chuyen de ung dung cua dao ham va bt lien quan

Vũ Hồng Toàn
Vũ Hồng ToànTHPT Xuân Thọ
Chuyên đề LTĐH

Ứng dụng đạo hàm, các bài toán liên quan

GIẢI TÍCH

Vấn đề 1: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Bài 1) Tìm GTLN, GTNN (nếu có) của các hàm số sau:
1) y = x + 4 − x 2
2) y =

x +1

1
sin x + cos x
4
y = sin x − cos x
cos 2 x + sin x cos x
y=
1 + sin 2 x
y = cos x(1 + sin x ) trên đoạn [0; 2π]
 4x 
 2x 
+1
+ cos
y = cos
2 
2 
1+ x 
1+ x 
1 + sin 6 x + cos 6 x
y=
1 + sin 4 x + cos 4 x
x4 y4  x2 y2  x y
y = 4 + 4 −  2 + 2  + + (x, y ≠ 0)
y
x y
x  y x



11) y =

trên đoạn [-1; 2]

x2 +1
ln 2 x
trên đoạn [1; e 3 ]
3) y =
x
3
6
4) y = x + 4(1 − x 2 ) trên đoạn [-1; 1]
5) y = sin x − cos 2 x + 2
4
6) y = 2 sin x − sin 3 x trên đoạn [0; π]
3
x +1
7) y = 2
x + x +1
cos x + 1
8) y =
2
cos x + cos x + 1
9) y = x − 2 + 4 − x

12)
13)
14)
15)
16)
17)

18) y = x 3 + 3 x 2 − 72 x + 90 trên đoạn [-5; 5]

10) y = (2 + x ) − (2 − x ) trên đoạn [-2; 2]
10

10

Bài 2) Tìm m để:

(

a) Miny = 4 với y = x 2 + x + m
[−2 ; 2 ]

)

2

b) GTLN của hàm số y = f ( x) = − 4 x 2 + 2 x + m trên đoạn [-1; 2] là nhỏ nhất.
Bài 3) Tìm m để bất phương trình

(4 + x )(6 − x ) ≤ x 2 − 2 x + m nghiệm đúng ∀x ∈ [− 4;6]

Bài 4) Chứng minh rằng ∀x∈R, ta có: 1 + cos x +

1
1
cos 2 x + cos 3 x > 0
2
3
 π
 4


Bài 5) Tìm m để sin 5 x + cos5 x − m(sin x + cos x ) − sin x. cos x(sin x + cos x ) ≥ 0 ∀x ∈ 0;
Bài 6) Tìm tất cả các giá trị của m để cos 2 x + m cos x + 4 ≥ 0

∀x ∈ R

Bài 7) Cho a, b, c là 3 số dương thỏa mãn điều kiện a2 + b2 +c2 = 1. Chứng minh:

a
b
c
3 3
≥
+ 2
+ 2
2
2
2
b +c
c +a
a +b
2
2
Bài 8) Tìm điều kiện của m để phương trình x + 2 x − m = 2 x − 1 (1)
2

a) Có nghiệm thực

b) Có một nghiệm thực

Bài 9) Tìm m để phương trình

x −1 + 3 − x −

c) Có hai nghiệm thực phân biệt

(x − 1)(3 − x ) = m có nghiệm thực.

 x 2 − 3x ≤ 0

Bài 10) Tìm m để hệ bất phương trình  3
có nghiệm.
 x − 2 x x − 2 − m 2 + 4m ≥ 0

Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008)

Trang 1
Chuyên đề LTĐH

Ứng dụng đạo hàm, các bài toán liên quan

GIẢI TÍCH

Vấn đề 2: Tính đơn điệu của hàm số
Bài 1) Tìm m để hàm số y = −

x3
+ mx 2 − 4 x − 1 luôn nghịch biến trên miền xác định.
3

Bài 2) Tìm m để hàm số y = (m + 2 )

Bài 3) Cho hàm số y =

x3
− (m + 2)x 2 + (m − 8)x + m 2 − 1 nghịch biến trên R.
3

x 2 + 2(m + 1)x + 2
. Với giá trị nào của m thì hàm số đồng biến trong (0; +∞)
x +1

Bài 4) Tìm các giá trị của m để hàm số y = 2 x 3 + 3 x 2 + 6(m + 1)x + m 2 giảm trên (-2; 0)
Bài 5) Cho hàm số y =

mx + 1
x+m

a) Tìm m để y tăng trên (1; +∞)

b) Tìm m để y giảm trên (-∞; 0)

Bài 6) Tìm tất cả các giá trị của m để hàm số y =
a) nghịch biến trên R
Bài 7) Cho hàm số y =

1 2
(m − 1)x 3 + (m − 1)x 2 − 2 x + 1
3

b) nghịch biến trên khoảng (0; +∞)

2 x 2 − 3x + m
. Với giá trị nào của m thì hàm số đồng biến trong (3; +∞)
x −1

Bài 8) Tìm các giá trị của m để hàm số y =

1
(m + 1)x 3 − (2m − 1)x 2 + 3(2m − 1)x + 1 nghịch biến (-1; 1)
3

Bài 9) Tìm các giá trị của m để hàm số y =

x 2 − 2mx + 3m 2
đồng biến trên khoảng (1; +∞)
x − 2m

x2 − 2x + m
Bài 10) Xác định m để hàm số y =
nghịch biến trên đoạn [-1; 0]
x−2
Bài 11) Xác định m để hàm số y = x 3 − 3(m − 1)x 2 + 3m(m − 2 )x + 1 đồng biến trên tập hợp các giá trị của
x sao cho 1 ≤ x ≤ 2
Bài 12) Tìm tất cả các giá trị của tham số m để hàm số y = x 3 + 3 x 2 + mx + m nghịch biến trên đoạn có độ
dài bằng 1.

Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008)

Trang 2
Chuyên đề LTĐH

Ứng dụng đạo hàm, các bài toán liên quan

GIẢI TÍCH

Vấn đề 3: Cực trị của hàm số
Bài 1) Tìm m để hàm số y = mx 3 + 3 x 2 + 5 x + m đạt cực đại tại x = 2
Bài 2) Tìm m để hàm số y =

x 2 + mx + 1
đạt cực đại tại x = 2
x+m

Bài 3) Cho hàm số y = (m + 2 )x 3 + 3 x 2 + mx + m . Tìm m để hàm số có cực đại và cực tiểu?
Bài 4) Cho hàm số y =

1 3
1
mx − (m − 1)x 2 + 3(m − 2)x + . Tìm m để hàm số có cực đại, cực tiểu và xcđ<xct
3
3

mx 2 + (2 − 4m )x + 4m − 1
Bài 5) Xác định m sao cho hàm số y =
có hai cực trị trong miền x>0
x −1
Bài 6) Xác định m để hàm số y = − x 4 + 2mx 2 có 3 cực trị
Bài 7) Tìm tất cả các giá trị của m để hàm số y =
điểm cực trị trái dấu nhau.

x 2 + (2m + 3)x + m 2 + 4m
có hai cực trị và giá trị các
x+m

x 2 + mx − m + 8
. Xác định các giá trị của m để điểm cực đại và cực tiểu của đồ thị
Bài 8) Cho hàm số y =
x −1
hàm số ở về hai phía đường thẳng 9 x − 7 y − 1 = 0
Bài 9) Cho hàm số y = 2 x 3 + 3(m − 1)x 2 + 6(m − 2 )x − 1 . Xác định m để hàm số có cực đại, cực tiểu và lập
phương trình đường thẳng qua các điểm cực đại và cực tiểu của đồ thị hàm số.
Bài 10) Cho hàm số y =

− x 2 + mx − m 2
. Xác định m để hàm số có cực đại và cực tiểu. Khi đó hãy viết
x−m

phương trình đường thẳng đi qua điểm cực đại và cực tiểu của hàm số.

