Movimiento rectilíneo uniforme

UNIVERSIDAD NACIONAL DE
CHIMBORAZO
FACULTAD DE INGENIERIA
ESCUELA DE INGENIERIA INDUSTRIAL
TEMA:
Movimiento rectilíneo uniforme y Movimiento rectilíneo
uniformemente acelerado
AUTORES:
Omar Valle
Byron Condo
Bryan Mazon
Movimiento rectilíneo uniforme
El Movimiento Rectilíneo Uniforme es una trayectoria recta, su velocidad es constante
y su aceleración es nula.
Un movimiento es rectilíneo cuando un móvil describe una trayectoria recta, y es
uniforme cuando su velocidad es constante en el tiempo, dado que su aceleración es
nula. Nos referimos a él mediante el acrónimo MRU.
 Movimiento que se realiza sobre una línea recta.
 Velocidad constante; implica magnitud y dirección constantes.
 La magnitud de la velocidad recibe el nombre de celeridad o rapidez.
 Aceleración nula.
El Movimiento Rectilíneo Uniforme es una trayectoria recta, su velocidad es constante
y su aceleración es nula.
Propiedades y características
La distancia recorrida se calcula multiplicando la magnitud de la velocidad o rapidez
por el tiempo transcurrido. Esta relación también es aplicable si la trayectoria no es
rectilínea, con tal que la rapidez o módulo de la velocidad sea constante.
Por lo tanto el movimiento puede considerarse en dos sentidos; una velocidad negativa
representa un movimiento en dirección contraria al sentido que convencionalmente
hayamos adoptado como positivo.
De acuerdo con la Primera Ley de Newton, toda partícula permanece en reposo o en
movimiento rectilíneo uniforme cuando no hay una fuerza externa que actúe sobre el
cuerpo, dado que las fuerzas actuales están en equilibrio, por lo cual su estado es de
reposo o de movimiento rectilíneo uniforme. Esta es una situación ideal, ya que siempre
existen fuerzas que tienden a alterar el movimiento de las partículas, por lo que en el
movimiento rectilíneo uniforme (M.R.U) es difícil encontrar la fuerza amplificada.
Representación gráfica del movimiento
Al representar gráficamente en un sistema de coordenadas cartesianas, la velocidad en
función del tiempo se obtiene una recta paralela al eje de abscisas (tiempo). Además, el
área bajo la recta producida representa la distancia recorrida.
La representación gráfica de la distancia recorrida en función del tiempo da lugar a una
recta cuya pendiente se corresponde con la velocidad.
Ecuaciones del movimiento
Sabemos que la velocidad es constante; esto significa que no existe aceleración.
La posición en cualquier instante viene dada por
.
Para una posición inicial y un tiempo inicial , ambos distintos de cero, la posición
para cualquier tiempo está dada por
Aplicaciones
En astronomía, el MRU es muy utilizado. Los planetas y las estrellas no se mueven en
línea recta, pero la que sí se mueve en línea recta es la luz, y siempre a la misma
velocidad.
Entonces, sabiendo la distancia a la que se encuentra un objeto, se puede saber el tiempo
que tarda la luz en recorrer esa distancia. Por ejemplo, el sol se encuentra a 150.000.000
km. La luz, por lo tanto, tarda 500 segundos (8 minutos 20 segundos) en llegar hasta la
tierra. La realidad es un poco más compleja, con la relatividad de por medio, pero a
grandes rasgos podemos decir que la luz sigue un movimiento rectilíneo uniforme.
Movimiento rectilíneo uniformemente
acelerado
El movimiento rectilíneo uniformemente acelerado (MRUA), también conocido
como movimiento rectilíneo uniformemente variado (MRUV), es aquel en el que un
móvil se desplaza sobre una trayectoria recta estando sometido a una aceleración
constante.
Un ejemplo de este tipo de movimiento es el de caída libre vertical, en el cual la
aceleración interviniente, y considerada constante, es la que corresponde a la gravedad.
