SlideShare una empresa de Scribd logo

Líneas trigonométricas

nnn

1 de 32
Descargar para leer sin conexión
Líneas trigonométricas
Concepto:
Se llama circunferencia trigonométrica a aquella circunferencia cuyo centro
coincide con el origen del sistema cartesiano y su radio es igual a la unidad
del sistema.
B
y
M
B' N
R = 1
A' A
x
(+)
(-)
ECUACIÓN DE LA CIRCUNFERENCIA
TRIGONOMÉTRICA
2 2
1x y
Observación:
Todo arco se inicia en posición
normal.
Nota: Los arcos a ubicar pueden estar expresados en grados
sexagesimales, radianes o como números reales.
Ejemplos:
Ubica en la C.T. los extremos de los
arcos . ; 6; 8; - 152
3
Desarrollo:
2
3
P
P: extremo del arco
2
3
Q
Q: extremo del arco 6
6
S
8
S: extremo del arco 8
R
- 15
R: extremo del arco - 15
En el siguiente gráfico, se muestran los arcos de mayor uso en este tema.

Más contenido relacionado

La actualidad más candente

Razones trigonométricas de ángulos agudos i
Razones trigonométricas de ángulos agudos iRazones trigonométricas de ángulos agudos i
Razones trigonométricas de ángulos agudos iJUANCA
 
Teoría y problemas de Geometría ADUNI ccesa007
Teoría y problemas de Geometría ADUNI  ccesa007Teoría y problemas de Geometría ADUNI  ccesa007
Teoría y problemas de Geometría ADUNI ccesa007Demetrio Ccesa Rayme
 
Solucionario PRE SAN MARCOS- Semana 5 ciclo ordinario 2016 1
Solucionario PRE SAN MARCOS- Semana 5 ciclo ordinario 2016 1Solucionario PRE SAN MARCOS- Semana 5 ciclo ordinario 2016 1
Solucionario PRE SAN MARCOS- Semana 5 ciclo ordinario 2016 1Mery Lucy Flores M.
 
Geometria 5° 2 b
Geometria 5° 2 bGeometria 5° 2 b
Geometria 5° 2 b349juan
 
Semana08 identidades trigonometricas
Semana08 identidades trigonometricasSemana08 identidades trigonometricas
Semana08 identidades trigonometricasJhon Villacorta
 
Semana 1 Pre San Marcos (UNMSM) 2017-I CICLO ORDINARIO PDF
Semana 1 Pre San Marcos (UNMSM) 2017-I CICLO ORDINARIO PDFSemana 1 Pre San Marcos (UNMSM) 2017-I CICLO ORDINARIO PDF
Semana 1 Pre San Marcos (UNMSM) 2017-I CICLO ORDINARIO PDFRyanK18
 
Solucionario PRE SAN MARCOS semana 1-ciclo ordinario 2016-i
Solucionario PRE SAN MARCOS semana 1-ciclo ordinario 2016-iSolucionario PRE SAN MARCOS semana 1-ciclo ordinario 2016-i
Solucionario PRE SAN MARCOS semana 1-ciclo ordinario 2016-iMery Lucy Flores M.
 
Circunferencia trigonométrica
Circunferencia trigonométricaCircunferencia trigonométrica
Circunferencia trigonométricaJUANCA
 
Solucionario PRE SAN MARCOS- Semana 15 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 15 Ciclo 2016 Solucionario PRE SAN MARCOS- Semana 15 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 15 Ciclo 2016 Mery Lucy Flores M.
 