Bài 11) Cho hàm số: y = x 3 − 3 x 2 + m 2 x + m . Tìm tất cả các giá trị của m để hàm số có cực đại, cực tiểu
và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng y =
Bài 12) Cho hàm số y =

1
5
x−
2
2

x 2 − 2mx + m
. Xác định m để đường thẳng đi qua các điểm cực đại và cực tiểu
x+m

của đồ thị hàm số tạo với các trục tọa độ một tam giác có diện tích bằng 1.

x 2 + 2mx + 2
. Tìm các giá trị của m để đồ thị hàm số có điểm cực đại, điểm cực
x +1
tiểu cách đều đường thẳng x + y + 2 = 0

Bài 13) Cho hàm số y =

1
. Tìm m để hàm số có cực trị và khoảng cách từ điểm cực tiểu đến tiệm cận
x
1
xiên của đồ thị hàm số bằng
.
2
Bài 14) Cho hàm số y = mx +

x 2 + (m + 1)x + m + 1
. Chứng minh rằng với m bất kỳ, đồ thị của hàm số luôn luôn
x +1
có điểm cực đại, điểm cực tiểu và khoảng cách giữa hai điểm đó bằng 20 .

Bài 15) Cho hàm số y =

Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008)

Trang 3
Chuyên đề LTĐH

Ứng dụng đạo hàm, các bài toán liên quan

GIẢI TÍCH

x 2 + mx
. Tìm m để hàm số có cực đại và cực tiểu. Với giá trị nào của m thì
1− x

Bài 16) Cho hàm số y =

khoảng cách giữa hai điểm cực trị của đồ thị hàm số bằng 10?
Bài 17) Cho hàm số y =

x 2 + (2m + 1)x + m 2 + m + 4
. Tìm m để hàm số có cực trị và tính khoảng cách
2( x + m )

giữa hai điểm cực trị của đồ thị hàm số đã cho.
Bài 18) Cho hàm số y = x 4 − 2m 2 x 2 + 1 . Tìm m để đồ thị hàm số có ba điểm cực trị là ba đỉnh của một tam
giác vuông cân.
Bài 19) Cho hàm số y = x 3 − 2mx 2 + m 2 x − 2 . Tìm m để hàm số đạt cực tiểu tại x = 1.
Bài 20) Cho hàm số y =

x 2 + 2mx + 1 − 3m 2
. Tìm m để hàm số có hai điểm cực trị nằm về hai phía trục
x−m

tung.

x 2 − (3m + 2)x + m + 4
Bài 21) Cho hàm số y =
. Tìm m để hàm số có CĐ và CT và khoảng cách giữa hai
x −1

điểm CĐ, CT của đồ thị nhỏ hơn 3.
Bài 22) Cho hàm số y =

x 2 − (m + 3)x + 3m + 1
. Tìm m để hàm số có CĐ và CT và các giá trị CĐ, CT của
x −1

hàm số cùng âm.

(

)

Bài 23) Cho hàm số y = ( x − m ) x 2 − 2 x − m − 1 . Tìm m để hàm số có cực đại, cực tiểu và hoành độ điểm
cực đại xcđ, hoành độ điểm cực tiểu xct thỏa: | xcđ . xct| = 1
Bài 24) Cho hàm số y =

x 2 − (2m + 5)x + m + 3
. Tìm m để hàm số có cực trị tại điểm x>1. Hãy xác định
x +1

đó là điểm cực đại hay cực tiểu của đồ thị.

Bài 25) Cho hàm số y = x 4 − 2mx 2 + m − 1 . Tìm m để đồ thị hàm số có ba điểm cực trị tạo thành ba đỉnh
của một tam giác đều.
Bài 26) Cho hàm số y =

x 2 + 2(m + 1)x + m 2 + 4m
. Tìm m để hàm số có cực đại và cực tiểu, đồng thời các
x+2

điểm cực trị của đồ thị cùng với gốc tọa độ O tạo thành một tam giác vuông tại O.

(

)

Bài 27) Cho hàm số y = − x 3 + 3 x 2 + 3 m 2 − 1 x − 3m 2 − 1 . Tìm m để hàm số có cực đại, cực tiểu và các
điểm cực trị của đồ thị hàm số cách đều gốc tọa độ O.
Bài 28) Cho hàm số y =
đại, cực tiểu cùng dấu.

x 2 + 2(m − 1)x + 2 − m
. Tìm m để hàm số có cực đại, cực tiểu và các giá trị cực
x −1

x 2 − mx + 2m − 1
Bài 29) Cho hàm số y =
. Tìm m để tiệm cận xiên của đồ thị hàm số đi qua gốc tọa độ và
mx − 1
hàm số có cực trị.
Bài 30) Cho hàm số y =

x 2 + m 2 x + 2m 2 − 5m + 3
(m>0). Tìm m để hàm số có điểm cực tiểu thuộc
x

khoảng (0; 2m).
Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008)

Trang 4
Chuyên đề LTĐH

Ứng dụng đạo hàm, các bài toán liên quan

GIẢI TÍCH

Vấn đề 4: Sự tương giao của hai đồ thị hàm số
Bài 1) Cho hàm số y =

mx 2 + x + m
. Tìm m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt và hai
x −1

điểm đó có hoành độ dương.
Bài 2) Cho hàm số y =
hai điểm phân biệt.

x2 − 2x + 4
. Tìm m để đường thẳng (d): y = mx + 2 − 2m cắt đồ thị của hàm số tại
x−2

− x 2 + 3x − 3
Bài 3) Cho hàm số y =
. Tìm m để đường thẳng y = m cắt đồ thị hàm số tại hai điểm A, B sao
2( x − 1)
cho AB = 1.
Bài 4) Cho hàm số y =

2 x 2 − 4 x + 10
. Định m để đường thẳng (d): mx − y − m = 0 cắt đồ thị tại hai điểm
− x +1

phân biệt A, B. Xác định m để AB ngắn nhất.

Bài 5) Cho hàm số y = x 4 − mx 2 + m − 1 . Xác định m sao cho đồ thị hàm số cắt trục hoành tại bốn điểm
phân biệt.

(

)

Bài 6) Cho hàm số y = ( x − 1) x 2 + mx + m . Tìm m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt.
Bài 7) Cho hàm số y = 2 x 3 − 3 x 2 − 1 . Gọi d là đường thẳng đi qua điểm M(0; -1) và có hệ số góc bằng k.
Tìm k để đường thẳng d cắt đồ thị tại ba điểm phân biệt.
Bài 8) Cho hàm số y = x 3 − 3 x + 2 . Gọi (d) là đường thẳng đi qua điểm A(3; 20) và có hệ số góc là m. Tìm
m để đường thẳng d cắt đồ thị tại ba điểm phân biệt.

