SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


            On The Enestrom –Kakeya Theorem and Its Generalisations
                                                         1,
                                                            M. H. Gulzar
                             1,
                                  Department of Mathematics University of Kashmir, Srinagar 190006


Abstract
         Many extensions of the Enestrom –Kakeya Theorem are availab le in the literature. In this paper we prove some
results which generalize some known results .

Mathematics Subject Classification:                  30C10,30C15

Key-Words and Phrases : Comp lex nu mber, Polynomial , Zero, Enestrom – Kakeya Theorem

1. Introduction And Statement Of Results
          The Enestrom –Kakeya Theorem (see[7]) is well known in the theory of the distribution of zeros of polynomials
and is often stated as follo ws:
                              n
Theorem A: Let     P( z )   a j z j be a polynomial of degree n whose coefficients satisfy
                             j 0

                      an  an1  ......  a1  a0  0 .
Then P(z) has all its zeros in the closed unit disk     z  1.
In the literature there exist several generalizations and extensions of this resu lt. Joyal et al [6] extended it to polynomials
with general monotonic coefficients and proved the following result:
                              n
Theorem B : Let    P( z )   a j z j be a polynomial of degree n whose coefficients satisfy
                             j 0

                      an  an1  ......  a1  a0 .
Then P(z) has all its zeros in
                             a n  a0  a0
                       z                        .
                                       an
Aziz and zargar [1] generalized the result of Joyal et al [6] as follows:
                              n
Theorem C: Let     P( z )   a j z j be a polynomial of degree n such that for some k  1
                             j 0

                     kan  an1  ......  a1  a0 .
Then P(z) has all its zeros in
                                            kan  a0  a0
                        z  k 1                             .
                                                 an
For polynomials ,whose coefficients are not necessarily real, Govil and Rahman [2] proved the following generalization of
Theorem A :
                              n
Theorem C: If      P( z )   a j z j is a polyno mial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n,
                             j 0
such that
                         n   n1  ......  1   0  0 ,
where    n  0 , then P(z) has all its zeros in


||Issn 2250-3005(online)||                                          ||January || 2013                                Page 225
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


                                            n
                                 2
                   z  1 (              )(  j ) .
                              n           j 0
Gov il and Mc-tume [3] p roved the following generalisations of Theorems B and C:
                                  n
Theorem D: Let      P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n.
                                 j 0
If for some   k  1,
                       k n   n1  ......  1   0 ,
then P(z) has all its zeros in
                                                                  n
                                      k n   0   0  2  j
                                                               j 0
                 z  k 1                                                .
                                                       n
                                  n
Theorem E: Let      P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n.
                                 j 0

If for some   k  1,
                       k n   n1  ......  1   0 ,
then P(z) has all its zeros in
                                                                  n
                                      k n   0   0  2  j
                                                              j 0
                 z  k 1                                            .
                                                       n
M. H. Gu lzar [4] proved the follo wing generalizations of Theorems D and E:
                                 n
Theorem F: Let      P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n.
                               j 0
If for so me real nu mber  0,
                    n   n1  ......  1   0 ,
then P(z) has all its zeros in the disk
                                                              n
                               n   0   0  2  j
                                                            j 0     .
              z      
                   n                             n
                                     n
Theorem G: Let      P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n.
                                 j 0

If for some real nu mber   0,
                    n   n1  ......  1   0 ,
then P(z) has all its zeros in the disk
                                                              n
                               n   0   0  2  j
                                                            j 0
              z                                                     .
                   n                             n
In this paper we give generalization of Theorems F and G. In fact, we prove the following :
                                 n
Theorem 1: Let     P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. If
                              j 0

for some real numbers       ,   0 , 1  k  n, ank  0,

||Issn 2250-3005(online)||                                                    ||January || 2013                           Page 226
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


                       n   n1  ... nk 1   nk   nk 1  ...  1   0 ,
and    nk 1      nk , then P(z) has all its zeros in the disk
                                                                                               n
                                    n  (  1) n k    1  n k   0   0  2  j
                                                                                             j 0
                  z                                                                                ,
                       an                                         an
and if    nk   nk 1 , then P(z) has all its zeros in the disk
                                                                                               n
                                    n  (1   ) n k  1    n k   0   0  2  j
                                                                                             j 0
                  z         
                       an                                         an
Remark 1: Taking   1 , Theorem 1 reduces to Theorem F.
Taking k=n ,and   1 in Theorem 1, we get a result due to M.H. Gulzar [5, Theorem 1] .
If   a j are real i.e.  j  0 for all j, we get the following result:
                                            n
Corollary 1: Let              P( z )   a j z j be a polynomial of degree n. If fo r some real numbers  ,   0 ,
                                           j 0