También puede definirse como el movimiento que realiza una partícula que partiendo
del reposo es acelerada por una fuerza constante.
El movimiento rectilíneo uniformemente acelerado (MRUA) es un caso particular del
movimiento uniformemente acelerado (MUA).
Evolución respecto del tiempo de la posición, de la velocidad y de la aceleración de un
cuerpo sometido a un movimiento rectilíneo uniformemente acelerado, en un sistema de
coordenadas cartesianas, según la mecánica clásica.
Movimiento rectilíneo uniformemente acelerado en
mecánica newtoniana
En mecánica clásica el movimiento rectilíneo uniformemente acelerado (MRUA)
presenta tres características fundamentales:
1. La aceleración y la fuerza resultante sobre la partícula son constantes.
2. La velocidad varía linealmente respecto del tiempo.
3. La posición varía según una relación cuadrática respecto del tiempo.
La figura muestra las relaciones, respecto del tiempo, del desplazamiento (parábola),
velocidad (recta con pendiente) y aceleración (constante, recta horizontal) en el caso
concreto de la caída libre (con velocidad inicial nula).
El MRUA, como su propio nombre indica, tiene una aceleración constante, cuyas
relaciones dinámicas y cinemáticas, respectivamente, son:
(1)
En el movimiento rectilíneo acelerado, la aceleración instantánea es representada como la
pendiente de la recta tangente a la curva que representa gráficamente la función v(t).
La velocidad v para un instante t dado es:
(2a)
siendo la velocidad inicial.
Finalmente la posición x en función del tiempo se expresa por:
(3)
donde es la posición inicial.
Además de las relaciones básicas anteriores, existe una ecuación que relaciona entre sí
el desplazamiento y la rapidez del móvil. Ésta se obtiene despejando el tiempo de (2a) y
sustituyendo el resultado en (3):
(2b)
Movimiento acelerado en mecánica relativista
Movimiento relativista bajo fuerza constante: aceleración (azul), velocidad (verde) y
desplazamiento (rojo).
En mecánica relativista no existe un equivalente exacto del movimiento rectilíneo
uniformemente acelerado, ya que la aceleración depende de la velocidad y mantener una
aceleración constante requeriría una fuerza progresivamente creciente. Lo más cercano
que se tiene es el movimiento de una partícula bajo una fuerza constante, que comparte
muchas de las características del MUA de la mecánica clásica.
La ecuación de movimiento relativista para el movimiento bajo una fuerza constante
partiendo del reposo es:
(4)
Donde w es una constante que, para valores pequeños de la velocidad comparados con
la velocidad de la luz, es aproximadamente igual a la aceleración (para velocidades
cercanas a la de la luz la aceleración es mucho más pequeña que el cociente entre la
fuerza y la masa). De hecho la aceleración bajo una fuerza constante viene dada en el
caso relativista por:
La integral de (4) es sencilla y viene dada por:
(5)
E integrando esta última ecuación, suponiendo que inicialmente la partícula ocupaba la
posición x = 0, se llega a:
(6)
En este caso el tiempo propio de la partícula acelerada se puede calcular en función del
tiempo coordenado t mediante la expresión:
(7)
Todas estas expresiones pueden generalizarse fácilmente al caso de un movimiento
uniformemente acelerado, cuya trayectoria es más complicada que la parábola, tal como
sucede en el caso clásico cuando el movimiento se da sobre un plano.
Observadores de Rindler
El tratamiento de los observadores uniformemente acelerados en el espacio-tiempo de
Minkowski se realiza habitualmente usando las llamadas coordenadas de Rindler para
dicho espacio, un observador acelerado queda representado por un sistema de referencia
asociado a unas coordenadas de Rindler. Partiendo de las coordenadas cartesianas la
métrica de dicho espacio-tiempo:
Considérese ahora la región conocida como "cuña de Rindler", dada por el conjunto de
puntos que verifican:
Y defínase sobre ella un cambio de coordenadas dado por las transformaciones
siguientes:
Donde:
, es un parámetro relacionado con la aceleración del observador.1
, son las coordenadas temporal y espaciales medidas por dicho
observador.
