast systems
•Interlace scanning is done by drawing out the even numbered rows, then the
odd numbered rows (or vice versa doesn’t make a difference)
Vertex Lighting:
Vertex Lighting (also known as Gouraud shading) is a method that is used to
display and simulate differing effects of light across the surface of a 3d object.
This is done by calculating the vertices around the subject as well as where the
light source is projecting at, the more amount of vertex there is, the better the
specualar lighting, the lower the amount of vertices there is, the less quality
you will have from a high poly specular lighting.

Distributed rendering

Distributed rendering (also known as DR) is a technique in which lots of
computers are rendering the same scene and that it helps reduce the
rendering time that it originally has.

Vray on 3ds Max is capable of doing this process. The process is done by using
TCI/ IP protocols and when you’re using Vray, there are two things you need to
know, there is a Render Clients and Render Servers.


Render Clients
The render client is the main source of where the renders servers will need to
get the information from and it divides the frames into bits and spreads it
across the Render Servers. It distributes data to the render servers for
processing and collects the results.


Render Servers
A render server is a computer that collects the information that the Render
Clients have sent and it processes it and sends the result back.


Clipping 3D:
Clipping is used to display the inside and outside of the geometry, you can
disable this and make the inside of the geometry transparent on 3Ds Max, to
do this, right click > object properties > tick back force cull
Sources:
http://animation.about.com/od/glossaryofterms/g/What-Is-A-3d-Polygon.htm

http://www.fastgraph.com/help/3D_clipping.html

http://en.wikipedia.org/wiki/Projective_geometry

http://www.google.co.uk/search?hl=en&q=what+is+clipping+3d%3F&meta

http://www.spot3d.com/vray/help/150SP1/distributed_rendering.htm

http://en.wikipedia.org/wiki/3D_computer_graphics

http://en.wikipedia.org/wiki/3D_model

http://www.best3dsolution.com/services/3d-rendering/

http://www.blender.org/
HA5 – COMPUTER ARTS BLOG ARTICLE – 3D: The Basics

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Basics
BasicsBasics
Basics
 
3D Technology
3D Technology 3D Technology
3D Technology
 
Task 1 technical file
Task 1   technical fileTask 1   technical file
Task 1 technical file
 
3-D TECHNOLOGY
3-D TECHNOLOGY 3-D TECHNOLOGY
3-D TECHNOLOGY
 
Our 1st Seminar
Our 1st SeminarOur 1st Seminar
Our 1st Seminar
 
3D Graphics & Rendering in Computer Graphics
3D Graphics & Rendering in Computer Graphics3D Graphics & Rendering in Computer Graphics
3D Graphics & Rendering in Computer Graphics
 
L3 cmp technicalfile_
L3 cmp technicalfile_L3 cmp technicalfile_
L3 cmp technicalfile_
 
Datt2500 week01
Datt2500 week01Datt2500 week01
Datt2500 week01
 
Lg real3 d-sdk
Lg real3 d-sdkLg real3 d-sdk
Lg real3 d-sdk
 
Intro to 3D Workshop
Intro to 3D WorkshopIntro to 3D Workshop
Intro to 3D Workshop
 
3 d animation
3 d animation3 d animation
3 d animation
 
L3 cmp technicalfile_180911
L3 cmp technicalfile_180911L3 cmp technicalfile_180911
L3 cmp technicalfile_180911
 
3 d computer graphics software
3 d computer graphics software3 d computer graphics software
3 d computer graphics software
 
3 d technology
3 d technology3 d technology
3 d technology
 
3D PC GLASS
3D PC GLASS3D PC GLASS
3D PC GLASS
 
Multimedia Design Chapter 3
Multimedia Design Chapter 3Multimedia Design Chapter 3
Multimedia Design Chapter 3
 
Ray tracing
Ray tracingRay tracing
Ray tracing
 
Ray tracing converted (1)
Ray tracing converted (1)Ray tracing converted (1)
Ray tracing converted (1)
 
ANIMATION
ANIMATIONANIMATION
ANIMATION
 
Introduction to 3D Animation
Introduction to 3D AnimationIntroduction to 3D Animation
Introduction to 3D Animation
 

