SlideShare a Scribd company logo
1 of 5
Download to read offline
ISSN (Print): 2328-3777, ISSN (Online): 2328-3785, ISSN (CD-ROM): 2328-3793
American International Journal of
Research in Formal, Applied
& Natural Sciences
AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 32
Available online at http://www.iasir.net
AIJRFANS is a refereed, indexed, peer-reviewed, multidisciplinary and open access journal published by
International Association of Scientific Innovation and Research (IASIR), USA
(An Association Unifying the Sciences, Engineering, and Applied Research)
Hybridity studies in Indian Grape (Vitis vinifera L) Germplasm using
Microsatellite Markers
Venkat Rao1
, P. Narayanaswamy2
and B.N Srinivasa Murthy
3
1
Assistant Professor of Fruit Science, College of Horticulture, Mysore, University of Horticultural
Sciences, Bagalkot, Karnataka, India. E-mail: venkatvpatil@gmail.com
2
Dean (Hort.), College of Horticulture, Hiriyur, Karnataka, India
3
Principal Scientist, Division of Fruit Science, Indian Institute of Horticultural Research, Bangalore,
India
I. Introduction
Grape cultivars (Vitis vinifera L) have a long history of domestication. The world’s vineyards occupy about 8.7
million hectares. More than 9600 grape cultivars exist around the world (Galet, 2000) and almost 16,000 prime
names appear in the Vitis International Variety Catalogue (Maul and Eibach, 2003). Some of these are not easily
distinguishable by morphology and many cultivars appear to be synonyms, having been distributed around the
world and acquiring new names in the process. Moreover, the wide distribution and long history of cultivation
have led to the development of numerous cultivars with many synonyms, resulting in complexity among
germplasm collections (Galet, 1990). Grape in India are reported to have been introduced in 620 BC. (Olmo,
1976) and commercial cultivation was started in the beginning of the 20th century. Presently, grapes are
successfully grown in India over an area of 1,11,000 ha with a production of approximately 1.23 million MT
(Anonymous, 2011), primarily for use as fresh fruit.
Grape breeding had mainly relied on selection among naturally occurring spontaneous crosses for ages and to a
lesser extent, due to conventional breeding during the last century (Adam-Blondon et al., 2004). The varieties
currently available are the results of a selection process by human and ecogeographical conditions (Bisson,
1995). Information on genetic diversity among plant species is important for efficient utilization of genetic
resources.The existence of close genetic relationships among cultivars grown in the same region or under
similar climatic influence could lead to dilution of genetic resources. Hence, studies on grape have been carried
out to characterize the commercially important germplasm available in India. Microsatellite technology has been
extensively used in grapevine biology and genetics. The number of microsatellite loci available has greatly
increased in the last few years largely through the establishment of the International Vitis Microsatellite
Consortium, leading to the discovery of more than 350 new loci. Microsatellite markers, being abundant,
multiallelic and highly polymorphic, provide an efficient and accurate means of detecting genetic
polymorphism. Most importantly, their codominant nature makes them the markers of choice for population
genetic analysis to assess genetic organization in germplasm collections.
Microsatellites have been used to determine parent-progeny relationships in grape (Bowers and Meredith, 1997;
Bowers et al., 1999a), to develop a database of DNA profiles for use in cultivar identification (Bowers et al.,
1996; Lamboy and Alpha, 1998), and as markers for mapping genetic linkage (Riaz et al., 2004) The present
Abstract: The microsatellites markers used in genetic analysis does not only allow differentiation but also
identification and parentage analysis of grapevine cultivars. The main purpose of this study was to confirm
the hybridity of these accessions and to constct a molecular database including the parents commonly
grown in India. A total of eighteen hybrids and sevruen parents were analyzed using twelve microsatellite
simple sequence repeat (SSR) markers. The hybrid nature of all the progenies used was marked by VVMD-
32. In VVMD-32, unique banding pattern was observed in Black Champa (male parent) in Group A. In
which six bands were prominent, out of which first and last band were absent in Thompson Seedless (female
parent). While in case of primer VVS-29, three prominent bands were observed in male parents. This
primer was able to confirm the hybridity of progenies of group A, F, G and H. The primer VVS-2 confirmed
the hybridity of progenies of group-B, C and H. In case group B, the 3rd
band of male parent was distinct
from the female parent. These three primers were thus able to confirm the hybrid nature of all the
progenies. The use of twelve polymorphic microsatellite markers to detect the hybrids within Indian
grapevine germplasm suggested that this is a reliable, efficient, and effective marker system that can be
used for parentage studies in grapevine and subsequently in crop improvement programs.
Key words: parentage, hybridity, microsatellits markers, Vitis vinifera L.
Venkat Rao et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 32-36
AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 33
study evaluates the hybrids for their parentage analysis to confirm the hybrid nature using polymorphisms
revealed by twelve microsatellite loci.
II. Materials and methods
Plant Materials
Plant material from 25 grape genotypes was collected from Department of Horticulture, University of
Agricultural Sciences, Bangalore and Indian Institute of Horticultural Research, Bangalore. Approximately, 50 g
of recently matured leaves (15–20 d old) were collected, washed using distilled water, wiped with 70% (v/v)
ethanol, then air dried prior to storage in sealed plastic bags at 4°C.
DNA Isolation
DNA was extracted from the stored leaves of grapevine using acetyl trimethyl ammonium bromide
(CTAB) method (Simon et al., 2007). 2 g of leaf sample were powdered in liquid nitrogen to extract the DNA.
The powder was mixed with 10 ml extraction buffer, preheated to 65°C, containing 100 mM Tris-HCl, pH 8.0,
20 mM EDTA, 1.4 M NaCl, 3% (w/v) CTAB, 2% polyvinylpyrrolidone and 1% (v/v) ¾β-mercaptoethanol, then
incubated at 65°C for 90 min. The mixture was cooled to room temperature, 10 ml cold 24:1 (v/v)
chloroform:isoamylalcohol was added, and the contents were mixed well. After centrifugation at 6,000 × g for
10 min at 4°C, the supernatant was transferred to a fresh tube and the chloroform:isoamylalcohol step was
repeated until a clear supernatant was obtained. 5 M NaCl was added to the supernatant [0.5 (v/v)] and mixed
gently, followed by addition of 2 volume of cold isopropanol to precipitate the DNA. The mixture was
incubated overnight at 4°C, then centrifuged at 10,000 × g for 5 min. The resulting pellet was washed with 75%
(v/v) ethanol, air-dried, and dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). 10 μg RNase
(bovine pancreatic ribonuclease; Bangalore Genei, Bangalore, India) was added to each sample which was
incubated for 30 min at 37°C, mixed with an equal volume of phenol, and centrifuged at 6,000 × g for 20 min at
room temperature. This step was followed by washing with an equal volume of 1:1 (v/v) phenol:chloroform,
then with chloroform alone. The DNA was precipitated overnight at 4°C with 0.5 (v/v) 5 M NaCl and 1 volume
of cold isopropanol. The resulting pellet obtained after centrifugation was dissolved in TE buffer, analyzed in an
agarose gel and quantified using a spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).
Microsatellite Analyses