Usando estas coordenadas, la cuña de Rindler del espacio de Minkowski tiene una
métrica, expresada en las nuevas coordenadas, dada por la expresión:
Puede que estas coordenadas representen a un observador acelerado según el eje X,
cuya cuadriaceleración obtenida como derivada covariante de la cuadrivelocidad está
relacionada con el valor de la coordenada x:
Horizonte de Rindler
Es interesante notar que un observador uniformemente acelerado tiene horizonte de
eventos, es decir existe una superficie espacial (que coincide con la frontera de la cuña
de Rindler):
tal que la luz del otro lado jamás alcanzaría al observador acelerado. Este horizonte de
sucesos es del mismo tipo que el horizonte de sucesos que ve un obsevador situado
fuera de un agujero negro. Es decir, los eventos al otro lado del horizonte de eventos no
pueden ser vistos por estos observadores.
El ejemplo de las coordenadas de Rindler muestra que la ocurrencia de un horizonte de
eventos no está asociada al propio espacio-tiempo sino a ciertos observadores. Las
coordenadas de Rindler constituyen una cartografía del espacio-tiempo plano de
Minkowski. En dicho espacio un observador inercial no ve ningún horizonte de eventos
pero sí lo ve un observador acelerado.
Movimiento acelerado en mecánica cuántica
Movimiento bajo fuerza constante en mecánica cuántica
En mecánica cuántica no se puede hablar de trayectorias ya que la posición de la
partícula no puede determinarse con precisión arbitraria, por lo que sólo existen
análogos cuánticos imperfectos del movimiento rectilíneo clásico. El equivalente
cuántico más simple de movimiento uniformemente acelerado es el de una partícula
cuántica (no relativista y sin espín) en un campo de fuerzas conservativo en el que la
energía potencial es una función lineal de la coordenada.
La solución general de esta ecuación puede escribirse como transformada de Fourier del
conjunto de soluciones de la ecuación estacionaria:
Donde la amplitud es una función de la energía que debe escogerse para satisfacer
las condiciones iniciales y la función en el integrando debe ser solución de la
ecuación de Schrödinger estacionaria:
Donde:
es la constante de Planck racionalizada.
es la masa de la partícula.
es la fuerza que se ejerce sobre la partícula.
es la energía de un estado estacionario del hamiltoniano cuántico.
Haciendo el cambio de variable:
Entonces la ecuación (*) equivale a la ecuación:
Que es la ecuación de Airy, por lo que la solución general de la ecuación de
Schrödinger queda en términos de funciones Airy:
Por consideraciones físicas B = 0, ya que en caso contrario la anterior función no sería
acotada.
Nótese que la ecuación anterior tiene solución para cualquier valor de E y por tanto los
estados energéticos posibles de una partícula tienen un espectro continuo (a diferencia
de lo que pasa para otros sistemas cuánticos con niveles de energía discretos).
Efecto Unruh
Artículo principal: Efecto Unruh
En 1975, Stephen Hawking conjeturó que cerca del horizonte de eventos de un agujero
negro debía aparecer una producción de partículas cuyo espectro de energías
correspondería con la de un cuerpo negro cuya temperatura fuera inversamente
proporcional a la masa del agujero. En un análisis de observadores acelerados, Paul
Davies probó que el mismo argumento de Hawking era aplicable a estos observadores
(observadores de Rindler).2
En 1976, Bill Unruh basándose en los trabajos de Hawking y Davies, predijo que un
observador uniformemente acelerado observaría radiación de tipo Hawking donde un
observador inercial no observaría nada. En otras palabras el efecto Unruh afirma que el
vacío es percibido como más caliente por un observador acelerado.3
La temperatura
efectiva observada es proporcional a la aceleración y viene dada por:
Donde:
, constante de Boltzmann.