Similar a HA5 – COMPUTER ARTS BLOG ARTICLE – 3D: The Basics

Similar a HA5 – COMPUTER ARTS BLOG ARTICLE – 3D: The Basics (20)

Ha4 constraints
Ha4   constraintsHa4   constraints
Ha4 constraints
 
What is 3 d modeling unit 66
What is 3 d modeling   unit 66What is 3 d modeling   unit 66
What is 3 d modeling unit 66
 
Constraints
ConstraintsConstraints
Constraints
 
3D Final Work
3D Final Work3D Final Work
3D Final Work
 
Task 6
Task 6Task 6
Task 6
 
3D Article
3D Article3D Article
3D Article
 
Task 6
Task 6Task 6
Task 6
 
Computer game graphics
Computer game graphicsComputer game graphics
Computer game graphics
 
Computer game graphics
Computer game graphicsComputer game graphics
Computer game graphics
 
What is 3D Animation
What is 3D AnimationWhat is 3D Animation
What is 3D Animation
 
3D Models and their Primary Characteristics
3D Models and their Primary Characteristics3D Models and their Primary Characteristics
3D Models and their Primary Characteristics
 
3D modelig presentation (text) 371 SE
3D modelig presentation (text) 371 SE3D modelig presentation (text) 371 SE
3D modelig presentation (text) 371 SE
 
Article
ArticleArticle
Article
 
Computer_Graphics.pptx
Computer_Graphics.pptxComputer_Graphics.pptx
Computer_Graphics.pptx
 
1604.08848v1
1604.08848v11604.08848v1
1604.08848v1
 
3 d printing technology
3 d printing technology3 d printing technology
3 d printing technology
 
Y1 gd engine_terminologyhj
Y1 gd engine_terminologyhjY1 gd engine_terminologyhj
Y1 gd engine_terminologyhj
 
Game Engine Overview
Game Engine OverviewGame Engine Overview
Game Engine Overview
 
Cg notes
Cg notesCg notes
Cg notes
 
COMUTER GRAPHICS NOTES
COMUTER GRAPHICS NOTESCOMUTER GRAPHICS NOTES
COMUTER GRAPHICS NOTES
 

Más de hamza_123456

Más de hamza_123456 (20)

To do list
To do listTo do list
To do list
 
Finacnial issues and market trends
Finacnial issues and market trendsFinacnial issues and market trends
Finacnial issues and market trends
 
Job choices
Job choicesJob choices
Job choices
 
Programming sounds
Programming soundsProgramming sounds
Programming sounds
 
The strongest app idea
The strongest app ideaThe strongest app idea
The strongest app idea
 
Questionnaire results
Questionnaire resultsQuestionnaire results
Questionnaire results
 
Ideas generation
Ideas generationIdeas generation
Ideas generation
 
Development Plan
Development PlanDevelopment Plan
Development Plan
 
App concept schedule
App concept scheduleApp concept schedule
App concept schedule
 
App concept schedule
App concept scheduleApp concept schedule
App concept schedule
 
Skyrim Review
Skyrim ReviewSkyrim Review
Skyrim Review
 
Questionairre Result
Questionairre ResultQuestionairre Result
Questionairre Result
 
Review
ReviewReview
Review
 
Production log
Production logProduction log
Production log
 
Production log
Production log  Production log
Production log
 
Task 1 - Outline
Task 1 - OutlineTask 1 - Outline
Task 1 - Outline
 
Game review
Game reviewGame review
Game review
 
Task 4 - Analysis of a Game
Task 4 - Analysis of a GameTask 4 - Analysis of a Game
Task 4 - Analysis of a Game
 
Sims schedule 170412
Sims schedule 170412Sims schedule 170412
Sims schedule 170412
 
Sims schedule
Sims schedule Sims schedule
Sims schedule
 

Último

PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationAnamaria Contreras
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh JiPsychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh Jiastral oracle
 
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdftrending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdfMintel Group
 
Driving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerDriving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerAggregage
 
Introducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsIntroducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsKnowledgeSeed
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...ssuserf63bd7
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...Operational Excellence Consulting
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMVoces Mineras
 