A total of twelve SSR primers characterized in previous studies were used. The primers were VVS1,
VVS2, VVS29, VVMD 7, VVMD 14, VVMD 25, VVMD 27, VVMD28, VVMD31, VVMD32, VVMD 36 and
VMC7b1 (Bowers et al., 1996 and 1999b).These microsatellites were selected as they were the same core set in
the screening programme used to access the target grapevine collections. Primer pairs were synthesized from
MWG Biotech, Bangalore, India based on their published gene sequence. PCR was performed in 96-well plates
in MJ Research PTC100 thermocyclers (Bio-Rad Laboratories, Bangalore, India).
PCR reactions were carried out in 25 μl reactions containing 50 ng of DNA, 5 pmoles of each primer, 10x of
Taq polymerase buffer (50 mM KCl, 10 mM Tris-HCl, pH 9.0, 0.05% (v/v) NP40, and 0.05% (v/v) Triton X-
100), 1.5 mM of MgCl2, 0.5 mM of dNTPs (Finzymes Pvt. Ltd., India), and 1 U of Taq polymerase (Sigma-
Aldrich Pvt. Ltd., India). The final volume was adjusted with sterile distilled water. The PCR amplifications
were carried out with respect to the protocols for primer sets published in Bowers et al., 1996 and 1999b and
Thomas and Scott, 1993. Amplification was confirmed with agarose gels, and alleles were separated by running
on 6% polyacrilamide denaturing gels and electrophoresed in 1 × TBE at 55 W for 2 h. The amplified products
were visualized with silver staining previously described (Bowers et al., 1996).
Statistical Analysis
Amplified fragments from each SSR primer set were scored manually for their presence (1) or absence (0). The
profiles of 25 accessions of grapevine using 12 primer pairs were assembled for statistical analysis. The sizes of
the fragments were estimated using 50 bp standard DNA markers (Bangalore Genei Pvt. Ltd., India),
coelectrophoresized with the amplified products. A genetic dissimilarity matrix was developed using Euclidean
Distances, which estimates all pairwise differences in the amplification products (Sokal and Sneath, 1973). A
cluster analysis was based on Ward’s method using a minimum variance algorithm (Ward, 1963).
III. Results and discussion
The objective of this study was to confirm the parentage of the hybrids developed. To detect hybridity there
must be polymorphism between the parents. The polymorphic bands which are present in male parent should be
present in all the hybrids and should not be present in female parent (Magdalita et al., 1998).
Analysis of F1 hybrids and parents
Cluster analysis
A total of 15 primers were used for the analysis out of which 12 primers were polymorphic. Linkage among 18
hybrids and their parents as revealed by a dendorgram is presented in Fig.1. The cluster analysis grouped the
parents and hybrids into two major groups. Group I is divided into group I (a), I (b) and I (c). Under group I (a)
Arkavati, E-31/5 and E-29/7 come under one cluster to which Arkavati and E-29/5 are related at a linkage
distance of 54 and 55, respectively. In the same group E-29/6 and E-7/12 formed a single sub cluster and are
Venkat Rao et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 32-36
AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 34
closely related at a linkage distance of 51. Groups I (b) comprises of 4 genotypes. Among them Arka Neelamani
and Arka Shweta are closely related at linkage distance of 34. Angur Kalan and Bangalore Blue Share much
similarly and are related at a linkage distance of 40.
Group I (c) comprised of 5 genotypes, among them Black Champa and Convent Large Black are closely related
and formed a single sub cluster at a linkage distance of 58, whereas, Thompson Seedless, Queen of Vine Yard
and Anab-e-Shahi separated from this group and formed individual clusters.
Figure 1: Dendrogram showing the clustering patterns of parents and hybrids of Indian grapevine based
on microsatellite markers
Group II comprises of 10 hybrids and is divided into group I (a), I (b) and I (c), under group II (a), Arka Trishna
and E-29/3 are closely related at a linkage distance of 45 whereas E-30/14 and Arka Chitra formed a separate
sub cluster at a linkage distance of 42. Group II (b) comprises 3 hybrids among them Arka Hans and Arka
Trishna are closely related at a linkage distance of 45 whereas E-30/14 and Arka Chitra formed a separate sub
cluster at a linkage distance of 42. Group II (b) comprises 3 hybrids among them Arka Hans and Arka Trishna
are closely related at a linkage distance of 40 whereas Arka Majestic formed a separate entity and is linked to
Arka Hans and Arka Trishna at a linkage distance of 51. Group II (c) also comprises 3 hybrids among them
Arka Kanchan and Arka Soma are closely related at a linkage distance of 43. Hybrid E-26/8 formed a separate
sub cluster and is related to Arka Kanchan and Arka Soma at a linkage distance of 57. The linkage distance
among the hybrids and parents varied from 31 to 104 (Table 1).
Table 1: Distance Matrix Analysis of hybrids and parents
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 0 46 53 56 48 50 59 63 86 84 86 71 82 81 84 75 69 73 70 82 79 67 57 73 81
2 46 0 31 56 64 68 73 65 88 74 78 79 78 81 74 79 73 69 68 74 81 63 67 65 75
3 53 31 0 47 55 61 74 72 93 81 83 92 73 78 83 90 84 82 79 87 76 68 70 70 72
4 56 56 47 0 44 54 61 63 70 72 66 89 74 85 88 87 91 89 84 90 69 63 81 71 77
5 48 64 55 44 0 32 45 47 72 84 76 77 86 83 80 89 91 87 90 98 71 71 77 79 83
6 50 68 61 54 32 0 53 63 74 76 58 69 70 71 74 87 77 73 84 88 61 81 79 87 93
7 59 73 74 61 45 53 0 52 79 91 89 78 87 90 83 82 86 80 85 87 90 74 84 82 82
8 63 65 72 63 47 63 52 0 69 71 83 74 79 80 59 74 70 70 75 85 86 84 90 90 96
9 86 88 93 70 72 74 79 69 0 62 60 69 74 67 82 89 89 75 92 82 79 83 93 91 95
10 84 74 81 72 84 76 91 71 62 0 42 43 48 57 58 83 71 61 74 66 85 63 85 81 83
11 86 78 83 66 76 58 89 83 60 42 0 47 48 53 64 85 69 63 72 74 77 83 89 77 91
12 71 79 92 89 77 69 78 74 69 43 47 0 49 52 47 60 50 46 59 63 94 82 80 92 94
13 82 78 73 74 86 70 87 79 74 48 48 49 0 45 46 75 55 41 64 64 85 81 85 85 85
14 81 81 78 85 83 71 90 80 67 57 53 52 45 0 57 76 52 56 67 67 98 86 78 90 94
15 84 74 83 88 80 74 83 59 82 58 64 47 46 57 0 65 51 43 66 68 97 85 89 91 93
16 75 79 90 87 89 87 82 74 89 83 85 60 75 76 65 0 44 58 41 59 104 84 76 82 90
17 69 73 84 91 91 77 86 70 89 71 69 50 55 52 51 44 0 34 43 61 102 96 82 96 110
18 73 69 82 89 87 73 80 70 75 61 63 46 41 56 43 58 34 0 49 59 96 86 78 94 94
T ree D iagram for 25 V ariables
W ard`s m ethod
S quared E uclidean distances
Linkage D istance
F -26/8
A rka S om a
A rka K anchan
A rka T rishna
A rka H ans
A rka M ajestic
A rka C hitra
E -30/14
E -29/3
A rka T rishna
A nab-e-S hahi
Q ueen of V ine Y ard
C onvent Large B lack
B lack C ham pa
T hom pson S eedless
B angalore B lue
A ngur K alan
A rka S hw eta
A rka N eelm ani
E -7/12
E -29/6
E -29/5
E -29/7
E -31/5
A rka V ati
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
Venkat Rao et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 32-36
AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 35
19 70 68 79 84 90 84 85 75 92 74 72 59 64 67 66 41 43 49 0 50 99 91 67 87 95
20 82 74 87 90 98 88 87 85 82 66 74 63 64 67 68 59 61 59 50 0 103 85 85 93 91
21 79 81 76 69 71 61 90 86 79 85 77 94 85 98 97 104 102 96 99 103 0 68 84 76 92
22 67 63 68 63 71 81 74 84 83 63 83 82 81 86 85 84 96 86 91 85 68 0 64 58 56
23 57 67 70 81 77 79 84 90 93 85 89 80 85 78 89 76 82 78 67 85 84 64 0 70 84
24 73 65 70 71 79 87 82 90 91 81 77 92 85 90 91 82 96 94 87 93 76 58 70 0 58
25 81 75 72 77 83 93 82 96 95 83 91 94 85 94 93 90 110 94 95 91 92 56 84 58 0
Legend
1 Arkavati 14 Arka Kanchan
2 Arka Neelamani 15 Arka Hans
3 Arka Shweta 16 Arka Trishna
4 E-29/5 17 Arka Soma
5 E-31/5 18 F-26/8
6 E-29/7 19 Thompson Seedless
7 E-29/6 20 Black Champa
8 E-7/12 21 Anab-e-Shahi
9 Arka Krishna 22 Queen of Vine Yard
10 E-29/3 23 Convent Large Black
11 E-30/14 24 Angur Kalan
12 Arka Chitra 25 Bangalore Blue
13 Arka Majestic
Analysis for confirmation of hybridity