(

)

Bài 9) Cho hàm số y = ( x − 1) x 2 − 2 mx − m − 1 . Tìm m để đồ thị hàm số cắt trục hoành tại 3 điểm phân
biệt có hoành độ lớn hơn -1.
Bài 10) Cho hàm số y =

2 3
8
8
x − x 2 − 4 x + . Tìm giá trị của tham số m để đường thẳng y = mx + cắt đồ
3
3
3

thị tại 3 điểm phân biệt.

x2 + 4x + 1
Bài 11) Cho hàm số y =
. Tìm các giá trị của m để đường thẳng (d): y = mx + 2 − m cắt đồ thị
x+2
hàm số tại hai điểm phân biệt thuộc cùng một nhánh của đồ thị.

x 2 + mx − 1
Bài 12) Cho hàm số y =
. Tìm m để đường thẳng (d): y = m cắt đồ thị hàm số tại hai điểm A, B
x −1

sao cho OA ⊥ OB.

2 x 2 − 3x
Bài 13) Cho hàm số y =
. Tìm m để đường thẳng y = 2mx − m cắt đồ thị tại hai điểm thuộc hai
x−2
nhánh của đồ thị.

Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008)

Trang 5
Chuyên đề LTĐH
Bài 14) Cho hàm số y =

Ứng dụng đạo hàm, các bài toán liên quan

GIẢI TÍCH

x +1
(C).
x −1

a) Gọi (d) là đường thẳng 2 x − y + m = 0 . Chứng minh (d) luôn cắt (C) tại hai điểm phân biệt A, B
trên hai nhánh của (C)
b) Tìm m để độ dài đoạn AB ngắn nhất.
Bài 15) Cho hàm số y = x + 2 +
hoành độ trái dấu.

1
. Tìm m để đường thẳng y = m( x + 1) + 1 cắt đồ thị tại hai điểm có
x +1

Bài 16) Tìm m để đồ thị hàm số y = x 3 + (m + 1)x 2 + 2 mx + m 2 cắt trục hoành tại 3 điểm phân biệt có
hoành độ âm.

(

)

Bài 17) Cho hàm số y = x 3 − 3mx 2 + 3 m 2 − 1 x − m 2 + 1 . Tìm m để đồ thị hàm số cắt trục hoành tại 3
điểm có hoành độ dương.
Bài 18) Cho hàm số y = x 3 + mx + 2 . Tìm m để đồ thị hàm số cắt trục hoành tại duy nhất một điểm.
Bài 19) Cho hàm số y =

x 2 + (m + 2)x − m
. Xác định m để cho đường thẳng y = −( x + 4 ) cắt đồ thị hàm
x +1

số tại hai điểm đối xứng nhau qua đường phân giác của góc phần tư thứ nhất.
Bài 20) Cho hàm số y =

x2 − x − 3
(C)
x +1

a) Chứng tỏ đường thẳng (d): y = − x + m luôn cắt (C) tại hai điểm M, N thuộc hai nhánh của (C)
b) Định m để M, N đối xứng nhau qua đường thẳng y = x.

x2 + x − 3
Bài 21) Cho (C): y =
và (d): y = − x + m
x −1
a) Tìm m để (d) cắt (C) tại hai điểm M, N và độ dài MN nhỏ nhất.
b) Gọi P, Q là giao điểm của (d) và hai tiệm cận. Cm: MP = NQ
Bài 22) Cho hàm số y = 2 x 3 + 2(6m − 1)x 2 − 3(2m − 1)x − 3(1 + 2 m ) . Định m để đồ thị hàm số cắt trục
hoành tại ba điểm phân biệt có tổng các bình phương các hoành độ bằng 28.
Bài 23) Cho hàm số y = x 3 − 3 x 2 − 9 x + m . Xác định m để đồ thị hàm số cắt trục hoành tại ba điểm phân
biệt với hoành độ lập thành cấp số cộng.
Bài 24) Cho hàm số y = x 4 − 2(m + 1)x 2 + 2m + 1 . Xác định m để đồ thị hàm số cắt trục hoành tại bốn điểm
phân biệt với hoành độ lập thành một cấp số cộng.
Bài 25) Cho hàm số y =

x 2 + (m + 2)x − m
. Tìm m để đường thẳng (d): y = -x – 4 cắt đồ thị tại hai điểm
x +1

M, N sao cho M, N cùng với gốc tọa độ O tạo thành tam giác đều OMN.

Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008)

Trang 6
Chuyên đề LTĐH

Ứng dụng đạo hàm, các bài toán liên quan

GIẢI TÍCH

Vấn đề 5: Sự tiếp xúc và phương trình tiếp tuyến của đồ thị hàm số
Bài 1) Cho hàm số y =
Bài 2) Cho hàm số y =

(2m − 1)x − m 2 . Tìm m để đồ thị của hàm số tiếp xúc với đường thẳng
x −1

y = x.

1 3
x − 2 x 2 + 3x . Viết phương trình tiếp tuyến (d) của đồ thị tại điểm uốn và chứng
3

minh rằng (d) là tiếp tuyến của đồ thị có hệ số góc nhỏ nhất.

1 3 m 2 1
x − x + . Gọi M là điểm thuộc đồ thị của hàm số có hoành độ bằng -1. Tìm
3
2
3
m để tiếp tuyến của đồ thị tại điểm M song song với đường thẳng 5 x − y = 0 .
Bài 4) Cho hàm số y =

Bài 5) Cho hàm số y = − x 3 + 3 x 2 − 3 . Viết phương trình tiếp tuyến với đồ thị của hàm số biết rằng các tiếp
tuyến này vuông góc với đường thẳng y =
Bài 6) Cho hàm số y =

1
x+2
9

2x −1
. Gọi I là giao điểm hai đường tiệm cận của (C). Tìm điểm M thuộc (C) sao
x −1

cho tiếp tuyến của (C) tại M vuông góc với đường thẳng IM.
Bài 7) Cho hàm số y = x +
Bài 8) Cho hàm số y =
thị hàm số đã cho.

1
. Viết phương trình các tiếp tuyến của (C) đi qua điểm M(-1; 7)
x

x2 + x +1
. Viết phương trình đường thẳng đi qua điểm M(-1; 0) và tiếp xúc với đồ
x +1

Bài 9) Cho hàm số y =

x2 + 2x + 2
. Gọi I là giao điểm của hai tiệm cận của đồ thị. Chứng minh rằng
x +1

không có tiếp tuyến nào của (C) đi qua điểm I.

Bài 10) Cho hàm số y = − x 3 + (2 m + 1)x 2 − m − 1 . Tìm m để đồ thị hàm số tiếp xúc với đường thẳng

y = 2mx − m − 1

x2 + x −1
Bài 11) Cho hàm số y =
. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó vuông góc với
x+2
tiệm cận xiên của (C).

x 2 + 2x + 2
Bài 12) Cho hàm số y =
. Gọi I là tâm đối xứng của đồ thị (C) và M là một điểm trên (C). Tiếp
x +1

tuyến của đồ thị tại M cắt tiệm cận đứng và tiệm cận xiên tại A và B.
a) Chứng tỏ rằng M là trung điểm của AB.

b) Chứng tỏ rằng tam giác IAB có diện tích không phụ thuộc vào M.
Bài 13) Cho hàm số y = x + 1 +

1
. Tìm những điểm trên đồ thị (C) có hoành độ lớn hơn 1 sao cho tiếp
x −1

tuyến tại điểm đó tạo với hai đường tiệm cận một tam giác có chu vi nhỏ nhất.
Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008)

Trang 7
Chuyên đề LTĐH

Ứng dụng đạo hàm, các bài toán liên quan

GIẢI TÍCH

Bài 14) Cho hàm số y = x 3 − 3 x . Tìm những điểm trên đường thẳng y = 2 mà từ đó kẻ được ba tiếp tuyến
tới đồ thị.
Bài 15) Cho hàm số y =