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryEffective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryWhittensFineJewelry1
 
14680-51-4.pdf Good quality CAS Good quality CAS
14680-51-4.pdf  Good  quality CAS Good  quality CAS14680-51-4.pdf  Good  quality CAS Good  quality CAS
14680-51-4.pdf Good quality CAS Good quality CAScathy664059
 
Technical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamTechnical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamArik Fletcher
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...ssuserf63bd7
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers referencessuser2c065e
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfJamesConcepcion7
 
Appkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxAppkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxappkodes
 
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Aggregage
 
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOnemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOne Monitar
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersPeter Horsten
 

Último (20)

PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement Presentation
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh JiPsychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
 
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdftrending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
 
Driving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerDriving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon Harmer
 
Introducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsIntroducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applications
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQM
 
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryEffective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
 
14680-51-4.pdf Good quality CAS Good quality CAS
14680-51-4.pdf  Good  quality CAS Good  quality CAS14680-51-4.pdf  Good  quality CAS Good  quality CAS
14680-51-4.pdf Good quality CAS Good quality CAS
 
Technical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamTechnical Leaders - Working with the Management Team
Technical Leaders - Working with the Management Team
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers reference
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdf
 
Appkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxAppkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptx
 
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
 
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOnemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exporters
 