Eighteen hybrids from different parent combinations were tested for their hybridity. Out of 18 hybrids 9 were
from cross between Black Champa x Thompson Seedless, two each from cross between Anab-e-Shahi x Queen
of Vine Yard, Angur Kalan x Black Champa. One each from a cross between Anab-e-Shahi x Thompson
Seedless, Anab-e-Shahi x Convent Large Black, Angur Kalan x Anab-e-Shahi, Bangalore Blue x Anab-e-Shahi
and Bangalore Blue x Convent Large Black.
Fifteen primers were used for analysis to confirm the hybridity and the 7 primers giving clear and reproducible
bands were chosen for PCR analysis of samples. The banding patterns of the parents and progenies were
compared to test the hybridity of the progenies used.
Of the seven primers used individually for amplification of samples, three primers VVMD-32, VVS-2 and VVS-
29 gave the amplification patterns which reveal the hybrid nature of the progenies. In case of primer VVMD-32
(Group A), unique banding pattern was observed in Black Champa (male parent) in which 6 bands were
prominent, out of which first and last band were absent in Thompson Seedless (female parent). Whereas the first
band was present in all the hybrids except 9th
and the last band was absent in 8th
hybrid. In group B, 5th
band was
present in male parent and the hybrids but was absent in female parent. In group C and D, the last band was
prominent among the male parent and hybrids. In case of groups E and F, 4th
and 5th
bands were prominent in
male parent and hybrids (Fig.2). This primer has not proved the hybridity of progenies of group G and H.
Figure 2: Microsatellite gel profile of parents and hybrids as revealed by primer VVMD 32
A B C D E F G H
M 1 2 3 4 5 6 7 8 9 F M 1 2 F M 1 F M 1 F M 1 2 F M 1 F M 1 F M 1 F
Legend
Group A Group B Group C Group D
M – Thompson seedless M – Queen of Vine Yard M - Thompson seedless M – Convent Large Black
1 – Arkavati 1 – Arka Soma 1 – Arka Shweta 1 – E – 7/12
2 – Arka Neelamani 2 – Arka Kanchan F - Anab-e-Shahi F - Anab-e-Shahi
3 – Arka Krishna F – Anab-e-Shahi
4 – E-29/5 5 – E-31/5
Venkat Rao et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 32-36
AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 36
6 – 30/14 Groups E Groups F Groups G Groups H
7 – 29/7
8 – 29/6 M - Black Champa M - Anab-e-Shahi M - Anab-e-Shahi M-Convent Large Black
9 – 29/3 1 – Arka Majestic 1 – Arka Chitra 1 – Arka Hans 1 – Arka Trishna
F – Black Champa F –Angur Kalan F –Angur Kalan F –Angur Kalan F –Angur Kalan
M=Male parent
F=Female parent
While in case of primer VVS-29, three prominent bands were observed in male parent. This primer was able to
confirm the hybridity of the progenies of groups A, F, G and H. In case of group A, the last band was distinct
from female parent and is present in all the hybrids except 1st
, 4th
and 9th
hybrids. In case of group F, 1st
, 2nd
and
3rd
bands of male parent were distinct from the female parent and it was present in hybrid. In group G and H, the
1st
band of male parent was distinct from female parent and was present in hybrids. The bands generated by
primer VVS-2 reveals that the 2nd
band of the male parent of group-A was known to be distinct from the female
parent. This primer has also proved the hybridity of progenies of group B, C and H. In case of group B, the 3rd
band of male parent was distinct from the female parent and was present in hybrids also. While in group C, the
2nd
band of male parent was present in hybrid and was distinct from female parent. In group H, the 4th
band of
male parent was unique from female parent and was present in hybrid. These three primers were able to confirm
the hybridity of all the progenies used in the investigation.
While the remaining primers including above three primers produced banding pattern which were common in
both the parents and were present in all the hybrids progenies too. But these bands cannot be taken for analysis
as these represent conserved sequences of grape.
Thus, it can be concluded that, all the progenies under investigation were confirmed to be hybrids. Similar kind
of observations for hybridity confirmation in grapes were reported by Sawazaki et al. (1996) by using RAPD
markers, Sefc et al. (1997), Warren and Cristopher (1998) by using SSR markers, Moreno et al. (1998) by using
ISSR markers.
IV. References
[1] Adam-Blondon, A.F, Roux, C, Claux, D, Butterlin, G, Merdinoglu, D and This, P. 2004. Mapping 245 SSR markers on the
Vitis vinifera genome: A tool for grape genetics. Theor. Appl. Genet. 109:1017–1027.
[2] Anonymous. 2011. Statistical Databases, National Horticulture Board, Gurgoan,Haryana, India.
[3] Bisson, J. 1995. The principal ecogeographical groups in French grapevines assortment. J. Int. des Sci. de la Vigne et du Vin.
29:63–68.
[4] Bowers, J.C. and Meredith, C.P. 1997. The parentage of a classic wine grape, Cabernet Sauvignon. Natl. Genet. 16(1):84–87.
[5] Bowers, J.E, Bandman, E.B and Meredith, C.P. 1993. DNA fingerprint characterization of some California winegrape cultivars.
Amer. J. Enol. Viticult. 44: 266–274.
[6] Bowers, J.E, Boursiquot, J.M, This, P, Chu, K, Johansson, H and Meredith, C.P. 1999a. Historical genetics: The parentage of
Chardonnay, Gamay, and other wine grapes of northeastern France. Science. 285:1562–1565.
[7] Bowers, J.E, Dangl, G.S and Meredith, C.P. 1999b. Development and characterization of additional microsatellite DNA markers
for grape. Amer. J. Enol. Viticult. 50:243–246.
[8] Bowers, J.E, Dangl, G.S, Vignani, R and Meredith, C.P. 1996. Isolation and characterization of new polymorphic simple
sequence repeat loci in grape (Vitis vinifera L.). Genome. 39:628–633.
[9] Galet, P. 1990. Cepages et Vignobles de France. Tome. II. L’Ampelographie Francaise, 2nd ed. C. Déhan, Montpellier, France.
[10] Galet, P. 2000. Dictionnaire encyclopédique des cépages. Hachette, Paris.
[11] Lamboy, W.F. and Alpha, C.G. 1998. Using simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of
grape (Vitis L.) species. J. Am. Soc. Hortic. Sci. 123(2):182–188.
[12] Magdalita, P.M. Goodwin, I.D. And Drew, R.A. 1998. Random amplified polymorphic DNA markers for Carica interspecific
hybrids. Acta. Hort. 461:133-140.
[13] Maul, E. and Eibach,R. 2003. Vitis international variety catalogue. http://www. genres.de/eccdb/vitis.
[14] Moreno, S, Martin, J.J. and Ortiz, J.M. 1998. Inter simple sequence repeats PCR for characterization of closely related grapevine
germplasm. Euphytica, 101: 117-125.
[15] Olmo, H. P. 1976. Grapes. pp. 294–298. In: N.W. Simmonds (ed.). Evolution of crop plants. Longman, London.
[16] Riaz, S, Dangl, G.S, Edwards, K.J. and Meredith, C.P. 2004. A Microsatellite marker based framework linkage map of Vitis
vinifera L. Theor. Appl. Genet.108:864–872.
[17] Sawazaki, H.E, Pommer, C.V, Passos, J.R. Da, S, Tesra, M.M. and Pires, E.J.P., 1996, Identification of parents and hybrids
among Vitis vinifera and Vitis rotundifolia using isoenzyme polymorphism and RAPD marker. Bragantia, 55 (2): 221-230.
[18] Sefc, K.M, Steinkellner, H, Wagner, H.W, Glossl, J. and Regner, F. 1997. Application of Micro satellite markers to parentage
studies in grapevine. Vitis. 36: 179–183.
[19] Simon, L, Shyamalamma, S. and Narayanaswamy, P. 2007. Morphological and molecular analysis of genetic diversity in
Jackfruit. J. Hortic. Sci. Biotech. 82(5):764–768.
[20] Sokal, R. R, and Sneath, P.H.A. 1973. Principles of Numerical Taxonomy, W.H. Freeman, San Francisco.
[21] Thomas, M.R. and Scott, N.S. 1993. Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-
tagged sites (STSs). Theor. Appl. Genet. 86:985–990.
[22] Ward, J.H. 1963. Hierarchic grouping to optimize an objective function. J. Am. Stat. Assn. 58:236–239.
[23] Warren, F. and Christopher, G.A. 1998. Using simple sequence repeats (SSRs) for DNA finger printing germplasm accessions of
grape (Vitis) species. J. Amer. Soc. Hort. Sci., 123 : 182-188.