2x2 + x + 1
. Tìm những điểm trên Oy sao cho từ đó có thể kẻ được hai tiếp tuyến
x +1

tới đồ thị hàm số và hai tiếp tuyến đó vuông góc với nhau.
Bài 16) Cho hàm số y =

(3m + 1)x − m 2 + m . Với giá trị nào của m thì tại giao điểm của đồ thị với Ox, tiếp
x+m

tuyến sẽ song song với đường thẳng y + 10 = x.
Bài 17) Tìm các điểm trên trục hoành mà từ đó vẽ được ba tiếp tuyến của đồ thị y = x 3 + 3x 2 trong đó có
hai tiếp tuyến vuông góc với nhau.
Bài 18) Chứng minh rằng đồ thị hàm số y = − x 4 + 2mx 2 − 2 m + 1 luôn đi qua hai điểm cố định A và B. Tìm
m để các tiếp tuyến tại A và B vuông góc với nhau.
1
. Chứng minh rằng qua A(1; -1) kẻ được hai tiếp tuyến với (C) và hai tiếp
x +1
tuyến đó vuông góc với nhau.
Bài 19) Cho hàm số y = x +

x2 + x − 2
sao cho tiếp tuyến tại M cắt các trục tọa độ tại A, B tạo
x−2
thành tam giác vuông cân OAB (O là gốc tọa độ).
Bài 20) Tìm M trên đồ thị hàm số y =

2x −1
(C). Cho M bất kỳ trên (C) có xM = m. Tiếp tuyến của (C) tại M cắt 2 tiệm
x −1
cận tại A, B. Gọi I là giao điểm 2 tiệm cận. Chứng minh M là trung điểm AB và diện tích ∆IAB không đổi.

Bài 21) Cho hàm số y =

Bài 22) Cho hàm số y = x 3 + 3 x 2 + mx + 1 (Cm). Tìm m để (Cm) cắt đường thẳng y=1 tại 3 điểm phân biệt
C(0;1), D, E. Tìm m để các tiếp tuyến của (Cm) tại D và E vuông góc.
Bài 23) Cho hàm số y =
tiếp tuyến đến (C).

x +1
(C). Tìm những điểm trên trục tung mà từ mỗi điểm đó chỉ kẻ được đúng một
x −1

Bài 24) Cho hàm số y = x 4 − 6 x 2 + 5 . Cho M∈(C) với xM = a. Tìm các giá trị của a để tiếp tuyến của (C) tại
M cắt (C) tại hai điểm khác M.
x+3
(C). Cho điểm M0(x0; y0)∈(C). Tiếp tuyến của (C) tại M0 cắt các tiệm cận
x −1
của (C) tại A và B. Chứng minh M0 là trung điểm của AB.
Bài 25) Cho hàm số y =

Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008)

Trang 8

Recomendados

đại số lớp 11 por
đại số lớp 11đại số lớp 11
đại số lớp 11Luna Trần
1K vistas7 diapositivas
Chuyen de dao ham por
Chuyen de dao ham Chuyen de dao ham
Chuyen de dao ham Tuấn Nguyễn Anh
31.2K vistas16 diapositivas
OT HK II - 11 por
OT HK II - 11OT HK II - 11
OT HK II - 11Uant Tran
2.3K vistas14 diapositivas
Bài tập đạo hàm có hướng dẫn por
Bài tập đạo hàm có hướng dẫnBài tập đạo hàm có hướng dẫn
Bài tập đạo hàm có hướng dẫndiemthic3
182.4K vistas6 diapositivas
Ôn thi THPT Quốc Gia môn Toán về nguyên hàm và tích phân por
Ôn thi THPT Quốc Gia môn Toán về nguyên hàm và tích phânÔn thi THPT Quốc Gia môn Toán về nguyên hàm và tích phân
Ôn thi THPT Quốc Gia môn Toán về nguyên hàm và tích phânLinh Nguyễn
48.7K vistas15 diapositivas
đạO hàm và vi phân por
đạO hàm và vi phânđạO hàm và vi phân
đạO hàm và vi phânchuateonline
132.3K vistas40 diapositivas

Más contenido relacionado

La actualidad más candente

Tích phân hàm phân thức hữu tỷ (part 2) por
Tích phân hàm phân thức hữu tỷ (part 2)Tích phân hàm phân thức hữu tỷ (part 2)
Tích phân hàm phân thức hữu tỷ (part 2)Oanh MJ
6.3K vistas26 diapositivas
Chuyên đề luyện thi Đại học 2014 por
Chuyên đề luyện thi Đại học 2014Chuyên đề luyện thi Đại học 2014
Chuyên đề luyện thi Đại học 2014tuituhoc
13.7K vistas16 diapositivas
Sử dụng máy tính por
Sử dụng máy tínhSử dụng máy tính
Sử dụng máy tínhqueothienhoang
5K vistas46 diapositivas
chuyen de tich phan on thi dai hoc por
chuyen de tich phan on thi dai hocchuyen de tich phan on thi dai hoc
chuyen de tich phan on thi dai hocHoàng Thái Việt
8.3K vistas34 diapositivas
Khảo Sát Hàm Số Có Lời Giải por
Khảo Sát Hàm Số Có Lời GiảiKhảo Sát Hàm Số Có Lời Giải
Khảo Sát Hàm Số Có Lời GiảiHải Finiks Huỳnh
235.8K vistas13 diapositivas
tinh don dieu_cua_ham_so.1 por
tinh don dieu_cua_ham_so.1tinh don dieu_cua_ham_so.1
tinh don dieu_cua_ham_so.1Minh Tâm Đoàn
1.4K vistas11 diapositivas

La actualidad más candente(18)

Tích phân hàm phân thức hữu tỷ (part 2) por Oanh MJ
Tích phân hàm phân thức hữu tỷ (part 2)Tích phân hàm phân thức hữu tỷ (part 2)
Tích phân hàm phân thức hữu tỷ (part 2)
Oanh MJ6.3K vistas
Chuyên đề luyện thi Đại học 2014 por tuituhoc
Chuyên đề luyện thi Đại học 2014Chuyên đề luyện thi Đại học 2014
Chuyên đề luyện thi Đại học 2014
tuituhoc13.7K vistas
Chuyên đề khảo sát hàm số đầy đủ por tuituhoc
Chuyên đề khảo sát hàm số đầy đủChuyên đề khảo sát hàm số đầy đủ
Chuyên đề khảo sát hàm số đầy đủ
tuituhoc62.8K vistas
Bai7 khai trien_taylor por ljmonking
Bai7 khai trien_taylorBai7 khai trien_taylor
Bai7 khai trien_taylor
ljmonking154K vistas
De thi hoc ki 2 k12 nam 0910 por lvquy
De thi hoc ki 2 k12 nam 0910De thi hoc ki 2 k12 nam 0910
De thi hoc ki 2 k12 nam 0910
lvquy294 vistas
Bai tap theo tung chuyen de on thi dai hoc 2012 2013 por Thanh Bình Hoàng
Bai tap theo tung chuyen de on thi dai hoc 2012 2013Bai tap theo tung chuyen de on thi dai hoc 2012 2013
Bai tap theo tung chuyen de on thi dai hoc 2012 2013
Thanh Bình Hoàng735 vistas
Bài tập sử dụng công thức nguyên hàm, tích phân por Thế Giới Tinh Hoa
Bài tập sử dụng công thức nguyên hàm, tích phânBài tập sử dụng công thức nguyên hàm, tích phân
Bài tập sử dụng công thức nguyên hàm, tích phân
Thế Giới Tinh Hoa245.3K vistas
Phuong phap tich phan por phongmathbmt
Phuong phap tich phanPhuong phap tich phan
Phuong phap tich phan
phongmathbmt4.8K vistas
Hàm số - 2. Bảng biến thiên của Hàm số por lovestem
Hàm số - 2. Bảng biến thiên của Hàm sốHàm số - 2. Bảng biến thiên của Hàm số
Hàm số - 2. Bảng biến thiên của Hàm số
lovestem18.5K vistas