HA5 – COMPUTER ARTS BLOG ARTICLE – 3D: The Basics

  • 2. 3D–The Basics Use of 3D Displaying and Constructing 3D Models Examining 3D Software Tools
  • 3. Use of 3D In general, there are fundamental differences between Movie and Game generated assets. A primary concern is polygon count and efficiency. Currently the only way to model in video games is by using polygons, which can require a denser mesh to emulate smoother or more natural looking models such as humans and animals. NURBS models can be created, but need to be converted and optimized to polygons for use in the game. In pre-rendered movies, any technique is allowed to create your models. Movie models can be generated up to millions of polygons using several different techniques at once. A model consisting of NURBS and polygons as well as subdivision surface models is normal and completely acceptable. Gaming models have to be more efficient in their use of modeled details to maintain a manageable data set to render. The reasoning here is that an efficient streamlined environment composed of the lower poly assets will render more smoothly and give better frame to frame renders during gameplay. What your gaming system is in essence, is a renderer that constantly has the task of rendering each frame of gameplay at 30 frames per second. Some games hit the magic number of 60 frames a second. If this rate drops during the game the result is a poor experience and hampered gameplay. This applies to PC games as well, although they will typically have more processing power to run higher resolution models. With constant innovations and improvement in next-gen consoles and technology, development of more advanced techniques and processes give us more detailed looking models at a lower cost. One of these advances is the use of normal mapping. A normal map acts like a bump map, in that is adds surface detail without adding polygons. Normal maps go a step further because they actually replace the surface normal with new multi- channel data to represent an X, Y, Z coordinate system. What this means is that we can create a high resolution model of 2 or 3 million polygons and bake the high resolution detail down to a normal map that retains the component space data of that high resolution model. It is then a process to create a streamlined model that emulates the general proportions of the high density model, but at a much more efficient poly count of 2500, for example. Once the normal map data is applied to this low-res rendition of our high-res monster, the model immediately looks more complex geometrically but at an affordable rendering cost. Movie productions also use Normal Mapping techniques, but the asset that they use the Normal Map on is typically a more detailed model than the one used in games. Another difference between movie and game modeling is the fact that not everything needs to be built for a movie or pre-rendered model. It is common practice for film to only build those elements in the scene that you can actually see on the screen. In a game environment, it is necessary to make most things viewable from 360 degrees. Can you imagine walking around your favorite game level and not seeing the back side of 3D car you just walked up to? Or not being able to see the back of the character you just spoke to? It wouldn’t keep you immersed in the game very long. Well in a movie if the camera never travels to the rear of that set or never moves around the corner, it doesn’t need to be built. This is certainly true for aspects of the gaming world, like the far off detail of the mountains, or implied buildings that you as a player can’t actually get to in the game.
  • 4. A common practice among the two disciplines is that of creating LOD models, or Level Of Detail models. In a game, when a character carrying a machine gun walks up to you from the far end of a long hallway, chances are it is not a consistent model the entire journey for the character or gun. When it is far away, a lower resolution model, with lower resolution textures is used. The reasoning for this is that the details cannot be discerned at that length so there is no need to use CPU time to render those higher resolution elements. As the character approaches, there may be 2 or 3 changes that swap the model and textures out with higher and higher resolution assets, until it has walked right up to you in camera. If done properly, these “swap outs” go unnoticed for the most part. Movie modeling might use aspects of LOD’s too. There are close up models and models built for distance shots too. The main difference for film models is that rarely do the various LOD’s have to seamlessly blend. Much of this decision making process lies in the story or action that needs to be conveyed for that shot. For the very next shot, it may require a completely different set of assets and details that didn’t apply to the first shot. Typically there are three levels of modeling that occur for movie models: Block, Medium and Detailed. Each stage identifies and solves different problems for the production. At the block stage, the overall proportions are identified with a simple low detail model. This helps to define the silhouette of the model and have a low resolution asset useful for animatics or test renders. Medium level models take the next step and begin by adding other details onto the Block model that help to define the finished look of the model. Additions like antennae, guns, rear view mirrors or other details that are not defining the general shape of the model qualify. This stage helps to identify moving parts and areas that may require special attention from a technical artist. Finally there is the Detailed model, which contains all of the detailed parts and pieces on a higher resolution chassis. An example utilizing these ideas is a space-ship model that flies past the screen as it speeds towards its destination. Because we only see the one side of the ship, this is the only part that needs to be built. This close fly by model needs to have a high amount of detail and geometry to look convincing. There are no concerns for efficiently, really, in the movie created asset. As long as the model can render, it is considered to be acceptable. For a pre-rendered sequence, render time can be extensive, but typically there are large render farms that can tackle the job. There is also the safety factor for these models that any render anomaly can be fixed in Post, where the game model must work all the time at every frame it is rendered in. Other stipulations sometime burden the game model such as the fact that at times the game asset must be “water tight”. What this means is that all of the vertices on the model need to be welded or merged. Render times for real-time shadows and advanced lighting can be complicated if a model is not sealed at the vertex level, and therefore they take longer to compute. It is a common expression that there is a time and place for everything. Nothing could be more true when discussing modeling for Movies or Games. There are certainly similarities between the two mediums and many different approaches to solve the task at hand. As game systems become more and more advanced, these two approaches may become more and more alike. Perhaps one day there may be no distinction in the modeling process between the two.