More Related Content

What's hot

Effect of basal medium on in vitro leaf morphology, growth and artemisinin pr...
Effect of basal medium on in vitro leaf morphology, growth and artemisinin pr...Effect of basal medium on in vitro leaf morphology, growth and artemisinin pr...
Effect of basal medium on in vitro leaf morphology, growth and artemisinin pr...Alexander Decker
 
IJASc Citrus paperpdf
IJASc Citrus paperpdfIJASc Citrus paperpdf
IJASc Citrus paperpdfSwati Saxena
 
Genetic Diversity of White Yam (Dioscorea rotundata Poir) Accessions Maintain...
Genetic Diversity of White Yam (Dioscorea rotundata Poir) Accessions Maintain...Genetic Diversity of White Yam (Dioscorea rotundata Poir) Accessions Maintain...
Genetic Diversity of White Yam (Dioscorea rotundata Poir) Accessions Maintain...Journal of Agriculture and Crops
 
RAPD_ISSR_cymbopogon_paper
RAPD_ISSR_cymbopogon_paperRAPD_ISSR_cymbopogon_paper
RAPD_ISSR_cymbopogon_paperSneha Ghosh
 
Bitter gourd_Appl Biochem &Biotech
Bitter gourd_Appl Biochem &BiotechBitter gourd_Appl Biochem &Biotech
Bitter gourd_Appl Biochem &BiotechSwati Saxena
 
Pharmacological activity of the methanolic extract of sea urchins against esc...
Pharmacological activity of the methanolic extract of sea urchins against esc...Pharmacological activity of the methanolic extract of sea urchins against esc...
Pharmacological activity of the methanolic extract of sea urchins against esc...Innspub Net
 
Molecular marker to identify gynoecious lines in bitter gourd
Molecular marker to identify gynoecious lines in bitter gourdMolecular marker to identify gynoecious lines in bitter gourd
Molecular marker to identify gynoecious lines in bitter gourdSwati Saxena
 
21 kebere bezaweletaw 207-217
21 kebere bezaweletaw 207-21721 kebere bezaweletaw 207-217
21 kebere bezaweletaw 207-217Alexander Decker
 
Phylotype Analysis of Ralstonia Solanacearum Causing Bacterial wilt in Eggpla...
Phylotype Analysis of Ralstonia Solanacearum Causing Bacterial wilt in Eggpla...Phylotype Analysis of Ralstonia Solanacearum Causing Bacterial wilt in Eggpla...
Phylotype Analysis of Ralstonia Solanacearum Causing Bacterial wilt in Eggpla...ijtsrd
 
Allium Cepa Genotoxicity Test
Allium Cepa Genotoxicity TestAllium Cepa Genotoxicity Test
Allium Cepa Genotoxicity Testdeathful
 
Biogeography and polyphasic approach of pseudomonas strains from agriculture ...
Biogeography and polyphasic approach of pseudomonas strains from agriculture ...Biogeography and polyphasic approach of pseudomonas strains from agriculture ...
Biogeography and polyphasic approach of pseudomonas strains from agriculture ...Alexander Decker
 
DNA Fingerprinting and Phylogenetic Relationship of the Genus Chlorophytum Ke...
DNA Fingerprinting and Phylogenetic Relationship of the Genus Chlorophytum Ke...DNA Fingerprinting and Phylogenetic Relationship of the Genus Chlorophytum Ke...
DNA Fingerprinting and Phylogenetic Relationship of the Genus Chlorophytum Ke...YogeshIJTSRD
 
Genetic diversity in pea germplasm using RAPD Markers
Genetic diversity in pea germplasm using RAPD MarkersGenetic diversity in pea germplasm using RAPD Markers
Genetic diversity in pea germplasm using RAPD MarkersShujaul Mulk Khan
 
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...iosrjce
 
16. varietal characterization of tomato cultivars based on rapd markers
16. varietal characterization of tomato cultivars based on rapd markers16. varietal characterization of tomato cultivars based on rapd markers
16. varietal characterization of tomato cultivars based on rapd markersVishwanath Koti
 
To Study the Genomic Fingerprinting of Relatedness in Strains of Bacillus Sp....
To Study the Genomic Fingerprinting of Relatedness in Strains of Bacillus Sp....To Study the Genomic Fingerprinting of Relatedness in Strains of Bacillus Sp....
To Study the Genomic Fingerprinting of Relatedness in Strains of Bacillus Sp....ijtsrd
 

What's hot (18)

Effect of basal medium on in vitro leaf morphology, growth and artemisinin pr...
Effect of basal medium on in vitro leaf morphology, growth and artemisinin pr...Effect of basal medium on in vitro leaf morphology, growth and artemisinin pr...
Effect of basal medium on in vitro leaf morphology, growth and artemisinin pr...
 
IJASc Citrus paperpdf
IJASc Citrus paperpdfIJASc Citrus paperpdf
IJASc Citrus paperpdf
 
Genetic Diversity of White Yam (Dioscorea rotundata Poir) Accessions Maintain...
Genetic Diversity of White Yam (Dioscorea rotundata Poir) Accessions Maintain...Genetic Diversity of White Yam (Dioscorea rotundata Poir) Accessions Maintain...
Genetic Diversity of White Yam (Dioscorea rotundata Poir) Accessions Maintain...
 
RAPD_ISSR_cymbopogon_paper
RAPD_ISSR_cymbopogon_paperRAPD_ISSR_cymbopogon_paper
RAPD_ISSR_cymbopogon_paper
 
Vishal Kumar, et al
Vishal Kumar, et alVishal Kumar, et al
Vishal Kumar, et al
 
Bitter gourd_Appl Biochem &Biotech
Bitter gourd_Appl Biochem &BiotechBitter gourd_Appl Biochem &Biotech
Bitter gourd_Appl Biochem &Biotech
 
Pharmacological activity of the methanolic extract of sea urchins against esc...
Pharmacological activity of the methanolic extract of sea urchins against esc...Pharmacological activity of the methanolic extract of sea urchins against esc...
Pharmacological activity of the methanolic extract of sea urchins against esc...
 
Molecular marker to identify gynoecious lines in bitter gourd
Molecular marker to identify gynoecious lines in bitter gourdMolecular marker to identify gynoecious lines in bitter gourd
Molecular marker to identify gynoecious lines in bitter gourd
 
21 kebere bezaweletaw 207-217
21 kebere bezaweletaw 207-21721 kebere bezaweletaw 207-217
21 kebere bezaweletaw 207-217
 
Sub1559
Sub1559Sub1559
Sub1559
 
Phylotype Analysis of Ralstonia Solanacearum Causing Bacterial wilt in Eggpla...
Phylotype Analysis of Ralstonia Solanacearum Causing Bacterial wilt in Eggpla...Phylotype Analysis of Ralstonia Solanacearum Causing Bacterial wilt in Eggpla...
Phylotype Analysis of Ralstonia Solanacearum Causing Bacterial wilt in Eggpla...
 
Allium Cepa Genotoxicity Test
Allium Cepa Genotoxicity TestAllium Cepa Genotoxicity Test
Allium Cepa Genotoxicity Test
 
Biogeography and polyphasic approach of pseudomonas strains from agriculture ...
Biogeography and polyphasic approach of pseudomonas strains from agriculture ...Biogeography and polyphasic approach of pseudomonas strains from agriculture ...
Biogeography and polyphasic approach of pseudomonas strains from agriculture ...
 
DNA Fingerprinting and Phylogenetic Relationship of the Genus Chlorophytum Ke...
DNA Fingerprinting and Phylogenetic Relationship of the Genus Chlorophytum Ke...DNA Fingerprinting and Phylogenetic Relationship of the Genus Chlorophytum Ke...
DNA Fingerprinting and Phylogenetic Relationship of the Genus Chlorophytum Ke...
 
Genetic diversity in pea germplasm using RAPD Markers
Genetic diversity in pea germplasm using RAPD MarkersGenetic diversity in pea germplasm using RAPD Markers
Genetic diversity in pea germplasm using RAPD Markers
 
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
 
16. varietal characterization of tomato cultivars based on rapd markers
16. varietal characterization of tomato cultivars based on rapd markers16. varietal characterization of tomato cultivars based on rapd markers
16. varietal characterization of tomato cultivars based on rapd markers
 
To Study the Genomic Fingerprinting of Relatedness in Strains of Bacillus Sp....
To Study the Genomic Fingerprinting of Relatedness in Strains of Bacillus Sp....To Study the Genomic Fingerprinting of Relatedness in Strains of Bacillus Sp....
To Study the Genomic Fingerprinting of Relatedness in Strains of Bacillus Sp....
 

Viewers also liked

Il Wireless Cura Le Ansie
Il Wireless Cura Le AnsieIl Wireless Cura Le Ansie
Il Wireless Cura Le AnsieSergioconsonni
 
State of the union
State of the unionState of the union
State of the unioneaspencer13
 
Ieee 2012 titles for java & .net
Ieee 2012 titles for java & .netIeee 2012 titles for java & .net
Ieee 2012 titles for java & .nettema_solution
 
Reparacion y soporte técnico karen salazar 5to bachillerato
Reparacion y soporte técnico karen salazar 5to bachilleratoReparacion y soporte técnico karen salazar 5to bachillerato
Reparacion y soporte técnico karen salazar 5to bachilleratoSalazarkaren
 
Technology, Tension & Education
Technology, Tension & EducationTechnology, Tension & Education
Technology, Tension & Educationskp24601
 
Assembly Instructions 2
Assembly Instructions 2Assembly Instructions 2
Assembly Instructions 2rossemberg
 
Subito stati generali per Napoli
Subito stati generali per NapoliSubito stati generali per Napoli
Subito stati generali per NapoliGianni Lettieri
 

Viewers also liked (8)

Il Wireless Cura Le Ansie
Il Wireless Cura Le AnsieIl Wireless Cura Le Ansie
Il Wireless Cura Le Ansie
 
State of the union
State of the unionState of the union
State of the union
 
Ieee 2012 titles for java & .net
Ieee 2012 titles for java & .netIeee 2012 titles for java & .net
Ieee 2012 titles for java & .net
 
.
. .
.
 