Destacado

Pp tim min max cua bieu thuc por
Pp tim min max cua bieu thucPp tim min max cua bieu thuc
Pp tim min max cua bieu thucHạnh Nguyễn
46.2K vistas7 diapositivas
Tính đơn điệu và cực trị hàm số por
Tính đơn điệu và cực trị hàm sốTính đơn điệu và cực trị hàm số
Tính đơn điệu và cực trị hàm sốtuituhoc
47.6K vistas98 diapositivas
Bài giảng kỹ thuật điều khiển tự động por
Bài giảng kỹ thuật điều khiển tự độngBài giảng kỹ thuật điều khiển tự động
Bài giảng kỹ thuật điều khiển tự độngNguyễn Nam Phóng
152.5K vistas103 diapositivas
2012 Trends por
2012 Trends2012 Trends
2012 TrendsGranicus
290 vistas11 diapositivas
Survey por
SurveySurvey
Surveyclashpixie
262 vistas11 diapositivas
Li̇vestream por
Li̇vestreamLi̇vestream
Li̇vestreamTuğçe Güven
319 vistas8 diapositivas

Destacado(20)

Pp tim min max cua bieu thuc por Hạnh Nguyễn
Pp tim min max cua bieu thucPp tim min max cua bieu thuc
Pp tim min max cua bieu thuc
Hạnh Nguyễn46.2K vistas
Tính đơn điệu và cực trị hàm số por tuituhoc
Tính đơn điệu và cực trị hàm sốTính đơn điệu và cực trị hàm số
Tính đơn điệu và cực trị hàm số
tuituhoc47.6K vistas
Bài giảng kỹ thuật điều khiển tự động por Nguyễn Nam Phóng
Bài giảng kỹ thuật điều khiển tự độngBài giảng kỹ thuật điều khiển tự động
Bài giảng kỹ thuật điều khiển tự động
Nguyễn Nam Phóng152.5K vistas
2012 Trends por Granicus
2012 Trends2012 Trends
2012 Trends
Granicus290 vistas
E learning utilizando software libre por German Rivas
E learning utilizando software libreE learning utilizando software libre
E learning utilizando software libre
German Rivas112 vistas
Skills 3 p2 por clashpixie
Skills 3 p2Skills 3 p2
Skills 3 p2
clashpixie320 vistas
Present perfect por bayan4131
Present perfectPresent perfect
Present perfect
bayan4131243 vistas
11 conserveren vleeswaren por Paul Laaper
11 conserveren vleeswaren11 conserveren vleeswaren
11 conserveren vleeswaren
Paul Laaper1.9K vistas
Explorarea calității serviciului de referință la Biblioteca Națională a Repub... por Vasilica Victoria
Explorarea calității serviciului de referință la Biblioteca Națională a Repub...Explorarea calității serviciului de referință la Biblioteca Națională a Repub...
Explorarea calității serviciului de referință la Biblioteca Națională a Repub...
Vasilica Victoria567 vistas
Presentation1 por amitjade
Presentation1Presentation1
Presentation1
amitjade130 vistas
The Power of E-Mail Marketing - Constant Contact at ExhibitCraft por Exhibit Craft
The Power of E-Mail Marketing - Constant Contact at ExhibitCraftThe Power of E-Mail Marketing - Constant Contact at ExhibitCraft
The Power of E-Mail Marketing - Constant Contact at ExhibitCraft
Exhibit Craft7.7K vistas
Convert Notes to Outlook por mat101thew
Convert Notes to OutlookConvert Notes to Outlook
Convert Notes to Outlook
mat101thew269 vistas

Similar a chuyen de ung dung cua dao ham va bt lien quan

Chuyên đề khao sat ham so por
Chuyên đề khao sat ham soChuyên đề khao sat ham so
Chuyên đề khao sat ham soThiên Đường Tình Yêu
662 vistas6 diapositivas
Chuyên đề khao sat ham so por
Chuyên đề khao sat ham soChuyên đề khao sat ham so
Chuyên đề khao sat ham soThiên Đường Tình Yêu
632 vistas6 diapositivas
Chuyên đề khao sat ham so por
Chuyên đề khao sat ham soChuyên đề khao sat ham so
Chuyên đề khao sat ham soThiên Đường Tình Yêu
241 vistas6 diapositivas
Chuyen de ltdh hot por
Chuyen de ltdh  hotChuyen de ltdh  hot
Chuyen de ltdh hotThanh Hải Nguyễn
429 vistas8 diapositivas
Cuc tri ham so (tt) por
Cuc tri ham so (tt)Cuc tri ham so (tt)
Cuc tri ham so (tt)tedien25
10.3K vistas18 diapositivas
99 bai toan-ct-don-dieu por
99 bai toan-ct-don-dieu99 bai toan-ct-don-dieu
99 bai toan-ct-don-dieuVui Lên Bạn Nhé
713 vistas10 diapositivas

Similar a chuyen de ung dung cua dao ham va bt lien quan(20)

Cuc tri ham so (tt) por tedien25
Cuc tri ham so (tt)Cuc tri ham so (tt)
Cuc tri ham so (tt)
tedien2510.3K vistas
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com por Huynh ICT
Mathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.comMathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Huynh ICT4.6K vistas
Khao sat ham so 50 cau por Huynh ICT
Khao sat ham so 50 cauKhao sat ham so 50 cau
Khao sat ham so 50 cau
Huynh ICT7.2K vistas
Chuyên đề luyện thi đại học môn toán năm 2014 por Huynh ICT
Chuyên đề luyện thi đại học môn toán năm 2014Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Huynh ICT835 vistas
100 bai toan ks cua thay tran si tung por trongphuckhtn
100 bai toan ks cua thay tran si tung100 bai toan ks cua thay tran si tung
100 bai toan ks cua thay tran si tung
trongphuckhtn9.1K vistas
Chuyên đề luyện thi đạo học por Tít Thiện
Chuyên đề luyện thi đạo họcChuyên đề luyện thi đạo học
Chuyên đề luyện thi đạo học
Tít Thiện445 vistas
Khao sat ve_do_thi por Huynh ICT
Khao sat ve_do_thiKhao sat ve_do_thi
Khao sat ve_do_thi
Huynh ICT2.7K vistas
Cực trị của hàm số, ôn thi đại học môn toán por hai tran
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toán
hai tran277.9K vistas