, constante de Planck racionalizada.
, velocidad de la luz.
, temperatura absoluta del vacío, medida por el observador acelerado.
, aceleración del observador uniformemente acelerado.
De hecho el estado cuántico que percibe el observador acelerado es un estado de
equilibrio térmico diferente del que percibe un observador inercial. Ese hecho hace de la
aceleración una propiedad absoluta: un observador acelerado moviéndose en el espacio
abierto puede medir su aceleración midiendo la temperatura del fondo térmico que le
rodea. Esto es similar al caso relativista clásico, en donde un observador acelerado que
observa una carga eléctrica en reposo respecto a él puede medir la radiación emitida por
esta carga y calcular su propia aceleración absoluta.

Recomendados

Movimiento rectilíneo uniforme por
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniformeAntonio Carvajal
816 vistas5 diapositivas
Movimiento Rectilineo Uniforme por
Movimiento Rectilineo UniformeMovimiento Rectilineo Uniforme
Movimiento Rectilineo UniformeGiussepeViteT
29.3K vistas7 diapositivas
Aplicaciones del mru por
Aplicaciones del mruAplicaciones del mru
Aplicaciones del mrugyiss
43K vistas6 diapositivas
Conservacion de la cantidad de movimiento por
Conservacion de la cantidad de movimientoConservacion de la cantidad de movimiento
Conservacion de la cantidad de movimientoMoisés Galarza Espinoza
48.9K vistas36 diapositivas
estatica por
estaticaestatica
estaticajhony fernandez gomez
5.3K vistas28 diapositivas
Segunda ley ejercicios por
Segunda ley ejerciciosSegunda ley ejercicios
Segunda ley ejerciciosMariano Rgv
10.2K vistas3 diapositivas

Más contenido relacionado

La actualidad más candente

Fisica Cinematica por
Fisica  CinematicaFisica  Cinematica
Fisica CinematicaYRMA LUCIA GUTIERREZ VIZA
67.1K vistas50 diapositivas
Introducción a la dinámica.pp tx por
Introducción a la dinámica.pp txIntroducción a la dinámica.pp tx
Introducción a la dinámica.pp txSaid Garcia
19.7K vistas17 diapositivas
Trabajo y energía cinetica grupo 3-teoria por
Trabajo y energía cinetica grupo 3-teoriaTrabajo y energía cinetica grupo 3-teoria
Trabajo y energía cinetica grupo 3-teoriaetubay
43.1K vistas20 diapositivas
Movimiento Rectilineo Uniforme por
Movimiento Rectilineo UniformeMovimiento Rectilineo Uniforme
Movimiento Rectilineo UniformeEdgar Espinoza Bernal
127.4K vistas24 diapositivas
Dinámica por
DinámicaDinámica
DinámicaValeria Logroño
9.5K vistas41 diapositivas
Movimiento rectilíneo uniforme por
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniformeEvelyn Cogollo
6.2K vistas6 diapositivas

La actualidad más candente(20)

Introducción a la dinámica.pp tx por Said Garcia
Introducción a la dinámica.pp txIntroducción a la dinámica.pp tx
Introducción a la dinámica.pp tx
Said Garcia19.7K vistas
Trabajo y energía cinetica grupo 3-teoria por etubay
Trabajo y energía cinetica grupo 3-teoriaTrabajo y energía cinetica grupo 3-teoria
Trabajo y energía cinetica grupo 3-teoria
etubay43.1K vistas
Movimiento rectilíneo uniforme por Evelyn Cogollo
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
Evelyn Cogollo6.2K vistas
Momento de inercia por mazariegos
Momento de inerciaMomento de inercia
Momento de inercia
mazariegos8K vistas
DIAGRAMA DE CUERPO LIBRE por MAXYFISICA
DIAGRAMA DE CUERPO LIBREDIAGRAMA DE CUERPO LIBRE
DIAGRAMA DE CUERPO LIBRE
MAXYFISICA127.6K vistas
Trabajo y potencia (Física) por Sharon Fonseca
Trabajo y potencia (Física)Trabajo y potencia (Física)
Trabajo y potencia (Física)