La actualidad más candente (20)

Balotario de geometria junio 2013 seleccion
Balotario de geometria junio  2013 seleccionBalotario de geometria junio  2013 seleccion
Balotario de geometria junio 2013 seleccion
 
Razones trigonométricas de ángulos agudos i
Razones trigonométricas de ángulos agudos iRazones trigonométricas de ángulos agudos i
Razones trigonométricas de ángulos agudos i
 
Solsem01
Solsem01Solsem01
Solsem01
 
Teoría y problemas de Geometría ADUNI ccesa007
Teoría y problemas de Geometría ADUNI  ccesa007Teoría y problemas de Geometría ADUNI  ccesa007
Teoría y problemas de Geometría ADUNI ccesa007
 
Solucionario PRE SAN MARCOS- Semana 5 ciclo ordinario 2016 1
Solucionario PRE SAN MARCOS- Semana 5 ciclo ordinario 2016 1Solucionario PRE SAN MARCOS- Semana 5 ciclo ordinario 2016 1
Solucionario PRE SAN MARCOS- Semana 5 ciclo ordinario 2016 1
 
2014 iii 07 cocientes notables
2014 iii 07 cocientes notables2014 iii 07 cocientes notables
2014 iii 07 cocientes notables
 
Geometria 5° 2 b
Geometria 5° 2 bGeometria 5° 2 b
Geometria 5° 2 b
 
Números primos
Números primosNúmeros primos
Números primos
 
Semana 3
Semana 3Semana 3
Semana 3
 
2º semana cs
2º semana cs2º semana cs
2º semana cs
 
Semana 07 2016 2
Semana 07 2016 2Semana 07 2016 2
Semana 07 2016 2
 
Semana08 identidades trigonometricas
Semana08 identidades trigonometricasSemana08 identidades trigonometricas
Semana08 identidades trigonometricas
 
Operaciones amtematica-14
Operaciones amtematica-14Operaciones amtematica-14
Operaciones amtematica-14
 
Semana 1 Pre San Marcos (UNMSM) 2017-I CICLO ORDINARIO PDF
Semana 1 Pre San Marcos (UNMSM) 2017-I CICLO ORDINARIO PDFSemana 1 Pre San Marcos (UNMSM) 2017-I CICLO ORDINARIO PDF
Semana 1 Pre San Marcos (UNMSM) 2017-I CICLO ORDINARIO PDF
 
Solucionario PRE SAN MARCOS semana 1-ciclo ordinario 2016-i
Solucionario PRE SAN MARCOS semana 1-ciclo ordinario 2016-iSolucionario PRE SAN MARCOS semana 1-ciclo ordinario 2016-i
Solucionario PRE SAN MARCOS semana 1-ciclo ordinario 2016-i
 
Triángulos ii lineas notables
Triángulos ii lineas notablesTriángulos ii lineas notables
Triángulos ii lineas notables
 
Solucionario semana 1 (4)
Solucionario semana 1 (4)Solucionario semana 1 (4)
Solucionario semana 1 (4)
 
Semana 10 2016 2
Semana 10 2016 2Semana 10 2016 2
Semana 10 2016 2
 
Circunferencia trigonométrica
Circunferencia trigonométricaCircunferencia trigonométrica
Circunferencia trigonométrica
 
Solucionario PRE SAN MARCOS- Semana 15 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 15 Ciclo 2016 Solucionario PRE SAN MARCOS- Semana 15 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 15 Ciclo 2016
 

Similar a Líneas trigonométricas (20)

Trigonometria 6
Trigonometria 6Trigonometria 6
Trigonometria 6
 
Trigonometria 6
Trigonometria 6Trigonometria 6
Trigonometria 6
 
Insuasti
InsuastiInsuasti
Insuasti
 
SINTITUL-5.pdf
SINTITUL-5.pdfSINTITUL-5.pdf
SINTITUL-5.pdf
 
Libro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitariaLibro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitaria
 
Semana 4
Semana 4Semana 4
Semana 4
 
3 razones trigonometricas
3 razones trigonometricas3 razones trigonometricas
3 razones trigonometricas
 
3 Razones Trigonometricas
3 Razones Trigonometricas3 Razones Trigonometricas
3 Razones Trigonometricas
 
Triangulos3
Triangulos3Triangulos3
Triangulos3
 
3 razones trigonometricas
3 razones trigonometricas3 razones trigonometricas
3 razones trigonometricas
 
3 Razones Trigonometricas
3 Razones Trigonometricas3 Razones Trigonometricas
3 Razones Trigonometricas
 
3 razones trigonometricas
3 razones trigonometricas3 razones trigonometricas
3 razones trigonometricas
 