chuyen de ung dung cua dao ham va bt lien quan

  • 1. Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH Vấn đề 1: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số Bài 1) Tìm GTLN, GTNN (nếu có) của các hàm số sau: 1) y = x + 4 − x 2 2) y = x +1 1 sin x + cos x 4 y = sin x − cos x cos 2 x + sin x cos x y= 1 + sin 2 x y = cos x(1 + sin x ) trên đoạn [0; 2π]  4x   2x  +1 + cos y = cos 2  2  1+ x  1+ x  1 + sin 6 x + cos 6 x y= 1 + sin 4 x + cos 4 x x4 y4  x2 y2  x y y = 4 + 4 −  2 + 2  + + (x, y ≠ 0) y x y x  y x   11) y = trên đoạn [-1; 2] x2 +1 ln 2 x trên đoạn [1; e 3 ] 3) y = x 3 6 4) y = x + 4(1 − x 2 ) trên đoạn [-1; 1] 5) y = sin x − cos 2 x + 2 4 6) y = 2 sin x − sin 3 x trên đoạn [0; π] 3 x +1 7) y = 2 x + x +1 cos x + 1 8) y = 2 cos x + cos x + 1 9) y = x − 2 + 4 − x 12) 13) 14) 15) 16) 17) 18) y = x 3 + 3 x 2 − 72 x + 90 trên đoạn [-5; 5] 10) y = (2 + x ) − (2 − x ) trên đoạn [-2; 2] 10 10 Bài 2) Tìm m để: ( a) Miny = 4 với y = x 2 + x + m [−2 ; 2 ] ) 2 b) GTLN của hàm số y = f ( x) = − 4 x 2 + 2 x + m trên đoạn [-1; 2] là nhỏ nhất. Bài 3) Tìm m để bất phương trình (4 + x )(6 − x ) ≤ x 2 − 2 x + m nghiệm đúng ∀x ∈ [− 4;6] Bài 4) Chứng minh rằng ∀x∈R, ta có: 1 + cos x + 1 1 cos 2 x + cos 3 x > 0 2 3  π  4  Bài 5) Tìm m để sin 5 x + cos5 x − m(sin x + cos x ) − sin x. cos x(sin x + cos x ) ≥ 0 ∀x ∈ 0; Bài 6) Tìm tất cả các giá trị của m để cos 2 x + m cos x + 4 ≥ 0 ∀x ∈ R Bài 7) Cho a, b, c là 3 số dương thỏa mãn điều kiện a2 + b2 +c2 = 1. Chứng minh: a b c 3 3 ≥ + 2 + 2 2 2 2 b +c c +a a +b 2 2 Bài 8) Tìm điều kiện của m để phương trình x + 2 x − m = 2 x − 1 (1) 2 a) Có nghiệm thực b) Có một nghiệm thực Bài 9) Tìm m để phương trình x −1 + 3 − x − c) Có hai nghiệm thực phân biệt (x − 1)(3 − x ) = m có nghiệm thực.  x 2 − 3x ≤ 0  Bài 10) Tìm m để hệ bất phương trình  3 có nghiệm.  x − 2 x x − 2 − m 2 + 4m ≥ 0  Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 1
  • 2. Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH Vấn đề 2: Tính đơn điệu của hàm số Bài 1) Tìm m để hàm số y = − x3 + mx 2 − 4 x − 1 luôn nghịch biến trên miền xác định. 3 Bài 2) Tìm m để hàm số y = (m + 2 ) Bài 3) Cho hàm số y = x3 − (m + 2)x 2 + (m − 8)x + m 2 − 1 nghịch biến trên R. 3 x 2 + 2(m + 1)x + 2 . Với giá trị nào của m thì hàm số đồng biến trong (0; +∞) x +1 Bài 4) Tìm các giá trị của m để hàm số y = 2 x 3 + 3 x 2 + 6(m + 1)x + m 2 giảm trên (-2; 0) Bài 5) Cho hàm số y = mx + 1 x+m a) Tìm m để y tăng trên (1; +∞) b) Tìm m để y giảm trên (-∞; 0) Bài 6) Tìm tất cả các giá trị của m để hàm số y = a) nghịch biến trên R Bài 7) Cho hàm số y = 1 2 (m − 1)x 3 + (m − 1)x 2 − 2 x + 1 3 b) nghịch biến trên khoảng (0; +∞) 2 x 2 − 3x + m . Với giá trị nào của m thì hàm số đồng biến trong (3; +∞) x −1 Bài 8) Tìm các giá trị của m để hàm số y = 1 (m + 1)x 3 − (2m − 1)x 2 + 3(2m − 1)x + 1 nghịch biến (-1; 1) 3 Bài 9) Tìm các giá trị của m để hàm số y = x 2 − 2mx + 3m 2 đồng biến trên khoảng (1; +∞) x − 2m x2 − 2x + m Bài 10) Xác định m để hàm số y = nghịch biến trên đoạn [-1; 0] x−2 Bài 11) Xác định m để hàm số y = x 3 − 3(m − 1)x 2 + 3m(m − 2 )x + 1 đồng biến trên tập hợp các giá trị của x sao cho 1 ≤ x ≤ 2 Bài 12) Tìm tất cả các giá trị của tham số m để hàm số y = x 3 + 3 x 2 + mx + m nghịch biến trên đoạn có độ dài bằng 1. Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 2
  • 3. Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH Vấn đề 3: Cực trị của hàm số Bài 1) Tìm m để hàm số y = mx 3 + 3 x 2 + 5 x + m đạt cực đại tại x = 2 Bài 2) Tìm m để hàm số y = x 2 + mx + 1 đạt cực đại tại x = 2 x+m Bài 3) Cho hàm số y = (m + 2 )x 3 + 3 x 2 + mx + m . Tìm m để hàm số có cực đại và cực tiểu? Bài 4) Cho hàm số y = 1 3 1 mx − (m − 1)x 2 + 3(m − 2)x + . Tìm m để hàm số có cực đại, cực tiểu và xcđ<xct 3 3 mx 2 + (2 − 4m )x + 4m − 1 Bài 5) Xác định m sao cho hàm số y = có hai cực trị trong miền x>0 x −1 Bài 6) Xác định m để hàm số y = − x 4 + 2mx 2 có 3 cực trị Bài 7) Tìm tất cả các giá trị của m để hàm số y = điểm cực trị trái dấu nhau. x 2 + (2m + 3)x + m 2 + 4m có hai cực trị và giá trị các x+m x 2 + mx − m + 8 . Xác định các giá trị của m để điểm cực đại và cực tiểu của đồ thị Bài 8) Cho hàm số y = x −1 hàm số ở về hai phía đường thẳng 9 x − 7 y − 1 = 0 Bài 9) Cho hàm số y = 2 x 3 + 3(m − 1)x 2 + 6(m − 2 )x − 1 . Xác định m để hàm số có cực đại, cực tiểu và lập phương trình đường thẳng qua các điểm cực đại và cực tiểu của đồ thị hàm số. Bài 10) Cho hàm số y = − x 2 + mx − m 2 . Xác định m để hàm số có cực đại và cực tiểu. Khi đó hãy viết x−m phương trình đường thẳng đi qua điểm cực đại và cực tiểu của hàm số. Bài 11) Cho hàm số: y = x 3 − 3 x 2 + m 2 x + m . Tìm tất cả các giá trị của m để hàm số có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng y = Bài 12) Cho hàm số y = 1 5 x− 2 2 x 2 − 2mx + m . Xác định m để đường thẳng đi qua các điểm cực đại và cực tiểu x+m của đồ thị hàm số tạo với các trục tọa độ một tam giác có diện tích bằng 1. x 2 + 2mx + 2 . Tìm các giá trị của m để đồ thị hàm số có điểm cực đại, điểm cực x +1 tiểu cách đều đường thẳng x + y + 2 = 0 Bài 13) Cho hàm số y = 1 . Tìm m để hàm số có cực trị và khoảng cách từ điểm cực tiểu đến tiệm cận x 1 xiên của đồ thị hàm số bằng . 2 Bài 14) Cho hàm số y = mx + x 2 + (m + 1)x + m + 1 . Chứng minh rằng với m bất kỳ, đồ thị của hàm số luôn luôn x +1 có điểm cực đại, điểm cực tiểu và khoảng cách giữa hai điểm đó bằng 20 . Bài 15) Cho hàm số y = Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 3