Sharon Fonseca16.1K vistas

Similar a Movimiento rectilíneo uniforme

Movimientos ejemplos por
Movimientos ejemplosMovimientos ejemplos
Movimientos ejemplosmariela_16
1.2K vistas6 diapositivas
Movimientos ejemplos por
Movimientos ejemplosMovimientos ejemplos
Movimientos ejemplosmariela_16
899 vistas6 diapositivas
Movimiento rectilíneo uniforme por
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMiky Gómez
92 vistas3 diapositivas
Movimiento rectilíneo uniforme por
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMiky Gómez
206 vistas3 diapositivas
Fisica por
FisicaFisica
FisicaPablito Cubillos
3.4K vistas21 diapositivas
Fisica 1 por
Fisica 1Fisica 1
Fisica 1Orlandoo Rangel
402 vistas10 diapositivas

Similar a Movimiento rectilíneo uniforme(20)

Movimientos ejemplos por mariela_16
Movimientos ejemplosMovimientos ejemplos
Movimientos ejemplos
mariela_161.2K vistas
Movimientos ejemplos por mariela_16
Movimientos ejemplosMovimientos ejemplos
Movimientos ejemplos
mariela_16899 vistas
Movimiento rectilíneo uniforme por Miky Gómez
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
Miky Gómez92 vistas
Movimiento rectilíneo uniforme por Miky Gómez
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
Miky Gómez206 vistas
Movimiento rectilineo uniforme. por aramis bravo
Movimiento rectilineo uniforme.Movimiento rectilineo uniforme.
Movimiento rectilineo uniforme.
aramis bravo1.6K vistas
Movimiento rectilíneo uniforme por David Montalvo
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
David Montalvo215 vistas
Movimiento rectilíneo por Henry Jimenez
Movimiento rectilíneoMovimiento rectilíneo
Movimiento rectilíneo
Henry Jimenez5.2K vistas
diapositivas sobre el m.r.u. del 1ro ciencias "A" por Jossy DanieLa
diapositivas sobre el m.r.u. del 1ro ciencias "A"diapositivas sobre el m.r.u. del 1ro ciencias "A"
diapositivas sobre el m.r.u. del 1ro ciencias "A"
Jossy DanieLa2.5K vistas
Tipos de movimiento en cinemática por Jaime
Tipos de movimiento en cinemáticaTipos de movimiento en cinemática
Tipos de movimiento en cinemática
Jaime74.3K vistas
Movimiento por Susana
MovimientoMovimiento
Movimiento
Susana26.4K vistas
Movimiento por Susana
MovimientoMovimiento
Movimiento
Susana7.1K vistas
El Movimiento Rectilineo Uniforme (M.R.U) por FabricioChuma
El Movimiento Rectilineo Uniforme (M.R.U)El Movimiento Rectilineo Uniforme (M.R.U)
El Movimiento Rectilineo Uniforme (M.R.U)
FabricioChuma1.5K vistas
Movimiento rectilineo uniforme por samiaeli
Movimiento rectilineo uniformeMovimiento rectilineo uniforme
Movimiento rectilineo uniforme
samiaeli148 vistas

Movimiento rectilíneo uniforme

  • 1. UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA INDUSTRIAL TEMA: Movimiento rectilíneo uniforme y Movimiento rectilíneo uniformemente acelerado AUTORES: Omar Valle Byron Condo Bryan Mazon
  • 2. Movimiento rectilíneo uniforme El Movimiento Rectilíneo Uniforme es una trayectoria recta, su velocidad es constante y su aceleración es nula. Un movimiento es rectilíneo cuando un móvil describe una trayectoria recta, y es uniforme cuando su velocidad es constante en el tiempo, dado que su aceleración es nula. Nos referimos a él mediante el acrónimo MRU.  Movimiento que se realiza sobre una línea recta.  Velocidad constante; implica magnitud y dirección constantes.  La magnitud de la velocidad recibe el nombre de celeridad o rapidez.  Aceleración nula. El Movimiento Rectilíneo Uniforme es una trayectoria recta, su velocidad es constante y su aceleración es nula.