Reparacion y soporte técnico karen salazar 5to bachillerato
Reparacion y soporte técnico karen salazar 5to bachilleratoReparacion y soporte técnico karen salazar 5to bachillerato
Reparacion y soporte técnico karen salazar 5to bachillerato
 
Technology, Tension & Education
Technology, Tension & EducationTechnology, Tension & Education
Technology, Tension & Education
 
Assembly Instructions 2
Assembly Instructions 2Assembly Instructions 2
Assembly Instructions 2
 
Subito stati generali per Napoli
Subito stati generali per NapoliSubito stati generali per Napoli
Subito stati generali per Napoli
 

Similar to Aijrfans14 215

Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...iosrjce
 
5 mohammad chamani
5 mohammad chamani5 mohammad chamani
5 mohammad chamaniDheeraj Vasu
 
2015 new phytol mazzoleni et al
2015 new phytol mazzoleni et al2015 new phytol mazzoleni et al
2015 new phytol mazzoleni et alClaudia Lanteri
 
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...IOSR Journals
 
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...IOSR Journals
 
Growth Pattern, Molecular Identification and Bio molecules Analysis of FOMITO...
Growth Pattern, Molecular Identification and Bio molecules Analysis of FOMITO...Growth Pattern, Molecular Identification and Bio molecules Analysis of FOMITO...
Growth Pattern, Molecular Identification and Bio molecules Analysis of FOMITO...journal ijrtem
 
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...inventionjournals
 
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...paperpublications3
 
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...IJEAB
 
Association of loganin contents with the genetic characterization of natural ...
Association of loganin contents with the genetic characterization of natural ...Association of loganin contents with the genetic characterization of natural ...
Association of loganin contents with the genetic characterization of natural ...Professora Michele da Silva
 
Frequency of Polyploids of Solanum tuberosum Dihaploids in 2X × 2X Crosses
Frequency of Polyploids of Solanum tuberosum Dihaploids in 2X × 2X CrossesFrequency of Polyploids of Solanum tuberosum Dihaploids in 2X × 2X Crosses
Frequency of Polyploids of Solanum tuberosum Dihaploids in 2X × 2X CrossesJournal of Agriculture and Crops
 
Genetic Diversity and Structure Analysis of Masson Pine Clonal Seed Orchard
Genetic Diversity and Structure Analysis of Masson Pine Clonal Seed Orchard Genetic Diversity and Structure Analysis of Masson Pine Clonal Seed Orchard
Genetic Diversity and Structure Analysis of Masson Pine Clonal Seed Orchard Agriculture Journal IJOEAR
 
Characterisation of some Ribes L. accessions from Turkey based on SSRs patterns
Characterisation of some Ribes L. accessions from Turkey based on SSRs patternsCharacterisation of some Ribes L. accessions from Turkey based on SSRs patterns
Characterisation of some Ribes L. accessions from Turkey based on SSRs patternsAgriculture Journal IJOEAR
 
seed DNA extraction.pdf
seed DNA extraction.pdfseed DNA extraction.pdf
seed DNA extraction.pdfKanwalMalik18
 
Resistance of some olive (Olea europaea) cultivars and hybrids to leaf spot d...
Resistance of some olive (Olea europaea) cultivars and hybrids to leaf spot d...Resistance of some olive (Olea europaea) cultivars and hybrids to leaf spot d...
Resistance of some olive (Olea europaea) cultivars and hybrids to leaf spot d...Agriculture Journal IJOEAR
 
In Vitro Cytotoxic Activity of Medicinal Plants Used in the Treatment of Cancer
In Vitro Cytotoxic Activity of Medicinal Plants Used in the Treatment of CancerIn Vitro Cytotoxic Activity of Medicinal Plants Used in the Treatment of Cancer
In Vitro Cytotoxic Activity of Medicinal Plants Used in the Treatment of CancerIJSTA
 
Identification of fish species using dna barcode from visakhapatnam, east coa...
Identification of fish species using dna barcode from visakhapatnam, east coa...Identification of fish species using dna barcode from visakhapatnam, east coa...
Identification of fish species using dna barcode from visakhapatnam, east coa...RUSHINADHA KAKARA
 
11.isolation and pcr amplification of genomic dna from traded seeds of nutmeg
11.isolation and pcr amplification of genomic dna from traded seeds of nutmeg11.isolation and pcr amplification of genomic dna from traded seeds of nutmeg
11.isolation and pcr amplification of genomic dna from traded seeds of nutmegAlexander Decker
 
Genome Sequencing in Finger Millet
Genome Sequencing in Finger MilletGenome Sequencing in Finger Millet
Genome Sequencing in Finger MilletVivek Suthediya
 

Similar to Aijrfans14 215 (20)

Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
 
5 mohammad chamani
5 mohammad chamani5 mohammad chamani
5 mohammad chamani
 
2015 new phytol mazzoleni et al
2015 new phytol mazzoleni et al2015 new phytol mazzoleni et al
2015 new phytol mazzoleni et al
 
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
 
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
Characterization of Arsenic contaminated Rice (Oryza Sativa L.) through RAPD ...
 
Molecular Characterization of Brassica Cultivars through RAPD Markers
Molecular Characterization of Brassica Cultivars through RAPD MarkersMolecular Characterization of Brassica Cultivars through RAPD Markers
Molecular Characterization of Brassica Cultivars through RAPD Markers
 
Growth Pattern, Molecular Identification and Bio molecules Analysis of FOMITO...
Growth Pattern, Molecular Identification and Bio molecules Analysis of FOMITO...Growth Pattern, Molecular Identification and Bio molecules Analysis of FOMITO...
Growth Pattern, Molecular Identification and Bio molecules Analysis of FOMITO...
 
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
 
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
 
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
 
Association of loganin contents with the genetic characterization of natural ...
Association of loganin contents with the genetic characterization of natural ...Association of loganin contents with the genetic characterization of natural ...
Association of loganin contents with the genetic characterization of natural ...
 
Frequency of Polyploids of Solanum tuberosum Dihaploids in 2X × 2X Crosses
Frequency of Polyploids of Solanum tuberosum Dihaploids in 2X × 2X CrossesFrequency of Polyploids of Solanum tuberosum Dihaploids in 2X × 2X Crosses
Frequency of Polyploids of Solanum tuberosum Dihaploids in 2X × 2X Crosses
 
Genetic Diversity and Structure Analysis of Masson Pine Clonal Seed Orchard
Genetic Diversity and Structure Analysis of Masson Pine Clonal Seed Orchard Genetic Diversity and Structure Analysis of Masson Pine Clonal Seed Orchard
Genetic Diversity and Structure Analysis of Masson Pine Clonal Seed Orchard
 
Characterisation of some Ribes L. accessions from Turkey based on SSRs patterns
Characterisation of some Ribes L. accessions from Turkey based on SSRs patternsCharacterisation of some Ribes L. accessions from Turkey based on SSRs patterns
Characterisation of some Ribes L. accessions from Turkey based on SSRs patterns
 
seed DNA extraction.pdf
seed DNA extraction.pdfseed DNA extraction.pdf
seed DNA extraction.pdf
 
Resistance of some olive (Olea europaea) cultivars and hybrids to leaf spot d...
Resistance of some olive (Olea europaea) cultivars and hybrids to leaf spot d...Resistance of some olive (Olea europaea) cultivars and hybrids to leaf spot d...
Resistance of some olive (Olea europaea) cultivars and hybrids to leaf spot d...
 
In Vitro Cytotoxic Activity of Medicinal Plants Used in the Treatment of Cancer
In Vitro Cytotoxic Activity of Medicinal Plants Used in the Treatment of CancerIn Vitro Cytotoxic Activity of Medicinal Plants Used in the Treatment of Cancer
In Vitro Cytotoxic Activity of Medicinal Plants Used in the Treatment of Cancer
 
Identification of fish species using dna barcode from visakhapatnam, east coa...
Identification of fish species using dna barcode from visakhapatnam, east coa...Identification of fish species using dna barcode from visakhapatnam, east coa...
Identification of fish species using dna barcode from visakhapatnam, east coa...
 
