出典:Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy : Mlp-mixer: An all-mlp architecture for vision, Advances in Neural Information Processing Systems 34 (2021) 公開URL:https://arxiv.org/abs/2105.01601 概要:最近の画像処理分野ではCNNやVision Transformerのようなネットワークが人気です。この論文では、多層パーセプトロン(MLP)のみで作成したアーキテクチャ"MLP-Mixer"を提案します。MLP-Mixerは2種類のレイヤーを保持しており、チャネルとトークン(位置)をそれぞれ別のMLPで学習しています。このモデルは画像分類ベンチマークにおいて、事前学習と推論コストが最新モデルに匹敵するスコアを達成しました