3 razones trigonometricas
3 razones trigonometricas3 razones trigonometricas
3 razones trigonometricas
 
3 sec, 6º semana, rtcm i, sencilllo
3 sec, 6º semana, rtcm i, sencilllo3 sec, 6º semana, rtcm i, sencilllo
3 sec, 6º semana, rtcm i, sencilllo
 
Rarones trigonométricas en un t.r
Rarones trigonométricas en un t.rRarones trigonométricas en un t.r
Rarones trigonométricas en un t.r
 
Funciones trigonometrica
Funciones trigonometricaFunciones trigonometrica
Funciones trigonometrica
 
Apoyo 2 para unidad 9
Apoyo 2 para unidad 9Apoyo 2 para unidad 9
Apoyo 2 para unidad 9
 
Trigonometría trilce
Trigonometría   trilceTrigonometría   trilce
Trigonometría trilce
 
Razones Trigonometricas
Razones TrigonometricasRazones Trigonometricas
Razones Trigonometricas
 
Razones Trigonometricas
Razones TrigonometricasRazones Trigonometricas
Razones Trigonometricas
 

Más de Victor Huamani Nstra.SRA DEL CARMEN

Más de Victor Huamani Nstra.SRA DEL CARMEN (20)

Actividad de la semana 36
Actividad de la semana 36Actividad de la semana 36
Actividad de la semana 36
 
Actividad de la semana 35
Actividad de la semana 35Actividad de la semana 35
Actividad de la semana 35
 
Evidencias del mes de noviembre
Evidencias del mes de noviembreEvidencias del mes de noviembre
Evidencias del mes de noviembre
 
Actividad de la semana 34
Actividad de la semana 34Actividad de la semana 34
Actividad de la semana 34
 
Actividad de la semana 33
Actividad de la semana 33Actividad de la semana 33
Actividad de la semana 33
 
Imanol ayllon (religion semana 26) (1)
Imanol ayllon (religion   semana 26) (1)Imanol ayllon (religion   semana 26) (1)
Imanol ayllon (religion semana 26) (1)
 
Evidencias del mes de octubre
Evidencias del mes de octubreEvidencias del mes de octubre
Evidencias del mes de octubre
 
Imanol ayllon (matematica semana 29)
Imanol ayllon (matematica   semana 29)Imanol ayllon (matematica   semana 29)
Imanol ayllon (matematica semana 29)
 
Rondon matematica-semana 29 (1)
Rondon matematica-semana 29 (1)Rondon matematica-semana 29 (1)
Rondon matematica-semana 29 (1)
 
Imanol ayllon (matematica semana 26)
Imanol ayllon (matematica   semana 26)Imanol ayllon (matematica   semana 26)
Imanol ayllon (matematica semana 26)
 
Actividad de la semana 30
Actividad de la semana 30Actividad de la semana 30
Actividad de la semana 30
 
Actividad de la semana 29
Actividad de la semana 29Actividad de la semana 29
Actividad de la semana 29
 
Actividad de la semana 27 aprendiendo en casa
Actividad de la semana 27 aprendiendo en casaActividad de la semana 27 aprendiendo en casa
Actividad de la semana 27 aprendiendo en casa
 
Actividad de la semana 27
Actividad de la semana 27Actividad de la semana 27
Actividad de la semana 27
 
Rosy miguel inocente Semana 23
Rosy miguel inocente  Semana 23Rosy miguel inocente  Semana 23
Rosy miguel inocente Semana 23
 
Matematicas s22-nikaydo
Matematicas s22-nikaydoMatematicas s22-nikaydo
Matematicas s22-nikaydo
 
Evidencias del mes de setiembre
Evidencias del  mes de setiembreEvidencias del  mes de setiembre
Evidencias del mes de setiembre
 
Actividad de la semana 25
Actividad de la semana 25Actividad de la semana 25
Actividad de la semana 25
 
Actividad de la_semana_24 aprendiendo en casa
Actividad de la_semana_24 aprendiendo en casaActividad de la_semana_24 aprendiendo en casa
Actividad de la_semana_24 aprendiendo en casa
 