  • 5. This Article is about the company 3D Museum that describes how they construct and represent a 3D model. Laser Scanning The first step in building a three-dimensional (3D) model is to digitize the object. A high-speed and high-accuracy laser scanner (Minolta Vivid 910) is being used, which not only samples the model with high precision, but also provides rich color information. Due to its light weight, the 3D scanner can travel with us to other collections. Data Processing The raw 3D scan data need to be processed to produce a complete surface model of the fossil. The crucial step is to accurately merge the individual scans into a single mesh. Most of our processing is done in Raindrop Geomagic Studio, but Rapidform has also been used. Presentation For research purposes, high resolution 3D data is being kept, but for data exchange via the web they reduce the filesize – this guarantees fast and smooth loading of the 3D objects. Rapidform offers a 3D compression and publishing tool using ICF (INUS Compression Format). The two other file formats we are providing, Wirefusion (WF) and 3D Compression (3DC), are based on VRML (Virtual Reality Modeling Language). 3DC files do not preserve the vertex colors of VRML files, leaving fossil images monotone. Sources: http://www.siggraph.org/publications/newsletter/volume-41- number-2/modeling-techniques-movies-vs-games, http://en.wikipedia.org/wiki/Video_game, http://www.guardian.co.uk/life-in- 3d/gaming-and-3d-technology, http://www.cyberjam.com/3d_interactive_media.html, http://3dmuseum.org/?page_id=241
  • 6. 3D Modelling Techniques Drafting has come a long way from blueprints into the new world of 3D Modeling where files can be updated almost instantly, and sent online through email. CAD designers can create computer files with CAD software which can be read by manufacturing machines to produce products. The 3D CAD designer is the one who actually materializes the 3D model. CAD drafting services offer a wide array of services to the public also. With the new advancements in technology recently, almost every type of technical drawing is done with the use of computers. Blueprints are still used in the field, and for other reasons, but all the drawings are done on a computer. In the past if an update needed to be made to the blueprints the draftsmen would have to either erase, or start all over. With CAD though, the draftsmen will simply open the file, and make the necessary changes. Another great feature is that the file can be saved to your computer, some type of external hard drive, or online. Just make sure its somewhere safe. The person behind the scenes of 3D modeling is the CAD designer. They use special CAD software to create the 3D models. Within the software the developers have incorporated tools for creating lines, circles, arcs, and other 2D related objects. Also this software has commands for sculpting, cutting, revolving, mirroring, and other 3D tools. Also the software has the ability to render images with color, texture, lighting, and backgrounds. With all of this at the CAD designers disposal, anything imagined can be designed. Drafting encompasses many different practices and principles within it. There is mechanical drafting, architecture drafting, civil drafting, electrical drafting, structural drafting, drafting for plumbing, 3D modeling, and drafting for just about anything you can imagine. CAD software has designed programs for each one of these fields and has made special accommodations for each. For example, within architectural programs there is a command for creating walls, doors, roofs, slabs, and other architectural features. This allows the CAD drafter to work much faster, and be more efficient within drawing. 3D models have allowed the design process to be done more accurately and efficiently than in the past. Drafting has had many changes over the years, and updates to CAD software are made routinely. These new type of blueprint are much more flexible and allow for changes to be made at a moments notice. Once a design is complete it can go directly to the manufacture to be developed. CAD is used with everything from architecture to inventions and is the main tool used in any type of technical drawing. This technology allows engineers to examine work before production, and has made life on the general public more safe.
  • 7. Displaying and Constructing 3D Models Modeling is the first part of the graphic pipeline. When we are modeling in 3D we are in Cartesian space. When we are modeling we use shapes; the most basic ones e.g. cone, cylinder, sphere, box. In 3D animation, a polygon is the exact same thing, only these polygons are connected to build your 3D model. Individual polygons are stitched together along the sides or at the vertex points to create the full model. Think of it as putting together puzzle pieces to create a whole, except that rather than seeing a printed image on the pieces, you're instead forming a whole other three-dimensional shape whose boundaries and volume are defined by smaller two-dimensional shapes. Polygons are the wrapper on the chocolate Easter bunny; the candy coating on your M&Ms. More polygons in a model can mean more detail and smoother renders, but it can also mean longer render times and more problems caused by overlapping lines and vertices. Application Programming Interface (API): Application Programming Interface (API) is a set of functions and rules that a computer use to communicate with each other to do certain jobs, just like how a player communicates to a game by pressing a certain button to do certain action. (application programming interface, eg Direct3D, OpenGL; graphics pipeline, egmodelling, lighting, viewing, projection, clipping, scan conversion, texturing and shading,display; rendering techniques (radiosity, ray tracing); rendering engines; distributed rendering techniques;lighting; textures; fogging; shadowing; vertex and pixel shaders; level of detail.)