11.isolation and pcr amplification of genomic dna from traded seeds of nutmeg
11.isolation and pcr amplification of genomic dna from traded seeds of nutmeg11.isolation and pcr amplification of genomic dna from traded seeds of nutmeg
11.isolation and pcr amplification of genomic dna from traded seeds of nutmeg
 
Genome Sequencing in Finger Millet
Genome Sequencing in Finger MilletGenome Sequencing in Finger Millet
Genome Sequencing in Finger Millet
 

More from Iasir Journals (20)

ijetcas14 650
ijetcas14 650ijetcas14 650
ijetcas14 650
 
Ijetcas14 648
Ijetcas14 648Ijetcas14 648
Ijetcas14 648
 
Ijetcas14 647
Ijetcas14 647Ijetcas14 647
Ijetcas14 647
 
Ijetcas14 643
Ijetcas14 643Ijetcas14 643
Ijetcas14 643
 
Ijetcas14 641
Ijetcas14 641Ijetcas14 641
Ijetcas14 641
 
Ijetcas14 639
Ijetcas14 639Ijetcas14 639
Ijetcas14 639
 
Ijetcas14 632
Ijetcas14 632Ijetcas14 632
Ijetcas14 632
 
Ijetcas14 624
Ijetcas14 624Ijetcas14 624
Ijetcas14 624
 
Ijetcas14 619
Ijetcas14 619Ijetcas14 619
Ijetcas14 619
 
Ijetcas14 615
Ijetcas14 615Ijetcas14 615
Ijetcas14 615
 
Ijetcas14 608
Ijetcas14 608Ijetcas14 608
Ijetcas14 608
 
Ijetcas14 605
Ijetcas14 605Ijetcas14 605
Ijetcas14 605
 
Ijetcas14 604
Ijetcas14 604Ijetcas14 604
Ijetcas14 604
 
Ijetcas14 598
Ijetcas14 598Ijetcas14 598
Ijetcas14 598
 
Ijetcas14 594
Ijetcas14 594Ijetcas14 594
Ijetcas14 594
 
Ijetcas14 593
Ijetcas14 593Ijetcas14 593
Ijetcas14 593
 
Ijetcas14 591
Ijetcas14 591Ijetcas14 591
Ijetcas14 591
 
Ijetcas14 589
Ijetcas14 589Ijetcas14 589
Ijetcas14 589
 
Ijetcas14 585
Ijetcas14 585Ijetcas14 585
Ijetcas14 585
 
Ijetcas14 584
Ijetcas14 584Ijetcas14 584
Ijetcas14 584
 

Recently uploaded

Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 

Recently uploaded (20)

Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 

Aijrfans14 215

  • 1. ISSN (Print): 2328-3777, ISSN (Online): 2328-3785, ISSN (CD-ROM): 2328-3793 American International Journal of Research in Formal, Applied & Natural Sciences AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 32 Available online at http://www.iasir.net AIJRFANS is a refereed, indexed, peer-reviewed, multidisciplinary and open access journal published by International Association of Scientific Innovation and Research (IASIR), USA (An Association Unifying the Sciences, Engineering, and Applied Research) Hybridity studies in Indian Grape (Vitis vinifera L) Germplasm using Microsatellite Markers Venkat Rao1 , P. Narayanaswamy2 and B.N Srinivasa Murthy 3 1 Assistant Professor of Fruit Science, College of Horticulture, Mysore, University of Horticultural Sciences, Bagalkot, Karnataka, India. E-mail: venkatvpatil@gmail.com 2 Dean (Hort.), College of Horticulture, Hiriyur, Karnataka, India 3 Principal Scientist, Division of Fruit Science, Indian Institute of Horticultural Research, Bangalore, India I. Introduction Grape cultivars (Vitis vinifera L) have a long history of domestication. The world’s vineyards occupy about 8.7 million hectares. More than 9600 grape cultivars exist around the world (Galet, 2000) and almost 16,000 prime names appear in the Vitis International Variety Catalogue (Maul and Eibach, 2003). Some of these are not easily distinguishable by morphology and many cultivars appear to be synonyms, having been distributed around the world and acquiring new names in the process. Moreover, the wide distribution and long history of cultivation have led to the development of numerous cultivars with many synonyms, resulting in complexity among germplasm collections (Galet, 1990). Grape in India are reported to have been introduced in 620 BC. (Olmo, 1976) and commercial cultivation was started in the beginning of the 20th century. Presently, grapes are successfully grown in India over an area of 1,11,000 ha with a production of approximately 1.23 million MT (Anonymous, 2011), primarily for use as fresh fruit. Grape breeding had mainly relied on selection among naturally occurring spontaneous crosses for ages and to a lesser extent, due to conventional breeding during the last century (Adam-Blondon et al., 2004). The varieties currently available are the results of a selection process by human and ecogeographical conditions (Bisson, 1995). Information on genetic diversity among plant species is important for efficient utilization of genetic resources.The existence of close genetic relationships among cultivars grown in the same region or under similar climatic influence could lead to dilution of genetic resources. Hence, studies on grape have been carried out to characterize the commercially important germplasm available in India. Microsatellite technology has been extensively used in grapevine biology and genetics. The number of microsatellite loci available has greatly increased in the last few years largely through the establishment of the International Vitis Microsatellite Consortium, leading to the discovery of more than 350 new loci. Microsatellite markers, being abundant, multiallelic and highly polymorphic, provide an efficient and accurate means of detecting genetic polymorphism. Most importantly, their codominant nature makes them the markers of choice for population genetic analysis to assess genetic organization in germplasm collections. Microsatellites have been used to determine parent-progeny relationships in grape (Bowers and Meredith, 1997; Bowers et al., 1999a), to develop a database of DNA profiles for use in cultivar identification (Bowers et al., 1996; Lamboy and Alpha, 1998), and as markers for mapping genetic linkage (Riaz et al., 2004) The present Abstract: The microsatellites markers used in genetic analysis does not only allow differentiation but also identification and parentage analysis of grapevine cultivars. The main purpose of this study was to confirm the hybridity of these accessions and to constct a molecular database including the parents commonly grown in India. A total of eighteen hybrids and sevruen parents were analyzed using twelve microsatellite simple sequence repeat (SSR) markers. The hybrid nature of all the progenies used was marked by VVMD- 32. In VVMD-32, unique banding pattern was observed in Black Champa (male parent) in Group A. In which six bands were prominent, out of which first and last band were absent in Thompson Seedless (female parent). While in case of primer VVS-29, three prominent bands were observed in male parents. This primer was able to confirm the hybridity of progenies of group A, F, G and H. The primer VVS-2 confirmed the hybridity of progenies of group-B, C and H. In case group B, the 3rd band of male parent was distinct from the female parent. These three primers were thus able to confirm the hybrid nature of all the progenies. The use of twelve polymorphic microsatellite markers to detect the hybrids within Indian grapevine germplasm suggested that this is a reliable, efficient, and effective marker system that can be used for parentage studies in grapevine and subsequently in crop improvement programs. Key words: parentage, hybridity, microsatellits markers, Vitis vinifera L.
  • 2. Venkat Rao et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 32-36 AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 33 study evaluates the hybrids for their parentage analysis to confirm the hybrid nature using polymorphisms revealed by twelve microsatellite loci. II. Materials and methods Plant Materials Plant material from 25 grape genotypes was collected from Department of Horticulture, University of Agricultural Sciences, Bangalore and Indian Institute of Horticultural Research, Bangalore. Approximately, 50 g of recently matured leaves (15–20 d old) were collected, washed using distilled water, wiped with 70% (v/v) ethanol, then air dried prior to storage in sealed plastic bags at 4°C. DNA Isolation DNA was extracted from the stored leaves of grapevine using acetyl trimethyl ammonium bromide (CTAB) method (Simon et al., 2007). 2 g of leaf sample were powdered in liquid nitrogen to extract the DNA. The powder was mixed with 10 ml extraction buffer, preheated to 65°C, containing 100 mM Tris-HCl, pH 8.0, 20 mM EDTA, 1.4 M NaCl, 3% (w/v) CTAB, 2% polyvinylpyrrolidone and 1% (v/v) ¾β-mercaptoethanol, then incubated at 65°C for 90 min. The mixture was cooled to room temperature, 10 ml cold 24:1 (v/v) chloroform:isoamylalcohol was added, and the contents were mixed well. After centrifugation at 6,000 × g for 10 min at 4°C, the supernatant was transferred to a fresh tube and the chloroform:isoamylalcohol step was repeated until a clear supernatant was obtained. 5 M NaCl was added to the supernatant [0.5 (v/v)] and mixed gently, followed by addition of 2 volume of cold isopropanol to precipitate the DNA. The mixture was incubated overnight at 4°C, then centrifuged at 10,000 × g for 5 min. The resulting pellet was washed with 75% (v/v) ethanol, air-dried, and dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). 10 μg RNase (bovine pancreatic ribonuclease; Bangalore Genei, Bangalore, India) was added to each sample which was incubated for 30 min at 37°C, mixed with an equal volume of phenol, and centrifuged at 6,000 × g for 20 min at room temperature. This step was followed by washing with an equal volume of 1:1 (v/v) phenol:chloroform, then with chloroform alone. The DNA was precipitated overnight at 4°C with 0.5 (v/v) 5 M NaCl and 1 volume of cold isopropanol. The resulting pellet obtained after centrifugation was dissolved in TE buffer, analyzed in an agarose gel and quantified using a spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Microsatellite Analyses A total of twelve SSR primers characterized in previous studies were used. The primers were VVS1, VVS2, VVS29, VVMD 7, VVMD 14, VVMD 25, VVMD 27, VVMD28, VVMD31, VVMD32, VVMD 36 and VMC7b1 (Bowers et al., 1996 and 1999b).These microsatellites were selected as they were the same core set in the screening programme used to access the target grapevine collections. Primer pairs were synthesized from MWG Biotech, Bangalore, India based on their published gene sequence. PCR was performed in 96-well plates in MJ Research PTC100 thermocyclers (Bio-Rad Laboratories, Bangalore, India). PCR reactions were carried out in 25 μl reactions containing 50 ng of DNA, 5 pmoles of each primer, 10x of Taq polymerase buffer (50 mM KCl, 10 mM Tris-HCl, pH 9.0, 0.05% (v/v) NP40, and 0.05% (v/v) Triton X- 100), 1.5 mM of MgCl2, 0.5 mM of dNTPs (Finzymes Pvt. Ltd., India), and 1 U of Taq polymerase (Sigma- Aldrich Pvt. Ltd., India). The final volume was adjusted with sterile distilled water. The PCR amplifications were carried out with respect to the protocols for primer sets published in Bowers et al., 1996 and 1999b and Thomas and Scott, 1993. Amplification was confirmed with agarose gels, and alleles were separated by running on 6% polyacrilamide denaturing gels and electrophoresed in 1 × TBE at 55 W for 2 h. The amplified products were visualized with silver staining previously described (Bowers et al., 1996). Statistical Analysis Amplified fragments from each SSR primer set were scored manually for their presence (1) or absence (0). The profiles of 25 accessions of grapevine using 12 primer pairs were assembled for statistical analysis. The sizes of the fragments were estimated using 50 bp standard DNA markers (Bangalore Genei Pvt. Ltd., India), coelectrophoresized with the amplified products. A genetic dissimilarity matrix was developed using Euclidean Distances, which estimates all pairwise differences in the amplification products (Sokal and Sneath, 1973). A cluster analysis was based on Ward’s method using a minimum variance algorithm (Ward, 1963). III. Results and discussion The objective of this study was to confirm the parentage of the hybrids developed. To detect hybridity there must be polymorphism between the parents. The polymorphic bands which are present in male parent should be present in all the hybrids and should not be present in female parent (Magdalita et al., 1998). Analysis of F1 hybrids and parents Cluster analysis A total of 15 primers were used for the analysis out of which 12 primers were polymorphic. Linkage among 18 hybrids and their parents as revealed by a dendorgram is presented in Fig.1. The cluster analysis grouped the parents and hybrids into two major groups. Group I is divided into group I (a), I (b) and I (c). Under group I (a) Arkavati, E-31/5 and E-29/7 come under one cluster to which Arkavati and E-29/5 are related at a linkage distance of 54 and 55, respectively. In the same group E-29/6 and E-7/12 formed a single sub cluster and are