  • 3. Propiedades y características La distancia recorrida se calcula multiplicando la magnitud de la velocidad o rapidez por el tiempo transcurrido. Esta relación también es aplicable si la trayectoria no es rectilínea, con tal que la rapidez o módulo de la velocidad sea constante. Por lo tanto el movimiento puede considerarse en dos sentidos; una velocidad negativa representa un movimiento en dirección contraria al sentido que convencionalmente hayamos adoptado como positivo. De acuerdo con la Primera Ley de Newton, toda partícula permanece en reposo o en movimiento rectilíneo uniforme cuando no hay una fuerza externa que actúe sobre el cuerpo, dado que las fuerzas actuales están en equilibrio, por lo cual su estado es de reposo o de movimiento rectilíneo uniforme. Esta es una situación ideal, ya que siempre existen fuerzas que tienden a alterar el movimiento de las partículas, por lo que en el movimiento rectilíneo uniforme (M.R.U) es difícil encontrar la fuerza amplificada. Representación gráfica del movimiento Al representar gráficamente en un sistema de coordenadas cartesianas, la velocidad en función del tiempo se obtiene una recta paralela al eje de abscisas (tiempo). Además, el área bajo la recta producida representa la distancia recorrida. La representación gráfica de la distancia recorrida en función del tiempo da lugar a una recta cuya pendiente se corresponde con la velocidad. Ecuaciones del movimiento Sabemos que la velocidad es constante; esto significa que no existe aceleración. La posición en cualquier instante viene dada por . Para una posición inicial y un tiempo inicial , ambos distintos de cero, la posición para cualquier tiempo está dada por Aplicaciones En astronomía, el MRU es muy utilizado. Los planetas y las estrellas no se mueven en línea recta, pero la que sí se mueve en línea recta es la luz, y siempre a la misma velocidad. Entonces, sabiendo la distancia a la que se encuentra un objeto, se puede saber el tiempo que tarda la luz en recorrer esa distancia. Por ejemplo, el sol se encuentra a 150.000.000
  • 4. km. La luz, por lo tanto, tarda 500 segundos (8 minutos 20 segundos) en llegar hasta la tierra. La realidad es un poco más compleja, con la relatividad de por medio, pero a grandes rasgos podemos decir que la luz sigue un movimiento rectilíneo uniforme. Movimiento rectilíneo uniformemente acelerado El movimiento rectilíneo uniformemente acelerado (MRUA), también conocido como movimiento rectilíneo uniformemente variado (MRUV), es aquel en el que un móvil se desplaza sobre una trayectoria recta estando sometido a una aceleración constante. Un ejemplo de este tipo de movimiento es el de caída libre vertical, en el cual la aceleración interviniente, y considerada constante, es la que corresponde a la gravedad. También puede definirse como el movimiento que realiza una partícula que partiendo del reposo es acelerada por una fuerza constante. El movimiento rectilíneo uniformemente acelerado (MRUA) es un caso particular del movimiento uniformemente acelerado (MUA). Evolución respecto del tiempo de la posición, de la velocidad y de la aceleración de un cuerpo sometido a un movimiento rectilíneo uniformemente acelerado, en un sistema de coordenadas cartesianas, según la mecánica clásica.