  • 8. Direct 3D: Direct 3D is only available for windows 95 and up and that it renders 3D graphics especially in gaming as it uses the Graphics card. It all started in 1992 with ServanKeondjian who started a company called RenderMorphics and they developed a 3D graphical Application programming interface (API for short), It was used in medical imaging and CAD (computer aided design) software. Two versions of this API were released. And in February 1995 Microsoft bought RenderMorphics. When Direct3D was used to render they used a thing called a Buffer to render 3D geometry but the process was AWKWARD and had complex stages that you have to do manually and so Open GL was made to make it simpler. Rendering: Rendering is a way to display 3d objects, lighting and textures together, to create an image or animation from the data sent by the 3D modeling program. There are 4 types of renders: Rasterize Raycasting Raytracing Radiosity Rasterize: Rasterize is majorly used on real time applications such as games. It is done similarly to what most technologies in digital graphics of any sort uses to display a render, instead of rendering the whole scene pixel by pixel, it renders the geomertries that you see on screen and it will change accordingly. A good example of rasterizing would be Oblivion as you travel across the land of Tamriel.
  • 9. Raycasting: Raycasting is similar to Raytracing since they both share similar algorithms. The only thing that distinguishes the two is that Raycasting is a faster version of Raytracing and that it cannot render secondary rays, where as Raytracing can. Raytracing: Ray tracing is a technique that renders out an image by casting out rays onto the scene and as the rays cast upon the geometry, the colour value of that pixel is calculated. It can produce high degree of visual realism, but it will cost time to render the scene. It is capable of simulating different variety of visual o effects such as reflection (an example w uld a glass), scattering (where the light rays hits the geometry and it bounces back and scatters) and refraction (refraction is used on water or air and it will change depending on the change of direction). Example of using raytracing: Ray tracing is best used on still images, special effects, and TV, sadly it is not suited to be used on games.
  • 10. Radiocity: Radiosity is a technical term in which it is uses two types of lights, an incident light (in which the light source hits onto the subject) and a reflective light (where the light reflects off from the subject’s surface). This is used especially on interior design. Example of using Radiosity: and a video example http://www.youtube.com/watch?v=NO3uvnbwCKM How to apply sample fog on 3DS Max : Go to Rendering > Environment (hotkey 8) Underneath the atmosphere section, click add…
  • 11. and select Fog You can change the density of how far or near the fog will appear as you render the scene
  • 12. I think this is not the best way of producing HQ fog and that this should be done through Adobe After Effects. How to make textures not blurr in viewport: First apply the textures on the material editor by dragging and dropping the textures onto the shaders or click on the maps section and then the diffuse slot and select the file
  • 13. Next we need to click on customize > preferences click on the viewport tab > configure driver
  • 14. and tick “Match Bitmap Size as Closely as Possible” on the Background Texture Size section and also tick the same thing again on the Download Texture Size section as well
  • 15. and finally all you need to do is click on the material editor again and click the texture that you want to see more clearer, to refresh it. Progressive and Interlace scanning: So what is Progressing and Interlace scan? Interlace and progressive scanning describes how images are displayed on our TV screens. The image is displayed rapidly and updating the screen all the time, this associates with computer monitors as well. Progressive scan: •The image is displayed rapidly and drawn in sequence •Requires a higher refresh rate •Associated with computer monitors •Latest HD TV’s can display Progressive Scan •Can display fast moving images •Requires a high bandwidth (more data per image) Frame Buffer: •This is the area of video memory which is stored ready tp be transmitted to the monitor device. To display moving images (flipbook) •High resolution and more bit depth requires more video memory to store images. Interlace scanning: • Unlike Progressive scanning, the interlace scanning takes half the bandwidth of non interlaced scanning (progressive). •Interlacing is used by all the analogue TV broadcast systems •Interlace scanning is done by drawing out the even numbered rows, then the odd numbered rows (or vice versa doesn’t make a difference)
  • 16. Vertex Lighting: Vertex Lighting (also known as Gouraud shading) is a method that is used to display and simulate differing effects of light across the surface of a 3d object. This is done by calculating the vertices around the subject as well as where the light source is projecting at, the more amount of vertex there is, the better the specualar lighting, the lower the amount of vertices there is, the less quality you will have from a high poly specular lighting. Distributed rendering Distributed rendering (also known as DR) is a technique in which lots of computers are rendering the same scene and that it helps reduce the rendering time that it originally has. Vray on 3ds Max is capable of doing this process. The process is done by using TCI/ IP protocols and when you’re using Vray, there are two things you need to know, there is a Render Clients and Render Servers. Render Clients The render client is the main source of where the renders servers will need to get the information from and it divides the frames into bits and spreads it across the Render Servers. It distributes data to the render servers for processing and collects the results. Render Servers A render server is a computer that collects the information that the Render Clients have sent and it processes it and sends the result back. Clipping 3D: Clipping is used to display the inside and outside of the geometry, you can disable this and make the inside of the geometry transparent on 3Ds Max, to do this, right click > object properties > tick back force cull