  • 3. Venkat Rao et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 32-36 AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 34 closely related at a linkage distance of 51. Groups I (b) comprises of 4 genotypes. Among them Arka Neelamani and Arka Shweta are closely related at linkage distance of 34. Angur Kalan and Bangalore Blue Share much similarly and are related at a linkage distance of 40. Group I (c) comprised of 5 genotypes, among them Black Champa and Convent Large Black are closely related and formed a single sub cluster at a linkage distance of 58, whereas, Thompson Seedless, Queen of Vine Yard and Anab-e-Shahi separated from this group and formed individual clusters. Figure 1: Dendrogram showing the clustering patterns of parents and hybrids of Indian grapevine based on microsatellite markers Group II comprises of 10 hybrids and is divided into group I (a), I (b) and I (c), under group II (a), Arka Trishna and E-29/3 are closely related at a linkage distance of 45 whereas E-30/14 and Arka Chitra formed a separate sub cluster at a linkage distance of 42. Group II (b) comprises 3 hybrids among them Arka Hans and Arka Trishna are closely related at a linkage distance of 45 whereas E-30/14 and Arka Chitra formed a separate sub cluster at a linkage distance of 42. Group II (b) comprises 3 hybrids among them Arka Hans and Arka Trishna are closely related at a linkage distance of 40 whereas Arka Majestic formed a separate entity and is linked to Arka Hans and Arka Trishna at a linkage distance of 51. Group II (c) also comprises 3 hybrids among them Arka Kanchan and Arka Soma are closely related at a linkage distance of 43. Hybrid E-26/8 formed a separate sub cluster and is related to Arka Kanchan and Arka Soma at a linkage distance of 57. The linkage distance among the hybrids and parents varied from 31 to 104 (Table 1). Table 1: Distance Matrix Analysis of hybrids and parents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 0 46 53 56 48 50 59 63 86 84 86 71 82 81 84 75 69 73 70 82 79 67 57 73 81 2 46 0 31 56 64 68 73 65 88 74 78 79 78 81 74 79 73 69 68 74 81 63 67 65 75 3 53 31 0 47 55 61 74 72 93 81 83 92 73 78 83 90 84 82 79 87 76 68 70 70 72 4 56 56 47 0 44 54 61 63 70 72 66 89 74 85 88 87 91 89 84 90 69 63 81 71 77 5 48 64 55 44 0 32 45 47 72 84 76 77 86 83 80 89 91 87 90 98 71 71 77 79 83 6 50 68 61 54 32 0 53 63 74 76 58 69 70 71 74 87 77 73 84 88 61 81 79 87 93 7 59 73 74 61 45 53 0 52 79 91 89 78 87 90 83 82 86 80 85 87 90 74 84 82 82 8 63 65 72 63 47 63 52 0 69 71 83 74 79 80 59 74 70 70 75 85 86 84 90 90 96 9 86 88 93 70 72 74 79 69 0 62 60 69 74 67 82 89 89 75 92 82 79 83 93 91 95 10 84 74 81 72 84 76 91 71 62 0 42 43 48 57 58 83 71 61 74 66 85 63 85 81 83 11 86 78 83 66 76 58 89 83 60 42 0 47 48 53 64 85 69 63 72 74 77 83 89 77 91 12 71 79 92 89 77 69 78 74 69 43 47 0 49 52 47 60 50 46 59 63 94 82 80 92 94 13 82 78 73 74 86 70 87 79 74 48 48 49 0 45 46 75 55 41 64 64 85 81 85 85 85 14 81 81 78 85 83 71 90 80 67 57 53 52 45 0 57 76 52 56 67 67 98 86 78 90 94 15 84 74 83 88 80 74 83 59 82 58 64 47 46 57 0 65 51 43 66 68 97 85 89 91 93 16 75 79 90 87 89 87 82 74 89 83 85 60 75 76 65 0 44 58 41 59 104 84 76 82 90 17 69 73 84 91 91 77 86 70 89 71 69 50 55 52 51 44 0 34 43 61 102 96 82 96 110 18 73 69 82 89 87 73 80 70 75 61 63 46 41 56 43 58 34 0 49 59 96 86 78 94 94 T ree D iagram for 25 V ariables W ard`s m ethod S quared E uclidean distances Linkage D istance F -26/8 A rka S om a A rka K anchan A rka T rishna A rka H ans A rka M ajestic A rka C hitra E -30/14 E -29/3 A rka T rishna A nab-e-S hahi Q ueen of V ine Y ard C onvent Large B lack B lack C ham pa T hom pson S eedless B angalore B lue A ngur K alan A rka S hw eta A rka N eelm ani E -7/12 E -29/6 E -29/5 E -29/7 E -31/5 A rka V ati 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
  • 4. Venkat Rao et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 32-36 AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 35 19 70 68 79 84 90 84 85 75 92 74 72 59 64 67 66 41 43 49 0 50 99 91 67 87 95 20 82 74 87 90 98 88 87 85 82 66 74 63 64 67 68 59 61 59 50 0 103 85 85 93 91 21 79 81 76 69 71 61 90 86 79 85 77 94 85 98 97 104 102 96 99 103 0 68 84 76 92 22 67 63 68 63 71 81 74 84 83 63 83 82 81 86 85 84 96 86 91 85 68 0 64 58 56 23 57 67 70 81 77 79 84 90 93 85 89 80 85 78 89 76 82 78 67 85 84 64 0 70 84 24 73 65 70 71 79 87 82 90 91 81 77 92 85 90 91 82 96 94 87 93 76 58 70 0 58 25 81 75 72 77 83 93 82 96 95 83 91 94 85 94 93 90 110 94 95 91 92 56 84 58 0 Legend 1 Arkavati 14 Arka Kanchan 2 Arka Neelamani 15 Arka Hans 3 Arka Shweta 16 Arka Trishna 4 E-29/5 17 Arka Soma 5 E-31/5 18 F-26/8 6 E-29/7 19 Thompson Seedless 7 E-29/6 20 Black Champa 8 E-7/12 21 Anab-e-Shahi 9 Arka Krishna 22 Queen of Vine Yard 10 E-29/3 23 Convent Large Black 11 E-30/14 24 Angur Kalan 12 Arka Chitra 25 Bangalore Blue 13 Arka Majestic Analysis for confirmation of hybridity Eighteen hybrids from different parent combinations were tested for their hybridity. Out of 18 hybrids 9 were from cross between Black Champa x Thompson Seedless, two each from cross between Anab-e-Shahi x Queen of Vine Yard, Angur Kalan x Black Champa. One each from a cross between Anab-e-Shahi x Thompson Seedless, Anab-e-Shahi x Convent Large Black, Angur Kalan x Anab-e-Shahi, Bangalore Blue x Anab-e-Shahi and Bangalore Blue x Convent Large Black. Fifteen primers were used for analysis to confirm the hybridity and the 7 primers giving clear and reproducible bands were chosen for PCR analysis of samples. The banding patterns of the parents and progenies were compared to test the hybridity of the progenies used. Of the seven primers used individually for amplification of samples, three primers VVMD-32, VVS-2 and VVS- 29 gave the amplification patterns which reveal the hybrid nature of the progenies. In case of primer VVMD-32 (Group A), unique banding pattern was observed in Black Champa (male parent) in which 6 bands were prominent, out of which first and last band were absent in Thompson Seedless (female parent). Whereas the first band was present in all the hybrids except 9th and the last band was absent in 8th hybrid. In group B, 5th band was present in male parent and the hybrids but was absent in female parent. In group C and D, the last band was prominent among the male parent and hybrids. In case of groups E and F, 4th and 5th bands were prominent in male parent and hybrids (Fig.2). This primer has not proved the hybridity of progenies of group G and H. Figure 2: Microsatellite gel profile of parents and hybrids as revealed by primer VVMD 32 A B C D E F G H M 1 2 3 4 5 6 7 8 9 F M 1 2 F M 1 F M 1 F M 1 2 F M 1 F M 1 F M 1 F Legend Group A Group B Group C Group D M – Thompson seedless M – Queen of Vine Yard M - Thompson seedless M – Convent Large Black 1 – Arkavati 1 – Arka Soma 1 – Arka Shweta 1 – E – 7/12 2 – Arka Neelamani 2 – Arka Kanchan F - Anab-e-Shahi F - Anab-e-Shahi 3 – Arka Krishna F – Anab-e-Shahi 4 – E-29/5 5 – E-31/5
  • 5. Venkat Rao et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 32-36 AIJRFANS 14-215; © 2014, AIJRFANS All Rights Reserved Page 36 6 – 30/14 Groups E Groups F Groups G Groups H 7 – 29/7 8 – 29/6 M - Black Champa M - Anab-e-Shahi M - Anab-e-Shahi M-Convent Large Black 9 – 29/3 1 – Arka Majestic 1 – Arka Chitra 1 – Arka Hans 1 – Arka Trishna F – Black Champa F –Angur Kalan F –Angur Kalan F –Angur Kalan F –Angur Kalan M=Male parent F=Female parent While in case of primer VVS-29, three prominent bands were observed in male parent. This primer was able to confirm the hybridity of the progenies of groups A, F, G and H. In case of group A, the last band was distinct from female parent and is present in all the hybrids except 1st , 4th and 9th hybrids. In case of group F, 1st , 2nd and 3rd bands of male parent were distinct from the female parent and it was present in hybrid. In group G and H, the 1st band of male parent was distinct from female parent and was present in hybrids. The bands generated by primer VVS-2 reveals that the 2nd band of the male parent of group-A was known to be distinct from the female parent. This primer has also proved the hybridity of progenies of group B, C and H. In case of group B, the 3rd band of male parent was distinct from the female parent and was present in hybrids also. While in group C, the 2nd band of male parent was present in hybrid and was distinct from female parent. In group H, the 4th band of male parent was unique from female parent and was present in hybrid. These three primers were able to confirm the hybridity of all the progenies used in the investigation. While the remaining primers including above three primers produced banding pattern which were common in both the parents and were present in all the hybrids progenies too. But these bands cannot be taken for analysis as these represent conserved sequences of grape. Thus, it can be concluded that, all the progenies under investigation were confirmed to be hybrids. Similar kind of observations for hybridity confirmation in grapes were reported by Sawazaki et al. (1996) by using RAPD markers, Sefc et al. (1997), Warren and Cristopher (1998) by using SSR markers, Moreno et al. (1998) by using ISSR markers. IV. References [1] Adam-Blondon, A.F, Roux, C, Claux, D, Butterlin, G, Merdinoglu, D and This, P. 2004. Mapping 245 SSR markers on the Vitis vinifera genome: A tool for grape genetics. Theor. Appl. Genet. 109:1017–1027. [2] Anonymous. 2011. Statistical Databases, National Horticulture Board, Gurgoan,Haryana, India. [3] Bisson, J. 1995. The principal ecogeographical groups in French grapevines assortment. J. Int. des Sci. de la Vigne et du Vin. 29:63–68. [4] Bowers, J.C. and Meredith, C.P. 1997. The parentage of a classic wine grape, Cabernet Sauvignon. Natl. Genet. 16(1):84–87. [5] Bowers, J.E, Bandman, E.B and Meredith, C.P. 1993. DNA fingerprint characterization of some California winegrape cultivars. Amer. J. Enol. Viticult. 44: 266–274. [6] Bowers, J.E, Boursiquot, J.M, This, P, Chu, K, Johansson, H and Meredith, C.P. 1999a. Historical genetics: The parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science. 285:1562–1565. [7] Bowers, J.E, Dangl, G.S and Meredith, C.P. 1999b. Development and characterization of additional microsatellite DNA markers for grape. Amer. J. Enol. Viticult. 50:243–246. [8] Bowers, J.E, Dangl, G.S, Vignani, R and Meredith, C.P. 1996. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome. 39:628–633. [9] Galet, P. 1990. Cepages et Vignobles de France. Tome. II. L’Ampelographie Francaise, 2nd ed. C. Déhan, Montpellier, France. [10] Galet, P. 2000. Dictionnaire encyclopédique des cépages. Hachette, Paris. [11] Lamboy, W.F. and Alpha, C.G. 1998. Using simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species. J. Am. Soc. Hortic. Sci. 123(2):182–188. [12] Magdalita, P.M. Goodwin, I.D. And Drew, R.A. 1998. Random amplified polymorphic DNA markers for Carica interspecific hybrids. Acta. Hort. 461:133-140. [13] Maul, E. and Eibach,R. 2003. Vitis international variety catalogue. http://www. genres.de/eccdb/vitis. [14] Moreno, S, Martin, J.J. and Ortiz, J.M. 1998. Inter simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica, 101: 117-125. [15] Olmo, H. P. 1976. Grapes. pp. 294–298. In: N.W. Simmonds (ed.). Evolution of crop plants. Longman, London. [16] Riaz, S, Dangl, G.S, Edwards, K.J. and Meredith, C.P. 2004. A Microsatellite marker based framework linkage map of Vitis vinifera L. Theor. Appl. Genet.108:864–872. [17] Sawazaki, H.E, Pommer, C.V, Passos, J.R. Da, S, Tesra, M.M. and Pires, E.J.P., 1996, Identification of parents and hybrids among Vitis vinifera and Vitis rotundifolia using isoenzyme polymorphism and RAPD marker. Bragantia, 55 (2): 221-230. [18] Sefc, K.M, Steinkellner, H, Wagner, H.W, Glossl, J. and Regner, F. 1997. Application of Micro satellite markers to parentage studies in grapevine. Vitis. 36: 179–183. [19] Simon, L, Shyamalamma, S. and Narayanaswamy, P. 2007. Morphological and molecular analysis of genetic diversity in Jackfruit. J. Hortic. Sci. Biotech. 82(5):764–768. [20] Sokal, R. R, and Sneath, P.H.A. 1973. Principles of Numerical Taxonomy, W.H. Freeman, San Francisco. [21] Thomas, M.R. and Scott, N.S. 1993. Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence- tagged sites (STSs). Theor. Appl. Genet. 86:985–990. [22] Ward, J.H. 1963. Hierarchic grouping to optimize an objective function. J. Am. Stat. Assn. 58:236–239. [23] Warren, F. and Christopher, G.A. 1998. Using simple sequence repeats (SSRs) for DNA finger printing germplasm accessions of grape (Vitis) species. J. Amer. Soc. Hort. Sci., 123 : 182-188.