  • 5. Movimiento rectilíneo uniformemente acelerado en mecánica newtoniana En mecánica clásica el movimiento rectilíneo uniformemente acelerado (MRUA) presenta tres características fundamentales: 1. La aceleración y la fuerza resultante sobre la partícula son constantes. 2. La velocidad varía linealmente respecto del tiempo. 3. La posición varía según una relación cuadrática respecto del tiempo. La figura muestra las relaciones, respecto del tiempo, del desplazamiento (parábola), velocidad (recta con pendiente) y aceleración (constante, recta horizontal) en el caso concreto de la caída libre (con velocidad inicial nula). El MRUA, como su propio nombre indica, tiene una aceleración constante, cuyas relaciones dinámicas y cinemáticas, respectivamente, son: (1) En el movimiento rectilíneo acelerado, la aceleración instantánea es representada como la pendiente de la recta tangente a la curva que representa gráficamente la función v(t). La velocidad v para un instante t dado es: (2a) siendo la velocidad inicial. Finalmente la posición x en función del tiempo se expresa por: (3) donde es la posición inicial.
  • 6. Además de las relaciones básicas anteriores, existe una ecuación que relaciona entre sí el desplazamiento y la rapidez del móvil. Ésta se obtiene despejando el tiempo de (2a) y sustituyendo el resultado en (3): (2b) Movimiento acelerado en mecánica relativista Movimiento relativista bajo fuerza constante: aceleración (azul), velocidad (verde) y desplazamiento (rojo). En mecánica relativista no existe un equivalente exacto del movimiento rectilíneo uniformemente acelerado, ya que la aceleración depende de la velocidad y mantener una aceleración constante requeriría una fuerza progresivamente creciente. Lo más cercano que se tiene es el movimiento de una partícula bajo una fuerza constante, que comparte muchas de las características del MUA de la mecánica clásica. La ecuación de movimiento relativista para el movimiento bajo una fuerza constante partiendo del reposo es: (4) Donde w es una constante que, para valores pequeños de la velocidad comparados con la velocidad de la luz, es aproximadamente igual a la aceleración (para velocidades cercanas a la de la luz la aceleración es mucho más pequeña que el cociente entre la fuerza y la masa). De hecho la aceleración bajo una fuerza constante viene dada en el caso relativista por:
  • 7. La integral de (4) es sencilla y viene dada por: (5) E integrando esta última ecuación, suponiendo que inicialmente la partícula ocupaba la posición x = 0, se llega a: (6) En este caso el tiempo propio de la partícula acelerada se puede calcular en función del tiempo coordenado t mediante la expresión: (7) Todas estas expresiones pueden generalizarse fácilmente al caso de un movimiento uniformemente acelerado, cuya trayectoria es más complicada que la parábola, tal como sucede en el caso clásico cuando el movimiento se da sobre un plano. Observadores de Rindler El tratamiento de los observadores uniformemente acelerados en el espacio-tiempo de Minkowski se realiza habitualmente usando las llamadas coordenadas de Rindler para dicho espacio, un observador acelerado queda representado por un sistema de referencia asociado a unas coordenadas de Rindler. Partiendo de las coordenadas cartesianas la métrica de dicho espacio-tiempo: Considérese ahora la región conocida como "cuña de Rindler", dada por el conjunto de puntos que verifican: Y defínase sobre ella un cambio de coordenadas dado por las transformaciones siguientes:
  • 8. Donde: , es un parámetro relacionado con la aceleración del observador.1 , son las coordenadas temporal y espaciales medidas por dicho observador. Usando estas coordenadas, la cuña de Rindler del espacio de Minkowski tiene una métrica, expresada en las nuevas coordenadas, dada por la expresión: Puede que estas coordenadas representen a un observador acelerado según el eje X, cuya cuadriaceleración obtenida como derivada covariante de la cuadrivelocidad está relacionada con el valor de la coordenada x: Horizonte de Rindler Es interesante notar que un observador uniformemente acelerado tiene horizonte de eventos, es decir existe una superficie espacial (que coincide con la frontera de la cuña de Rindler): tal que la luz del otro lado jamás alcanzaría al observador acelerado. Este horizonte de sucesos es del mismo tipo que el horizonte de sucesos que ve un obsevador situado fuera de un agujero negro. Es decir, los eventos al otro lado del horizonte de eventos no pueden ser vistos por estos observadores. El ejemplo de las coordenadas de Rindler muestra que la ocurrencia de un horizonte de eventos no está asociada al propio espacio-tiempo sino a ciertos observadores. Las coordenadas de Rindler constituyen una cartografía del espacio-tiempo plano de Minkowski. En dicho espacio un observador inercial no ve ningún horizonte de eventos pero sí lo ve un observador acelerado. Movimiento acelerado en mecánica cuántica
  • 9. Movimiento bajo fuerza constante en mecánica cuántica En mecánica cuántica no se puede hablar de trayectorias ya que la posición de la partícula no puede determinarse con precisión arbitraria, por lo que sólo existen análogos cuánticos imperfectos del movimiento rectilíneo clásico. El equivalente cuántico más simple de movimiento uniformemente acelerado es el de una partícula cuántica (no relativista y sin espín) en un campo de fuerzas conservativo en el que la energía potencial es una función lineal de la coordenada. La solución general de esta ecuación puede escribirse como transformada de Fourier del conjunto de soluciones de la ecuación estacionaria: Donde la amplitud es una función de la energía que debe escogerse para satisfacer las condiciones iniciales y la función en el integrando debe ser solución de la ecuación de Schrödinger estacionaria: Donde: es la constante de Planck racionalizada. es la masa de la partícula. es la fuerza que se ejerce sobre la partícula. es la energía de un estado estacionario del hamiltoniano cuántico. Haciendo el cambio de variable: Entonces la ecuación (*) equivale a la ecuación: Que es la ecuación de Airy, por lo que la solución general de la ecuación de Schrödinger queda en términos de funciones Airy:
  • 10. Por consideraciones físicas B = 0, ya que en caso contrario la anterior función no sería acotada. Nótese que la ecuación anterior tiene solución para cualquier valor de E y por tanto los estados energéticos posibles de una partícula tienen un espectro continuo (a diferencia de lo que pasa para otros sistemas cuánticos con niveles de energía discretos). Efecto Unruh Artículo principal: Efecto Unruh En 1975, Stephen Hawking conjeturó que cerca del horizonte de eventos de un agujero negro debía aparecer una producción de partículas cuyo espectro de energías correspondería con la de un cuerpo negro cuya temperatura fuera inversamente proporcional a la masa del agujero. En un análisis de observadores acelerados, Paul Davies probó que el mismo argumento de Hawking era aplicable a estos observadores (observadores de Rindler).2 En 1976, Bill Unruh basándose en los trabajos de Hawking y Davies, predijo que un observador uniformemente acelerado observaría radiación de tipo Hawking donde un observador inercial no observaría nada. En otras palabras el efecto Unruh afirma que el vacío es percibido como más caliente por un observador acelerado.3 La temperatura efectiva observada es proporcional a la aceleración y viene dada por: Donde: , constante de Boltzmann. , constante de Planck racionalizada. , velocidad de la luz. , temperatura absoluta del vacío, medida por el observador acelerado. , aceleración del observador uniformemente acelerado. De hecho el estado cuántico que percibe el observador acelerado es un estado de equilibrio térmico diferente del que percibe un observador inercial. Ese hecho hace de la aceleración una propiedad absoluta: un observador acelerado moviéndose en el espacio abierto puede medir su aceleración midiendo la temperatura del fondo térmico que le rodea. Esto es similar al caso relativista clásico, en donde un observador acelerado que
  • 11. observa una carga eléctrica en reposo respecto a él puede medir la radiación emitida por esta carga y calcular su propia aceleración absoluta.