Ecuación de 2_do_grado de Aprendiendo en casa
Ecuación de 2_do_grado  de Aprendiendo en casaEcuación de 2_do_grado  de Aprendiendo en casa
Ecuación de 2_do_grado de Aprendiendo en casa
 

Líneas trigonométricas

  • 2. Concepto: Se llama circunferencia trigonométrica a aquella circunferencia cuyo centro coincide con el origen del sistema cartesiano y su radio es igual a la unidad del sistema. B y M B' N R = 1 A' A x (+) (-) ECUACIÓN DE LA CIRCUNFERENCIA TRIGONOMÉTRICA 2 2 1x y Observación: Todo arco se inicia en posición normal.
  • 3. Nota: Los arcos a ubicar pueden estar expresados en grados sexagesimales, radianes o como números reales.
  • 4. Ejemplos: Ubica en la C.T. los extremos de los arcos . ; 6; 8; - 152 3 Desarrollo: 2 3 P P: extremo del arco 2 3 Q Q: extremo del arco 6 6
  • 5. S 8 S: extremo del arco 8 R - 15 R: extremo del arco - 15
  • 6. En el siguiente gráfico, se muestran los arcos de mayor uso en este tema.
  • 8. 1 3 ; 2 2 2 2 ; 2 2 3 1 ; 2 2 Observa la figura, la Simetría existe entre los extremos de los arcos. Las coordenadas han sido obtenidos con los arcos de las dos figuras anteriores, teniendo como referencia: cos30 ; 30sen 1 3 ; 2 2 2 2 ; 2 2 3 1 ; 2 2 3 1 ; 2 2 2 2 ; 2 2 1 3 ; 2 2 1 3 ; 2 2 2 2 ; 2 2 3 1 ; 2 2
  • 9. I. LINEA TRIGONOMÉTRICA SENO El seno de un arco se representa por la perpendicular trazado desde el extremo del arco Considerado, hacia el eje de abscisas ( x ) C.T 1 -1 y x Sen Sen -Sen -Sen
  • 10. ángulo graduación Análisis de la variación de la línea trigonométrica seno. 0° 90° 270° 180° 360° 0° 90° 180° 270° 360° 0 1 0 - 1 0 1 - 1 0 1 - 1
  • 11. ( ) ´ 1 1 1 ( )min 1 seno ma x sen seno imo IC II C III C IV C crece decrece decrece 2 1 0 3 20 2 0 1 0 1sen 0 1sen 1 0sen 3 2 2 1 00 1 1 0sen crece Cuadro del análisis de las variaciones de la razón trigonométrica seno
  • 12. Ejemplos: 1. Grafica las líneas trigonométricas: sen 120°; sen 250°; sen 300° y x 120° 250° 300° Sen120° Sen250° Sen300° + - -
  • 13. 2.Señala verdadero (v) 0 falso ( f) según corresponda: Sen 100° > sen 190° 1 0 - 1 x y 100° 190° Desarrollo: La afirmación es falsa, por que Sen190°< 0 3.Ordena de mayor a menor: sen 300°; sen 120°; sen 30°; sen 260° Desarrollo: Ordenando: Sen 120°; sen 30°; sen 300°; sen 260° Observa la gráfica: 1 -1 x y 30° 120° 260° 300° 0
  • 14. 3.Encuentra el área de la región sombreada en la C.T. Desarrollo: 1 1 2 base altura S 2 2 sen S S = sen
  • 15. 4. Grafica y encuentra el valor de la línea trigonométrica sen 5 4 Desarrollo: 5 4 4 sen sen 2 4 2 sen 5 4 4 2 2
  • 16. 5.Ordena en forma decreciente. sen 1; sen 2; sen 3. Desarrollo: x y 1,67 3,14 0 1 2 3 Sen1 Sen2 Sen3 Ordenando: Sen 3 ; sen 1; sen 2 6.Señale la variación de: 2 3 ; 6 3;-sen4L Desarrollo: y x 3 2 -1 1 0 6 1 2 De la grafica se observa que los extremos son 1 y - 1 1 1sen Luego:
  • 17. 4 4 4sen Multiplicando por 4: Restando – 3: 7 4 3 1sen 7;1L 7.Señale la variación de: L = 3sen + 2 II Desarrollo: 1 x 180º y 90º 0 < sen < 1 0 < 3 sen < 3 2 < 3 sen + 2 < 5 2;5L
  • 18. LÍNEA TRIGONOMÉTRICA COSENO El coseno de un arco se representa por la perpendicular trazada desde el extremo del arco considerado, hacia el eje de ordenadas ( y ). y x N M cos (-) -1 1 cos (+) A P cos (-) cos (+) Q
  • 19. Análisis de la variación de la línea trigonométrica coseno. Ángulo. Graduación 90° 0°180° 270° 360°0 0° 90° 180° 270° 360° 1 0 - 1 0 1 1- 1 - 1 10
  • 20. Ejemplo: Grafica en la C.T. las siguientes líneas trigonométricas: cos 30°; cos 120°; cos 200° y cos 300° y x 0° 90° 270° 180° 0 30° 120° 200° 300°
  • 21. Cuadro del análisis de las variaciones de la razón trigonométrica coseno 1cos1 1.míncos 1.máxcos IC 0 2 IIC 2 IIIC 3 2 IVC 2 3 2 0 11 0 0 -1 -1 0 0<cos <1 0<cos <1-1<cos <0-1<cos <0 cos
  • 22. Ejemplos: 1.En la C.T. ubica el ángulo de cos 220° Desarrollo: y x0 220° Cos 220°
  • 23. 2.Señala verdadero ( V ) o falso ( F ) según corresponda. Cos 200° > cos 260° Desarrollo: x y 200° 260° - - De la figura se observa que la afirmación es falsa. 3. Ordena de menor a mayor. cos 10°; cos 70°; cos 100°; cos 120° y cos 300° Desarrollo: y x 10° 70° 100° 120° 300° Cos 10°; cos 300°; cos 70°; cos 100°; cos 120°
  • 24. 4.Señala la variación de L = 4 cos + 3; 60°< < 180° Desarrollo: x y 60° 180° - 1 1 2 1 1 cos 2 X 4 + 3 4 4cos 2 1 4cos 3 5 1;5L
  • 25. LÍNEA TRIGONOMÉTRICA TANGENTE La tangente de un arco es la ordenada ( y ) del punto de intersección entre la recta tangente que pasa por el origen de arcos y la prolongación del radio o diámetro que pasa por el extremo del arco. Ejemplos y x P Tan A B Tan M Tan VARIACIÓN I C II C III C IV C + - + - crece crece crece crece
  • 26. 1.Grafica la línea 2 tan 3 Desarrollo: y x 2 3 2 tan 3 2. será : tan300 tan340 Desarrollo: y x 300° La afirmación es verdadera.
  • 27. 3.En la C.T. encuentra el área sombreada. Desarrollo: En el triángulo ABC: En el triángulo ABD: 2 2 tan tan 2 A 1 2 2 sen A sen tanTA sen
  • 28. LÍNEA TRIGONOMÉTRICA COTANGENTE La cotangente de un arco es la abscisa ( x ) del punto de intercepción entre la recta tangente por el origen de complementos y la prolongación del radio o diámetro que pasa por el extremo del arco. Ctg Ctg
  • 29. Ejemplos: Grafica : 2 2 cot ;cot ;cot 6 3 3 Desarrollo: 6 Cot 6 2 3 2 cot 3 2 3 2 cot 3
  • 30. LÍNEA TRIGONOMÉTRICA SECANTE La secante de un arco es la abscisa ( x ) del punto de intersección entre la recta tangente que pasa por el extremo del arco y el eje x. -Sec Sec
  • 32. LÍNEA TRIGONOMÉTRICA COSECANTE La cosecante de arco es la ordenada del punto de intersección, entre la recta tangente que pasa por el extremo de arco y el eje y Csc Csc