  • 4. Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH x 2 + mx . Tìm m để hàm số có cực đại và cực tiểu. Với giá trị nào của m thì 1− x Bài 16) Cho hàm số y = khoảng cách giữa hai điểm cực trị của đồ thị hàm số bằng 10? Bài 17) Cho hàm số y = x 2 + (2m + 1)x + m 2 + m + 4 . Tìm m để hàm số có cực trị và tính khoảng cách 2( x + m ) giữa hai điểm cực trị của đồ thị hàm số đã cho. Bài 18) Cho hàm số y = x 4 − 2m 2 x 2 + 1 . Tìm m để đồ thị hàm số có ba điểm cực trị là ba đỉnh của một tam giác vuông cân. Bài 19) Cho hàm số y = x 3 − 2mx 2 + m 2 x − 2 . Tìm m để hàm số đạt cực tiểu tại x = 1. Bài 20) Cho hàm số y = x 2 + 2mx + 1 − 3m 2 . Tìm m để hàm số có hai điểm cực trị nằm về hai phía trục x−m tung. x 2 − (3m + 2)x + m + 4 Bài 21) Cho hàm số y = . Tìm m để hàm số có CĐ và CT và khoảng cách giữa hai x −1 điểm CĐ, CT của đồ thị nhỏ hơn 3. Bài 22) Cho hàm số y = x 2 − (m + 3)x + 3m + 1 . Tìm m để hàm số có CĐ và CT và các giá trị CĐ, CT của x −1 hàm số cùng âm. ( ) Bài 23) Cho hàm số y = ( x − m ) x 2 − 2 x − m − 1 . Tìm m để hàm số có cực đại, cực tiểu và hoành độ điểm cực đại xcđ, hoành độ điểm cực tiểu xct thỏa: | xcđ . xct| = 1 Bài 24) Cho hàm số y = x 2 − (2m + 5)x + m + 3 . Tìm m để hàm số có cực trị tại điểm x>1. Hãy xác định x +1 đó là điểm cực đại hay cực tiểu của đồ thị. Bài 25) Cho hàm số y = x 4 − 2mx 2 + m − 1 . Tìm m để đồ thị hàm số có ba điểm cực trị tạo thành ba đỉnh của một tam giác đều. Bài 26) Cho hàm số y = x 2 + 2(m + 1)x + m 2 + 4m . Tìm m để hàm số có cực đại và cực tiểu, đồng thời các x+2 điểm cực trị của đồ thị cùng với gốc tọa độ O tạo thành một tam giác vuông tại O. ( ) Bài 27) Cho hàm số y = − x 3 + 3 x 2 + 3 m 2 − 1 x − 3m 2 − 1 . Tìm m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số cách đều gốc tọa độ O. Bài 28) Cho hàm số y = đại, cực tiểu cùng dấu. x 2 + 2(m − 1)x + 2 − m . Tìm m để hàm số có cực đại, cực tiểu và các giá trị cực x −1 x 2 − mx + 2m − 1 Bài 29) Cho hàm số y = . Tìm m để tiệm cận xiên của đồ thị hàm số đi qua gốc tọa độ và mx − 1 hàm số có cực trị. Bài 30) Cho hàm số y = x 2 + m 2 x + 2m 2 − 5m + 3 (m>0). Tìm m để hàm số có điểm cực tiểu thuộc x khoảng (0; 2m). Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 4
  • 5. Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH Vấn đề 4: Sự tương giao của hai đồ thị hàm số Bài 1) Cho hàm số y = mx 2 + x + m . Tìm m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt và hai x −1 điểm đó có hoành độ dương. Bài 2) Cho hàm số y = hai điểm phân biệt. x2 − 2x + 4 . Tìm m để đường thẳng (d): y = mx + 2 − 2m cắt đồ thị của hàm số tại x−2 − x 2 + 3x − 3 Bài 3) Cho hàm số y = . Tìm m để đường thẳng y = m cắt đồ thị hàm số tại hai điểm A, B sao 2( x − 1) cho AB = 1. Bài 4) Cho hàm số y = 2 x 2 − 4 x + 10 . Định m để đường thẳng (d): mx − y − m = 0 cắt đồ thị tại hai điểm − x +1 phân biệt A, B. Xác định m để AB ngắn nhất. Bài 5) Cho hàm số y = x 4 − mx 2 + m − 1 . Xác định m sao cho đồ thị hàm số cắt trục hoành tại bốn điểm phân biệt. ( ) Bài 6) Cho hàm số y = ( x − 1) x 2 + mx + m . Tìm m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt. Bài 7) Cho hàm số y = 2 x 3 − 3 x 2 − 1 . Gọi d là đường thẳng đi qua điểm M(0; -1) và có hệ số góc bằng k. Tìm k để đường thẳng d cắt đồ thị tại ba điểm phân biệt. Bài 8) Cho hàm số y = x 3 − 3 x + 2 . Gọi (d) là đường thẳng đi qua điểm A(3; 20) và có hệ số góc là m. Tìm m để đường thẳng d cắt đồ thị tại ba điểm phân biệt. ( ) Bài 9) Cho hàm số y = ( x − 1) x 2 − 2 mx − m − 1 . Tìm m để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt có hoành độ lớn hơn -1. Bài 10) Cho hàm số y = 2 3 8 8 x − x 2 − 4 x + . Tìm giá trị của tham số m để đường thẳng y = mx + cắt đồ 3 3 3 thị tại 3 điểm phân biệt. x2 + 4x + 1 Bài 11) Cho hàm số y = . Tìm các giá trị của m để đường thẳng (d): y = mx + 2 − m cắt đồ thị x+2 hàm số tại hai điểm phân biệt thuộc cùng một nhánh của đồ thị. x 2 + mx − 1 Bài 12) Cho hàm số y = . Tìm m để đường thẳng (d): y = m cắt đồ thị hàm số tại hai điểm A, B x −1 sao cho OA ⊥ OB. 2 x 2 − 3x Bài 13) Cho hàm số y = . Tìm m để đường thẳng y = 2mx − m cắt đồ thị tại hai điểm thuộc hai x−2 nhánh của đồ thị. Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 5
  • 6. Chuyên đề LTĐH Bài 14) Cho hàm số y = Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH x +1 (C). x −1 a) Gọi (d) là đường thẳng 2 x − y + m = 0 . Chứng minh (d) luôn cắt (C) tại hai điểm phân biệt A, B trên hai nhánh của (C) b) Tìm m để độ dài đoạn AB ngắn nhất. Bài 15) Cho hàm số y = x + 2 + hoành độ trái dấu. 1 . Tìm m để đường thẳng y = m( x + 1) + 1 cắt đồ thị tại hai điểm có x +1 Bài 16) Tìm m để đồ thị hàm số y = x 3 + (m + 1)x 2 + 2 mx + m 2 cắt trục hoành tại 3 điểm phân biệt có hoành độ âm. ( ) Bài 17) Cho hàm số y = x 3 − 3mx 2 + 3 m 2 − 1 x − m 2 + 1 . Tìm m để đồ thị hàm số cắt trục hoành tại 3 điểm có hoành độ dương. Bài 18) Cho hàm số y = x 3 + mx + 2 . Tìm m để đồ thị hàm số cắt trục hoành tại duy nhất một điểm. Bài 19) Cho hàm số y = x 2 + (m + 2)x − m . Xác định m để cho đường thẳng y = −( x + 