ArcFace: Additive Angular Margin Loss for Deep Face Recognition

25 de Jul de 2022
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
1 de 21

Más contenido relacionado

La actualidad más candente

[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs Deep Learning JP
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用Yoshitaka Ushiku
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...Deep Learning JP
[DL輪読会]A closer look at few shot classification[DL輪読会]A closer look at few shot classification
[DL輪読会]A closer look at few shot classificationDeep Learning JP
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.

La actualidad más candente(20)

Similar a ArcFace: Additive Angular Margin Loss for Deep Face Recognition

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transfo...harmonylab
Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...
Fine Grained Fashion Similarity Prediction by Attribute Specific Embedding Le...harmonylab
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autono...harmonylab
Self-supervised Learning of Adversarial Example:Towards Good Generalizations...Self-supervised Learning of Adversarial Example:Towards Good Generalizations...
Self-supervised Learning of Adversarial Example: Towards Good Generalizations...harmonylab
MLP-Mixer: An all-MLP Architecture for VisionMLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Visionharmonylab
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)harmonylab

Similar a ArcFace: Additive Angular Margin Loss for Deep Face Recognition(20)

Más de harmonylab

Voyager: An Open-Ended Embodied Agent with Large Language ModelsVoyager: An Open-Ended Embodied Agent with Large Language Models
Voyager: An Open-Ended Embodied Agent with Large Language Modelsharmonylab
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose EstimationDLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimationharmonylab
ReAct: Synergizing Reasoning and Acting in Language ModelsReAct: Synergizing Reasoning and Acting in Language Models
ReAct: Synergizing Reasoning and Acting in Language Modelsharmonylab
形態素解析を用いた帝国議会議事速記録の変遷に関する研究形態素解析を用いた帝国議会議事速記録の変遷に関する研究
形態素解析を用いた帝国議会議事速記録の変遷に関する研究harmonylab
【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究
【卒業論文】深層生成モデルを用いたユーザ意図に基づく衣服画像の生成に関する研究harmonylab
灯油タンク内の液面高計測を用いた灯油残量推定システムに関する研究灯油タンク内の液面高計測を用いた灯油残量推定システムに関する研究
灯油タンク内の液面高計測を用いた 灯油残量推定システムに関する研究harmonylab

Más de harmonylab(20)

Último

CCoE実践者コミュニティ#1_CCoEが進めるセキュリティカイゼンの旅.pptxCCoE実践者コミュニティ#1_CCoEが進めるセキュリティカイゼンの旅.pptx
CCoE実践者コミュニティ#1_CCoEが進めるセキュリティカイゼンの旅.pptxTomoaki Tada
遠隔お酌IoTLT2309.pptx遠隔お酌IoTLT2309.pptx
遠隔お酌IoTLT2309.pptxYoshiaki Ito
IGDA Japan SIG Audio #20-1 室内・野外でのマイク収録と整音.pdfIGDA Japan SIG Audio #20-1 室内・野外でのマイク収録と整音.pdf
IGDA Japan SIG Audio #20-1 室内・野外でのマイク収録と整音.pdfIGDA Japan SIG-Audio
GraphQLはどんな時に使うかGraphQLはどんな時に使うか
GraphQLはどんな時に使うかYutaka Tachibana
20230921_IoTLT_vol103_kitazaki_v1.pdf20230921_IoTLT_vol103_kitazaki_v1.pdf
20230921_IoTLT_vol103_kitazaki_v1.pdfAyachika Kitazaki
画像生成AIの問題点画像生成AIの問題点
画像生成AIの問題点iPride Co., Ltd.

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Notas del editor

  1. 入力画像 (Anchor) Positive Negative 3枚組でEmbedding空間に配置。
  2. 開集合顔認識 は ポーズ変動や年齢差も含む
  3. 次の式で使用するため単純に分離
  4. 次の式で使用するため単純に分離
  5. 直接的に角度空間でマージンを加算。 正解クラスに対応するlogitsの値は小さくする必要あるため、モデルが頑張ってxのクラス内分散を小さくする sはlogitsの値が小さすぎるとsoftmaxが機能しなくなるために調整している。
  6. 直接的に角度空間でマージンを加算。 正解クラスに対応するlogitsの値は小さくする必要あるため、モデルが頑張ってxのクラス内分散を小さくする sはlogitsの値が小さすぎるとsoftmaxが機能しなくなるために調整している。
  7. Resnet50: 8.9 ms/face ResNet100: 15.4 ms/face