4 ) cắt đồ thị hàm x +1 số tại hai điểm đối xứng nhau qua đường phân giác của góc phần tư thứ nhất. Bài 20) Cho hàm số y = x2 − x − 3 (C) x +1 a) Chứng tỏ đường thẳng (d): y = − x + m luôn cắt (C) tại hai điểm M, N thuộc hai nhánh của (C) b) Định m để M, N đối xứng nhau qua đường thẳng y = x. x2 + x − 3 Bài 21) Cho (C): y = và (d): y = − x + m x −1 a) Tìm m để (d) cắt (C) tại hai điểm M, N và độ dài MN nhỏ nhất. b) Gọi P, Q là giao điểm của (d) và hai tiệm cận. Cm: MP = NQ Bài 22) Cho hàm số y = 2 x 3 + 2(6m − 1)x 2 − 3(2m − 1)x − 3(1 + 2 m ) . Định m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có tổng các bình phương các hoành độ bằng 28. Bài 23) Cho hàm số y = x 3 − 3 x 2 − 9 x + m . Xác định m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt với hoành độ lập thành cấp số cộng. Bài 24) Cho hàm số y = x 4 − 2(m + 1)x 2 + 2m + 1 . Xác định m để đồ thị hàm số cắt trục hoành tại bốn điểm phân biệt với hoành độ lập thành một cấp số cộng. Bài 25) Cho hàm số y = x 2 + (m + 2)x − m . Tìm m để đường thẳng (d): y = -x – 4 cắt đồ thị tại hai điểm x +1 M, N sao cho M, N cùng với gốc tọa độ O tạo thành tam giác đều OMN. Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 6
  • 7. Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH Vấn đề 5: Sự tiếp xúc và phương trình tiếp tuyến của đồ thị hàm số Bài 1) Cho hàm số y = Bài 2) Cho hàm số y = (2m − 1)x − m 2 . Tìm m để đồ thị của hàm số tiếp xúc với đường thẳng x −1 y = x. 1 3 x − 2 x 2 + 3x . Viết phương trình tiếp tuyến (d) của đồ thị tại điểm uốn và chứng 3 minh rằng (d) là tiếp tuyến của đồ thị có hệ số góc nhỏ nhất. 1 3 m 2 1 x − x + . Gọi M là điểm thuộc đồ thị của hàm số có hoành độ bằng -1. Tìm 3 2 3 m để tiếp tuyến của đồ thị tại điểm M song song với đường thẳng 5 x − y = 0 . Bài 4) Cho hàm số y = Bài 5) Cho hàm số y = − x 3 + 3 x 2 − 3 . Viết phương trình tiếp tuyến với đồ thị của hàm số biết rằng các tiếp tuyến này vuông góc với đường thẳng y = Bài 6) Cho hàm số y = 1 x+2 9 2x −1 . Gọi I là giao điểm hai đường tiệm cận của (C). Tìm điểm M thuộc (C) sao x −1 cho tiếp tuyến của (C) tại M vuông góc với đường thẳng IM. Bài 7) Cho hàm số y = x + Bài 8) Cho hàm số y = thị hàm số đã cho. 1 . Viết phương trình các tiếp tuyến của (C) đi qua điểm M(-1; 7) x x2 + x +1 . Viết phương trình đường thẳng đi qua điểm M(-1; 0) và tiếp xúc với đồ x +1 Bài 9) Cho hàm số y = x2 + 2x + 2 . Gọi I là giao điểm của hai tiệm cận của đồ thị. Chứng minh rằng x +1 không có tiếp tuyến nào của (C) đi qua điểm I. Bài 10) Cho hàm số y = − x 3 + (2 m + 1)x 2 − m − 1 . Tìm m để đồ thị hàm số tiếp xúc với đường thẳng y = 2mx − m − 1 x2 + x −1 Bài 11) Cho hàm số y = . Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó vuông góc với x+2 tiệm cận xiên của (C). x 2 + 2x + 2 Bài 12) Cho hàm số y = . Gọi I là tâm đối xứng của đồ thị (C) và M là một điểm trên (C). Tiếp x +1 tuyến của đồ thị tại M cắt tiệm cận đứng và tiệm cận xiên tại A và B. a) Chứng tỏ rằng M là trung điểm của AB. b) Chứng tỏ rằng tam giác IAB có diện tích không phụ thuộc vào M. Bài 13) Cho hàm số y = x + 1 + 1 . Tìm những điểm trên đồ thị (C) có hoành độ lớn hơn 1 sao cho tiếp x −1 tuyến tại điểm đó tạo với hai đường tiệm cận một tam giác có chu vi nhỏ nhất. Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 7
  • 8. Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH Bài 14) Cho hàm số y = x 3 − 3 x . Tìm những điểm trên đường thẳng y = 2 mà từ đó kẻ được ba tiếp tuyến tới đồ thị. Bài 15) Cho hàm số y = 2x2 + x + 1 . Tìm những điểm trên Oy sao cho từ đó có thể kẻ được hai tiếp tuyến x +1 tới đồ thị hàm số và hai tiếp tuyến đó vuông góc với nhau. Bài 16) Cho hàm số y = (3m + 1)x − m 2 + m . Với giá trị nào của m thì tại giao điểm của đồ thị với Ox, tiếp x+m tuyến sẽ song song với đường thẳng y + 10 = x. Bài 17) Tìm các điểm trên trục hoành mà từ đó vẽ được ba tiếp tuyến của đồ thị y = x 3 + 3x 2 trong đó có hai tiếp tuyến vuông góc với nhau. Bài 18) Chứng minh rằng đồ thị hàm số y = − x 4 + 2mx 2 − 2 m + 1 luôn đi qua hai điểm cố định A và B. Tìm m để các tiếp tuyến tại A và B vuông góc với nhau. 1 . Chứng minh rằng qua A(1; -1) kẻ được hai tiếp tuyến với (C) và hai tiếp x +1 tuyến đó vuông góc với nhau. Bài 19) Cho hàm số y = x + x2 + x − 2 sao cho tiếp tuyến tại M cắt các trục tọa độ tại A, B tạo x−2 thành tam giác vuông cân OAB (O là gốc tọa độ). Bài 20) Tìm M trên đồ thị hàm số y = 2x −1 (C). Cho M bất kỳ trên (C) có xM = m. Tiếp tuyến của (C) tại M cắt 2 tiệm x −1 cận tại A, B. Gọi I là giao điểm 2 tiệm cận. Chứng minh M là trung điểm AB và diện tích ∆IAB không đổi. Bài 21) Cho hàm số y = Bài 22) Cho hàm số y = x 3 + 3 x 2 + mx + 1 (Cm). Tìm m để (Cm) cắt đường thẳng y=1 tại 3 điểm phân biệt C(0;1), D, E. Tìm m để các tiếp tuyến của (Cm) tại D và E vuông góc. Bài 23) Cho hàm số y = tiếp tuyến đến (C). x +1 (C). Tìm những điểm trên trục tung mà từ mỗi điểm đó chỉ kẻ được đúng một x −1 Bài 24) Cho hàm số y = x 4 − 6 x 2 + 5 . Cho M∈(C) với xM = a. Tìm các giá trị của a để tiếp tuyến của (C) tại M cắt (C) tại hai điểm khác M. x+3 (C). Cho điểm M0(x0; y0)∈(C). Tiếp tuyến của (C) tại M0 cắt các tiệm cận x −1 của (C) tại A và B. Chứng minh M0 là trung điểm của AB. Bài 25) Cho hàm số y = Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 8