1  k  n, ank  0,
                      an  an1  ...  ank 1  ank  ank 1  ...  a1  a0 ,
and    ank 1  ank , then P(z) has all its zeros in the disk
                                  a n  (  1)a nk    1 a nk  a0  a0
                  z                                                                  ,,
                       an                                   an
and if    ank  ank 1 , then P(z) has all its zeros in the disk
                                  a n  (1   )a nk  1   a nk  a0  a0
                  z         
                       an                                   an
 If we apply Theorem 1 to the polynomial –iP(z) , we easily get the follo wing result:
                                    n
Theorem 2: Let         P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1, 2,……,n.
                                   j 0

If for some real nu mbers        ,   0 , 1  k  n, ank  0,
                       n   n1  ....   nk 1   nk   nk 1  ..  1   0 ,
and     nk 1     nk , then P(z) has all its zeros in the dis k
                                                                                               n
                                    n  (  1)  n k    1  n k   0   0  2  j
                                                                                             j 0
                  z                                                                                ,
                       an                                         an
and if     nk   nk 1 , then P(z) has all its zeros in the disk
                                                                                               n
                                    n  (1   )  n k  1    n k   0   0  2  j
                                                                                             j 0
                  z         
                       an                                         an

Remark 2: Taking              1 , Theorem 2 reduces to Theorem G.

||Issn 2250-3005(online)||                                                ||January || 2013                                Page 227
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


                                             n
Theorem 3: Let                P( z )   a j z j be a polynomial of degree n such that for some real numbers  ,   0 ,
                                           j 0

1  k  n, ank  0, and ,
                     an  an1  ...  ank 1   ank  ank 1  ...  a1  a0
and
                                                 
                   arg a j                       , j  0,1,......, n.
                                                  2
If   ank 1  ank (i.e.   1 ) , then P(z) has all its zeros in the disk
                   [   a n (cos   sin  )  a n  k (cos   sin    cos    sin     1)
                                                                                  n 1


         
                    a 0 (cos   sin   1)  2 sin                             a
                                                                              j 1, j  n  k
                                                                                                j   ]
 z           
         an                                                                       an
If   ank  ank 1 (i.e.   1), then P(z) has all its zeros in the disk
                   [   a n (cos   sin  )  a n  k (cos   sin    cos    sin   1   )
                                                                                   n 1


         
                    a 0 (sin   cos   1)  2 sin                             a
                                                                              j 1, j  n  k
                                                                                                j   ]
 z           
         an                                                                       an
Remark 3: Taking             1 in Theorem 3 , we get the follo wing result:
                                       n
Corollary 2: Let         P( z )   a j z j be a polynomial of degree n. If fo r some real number   0 ,
                                      j 0

                        an  an1  ......  a1  a0                              ,
then P(z) has all its zeros in the disk
                                                                                                                            n 1
                         [   a n (cos   sin  )  a0 (cos   sin   1)  2 sin   a j ]
                                                                                                                           j 1,
         z                                                                                                                         .
               an                                                                 an
Remark 4: Taking                (k  1)an , k  1, we get a result of Shah and Liman [8,Theorem 1].

2. Lemmas
              For the proofs of the above results , we need the following results:
                                                       n
Lemma 1: .                     Let P(z)=             a z
                                                      j 0
                                                                 j
                                                                     j
                                                                         be a polynomial of degree n with complex coefficients such that

                              
 arg a j                   , j  0,1,...n, for some real  . Then for some t >0,
                              2
              ta j  a j 1                                             
                               t a j  a j 1 cos   t a j  a j1 sin  .                        
The proof of lemma 1 follows fro m a lemma due to Govil and Rah man [2]. Lemma 2.If p(z) is regular ,p(0)  0 and
 p( z )  M in             z  1, then                 the           number       of            zeros       of    p(z)in      z   ,0    1, does   not   exceed
     1               M
             log         (see[9],p 171).
         1          p(0)
log
         

||Issn 2250-3005(online)||                                                                              ||January || 2013                                Page 228
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


3. Proofs Of Theorems
            Proof of Theorem 1: Consider the polynomial
     F ( z)  (1  z) P( z)
          (1  z )(a n z n  a n1 z n1  ......  a1 z  a0 )
          a n z n1  (a n  a n1 ) z n  ......  (a nk 1  a nk ) z nk 1  (a nk  a nk 1 ) z nk
            (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0
          ( n  i n ) z n 1  ( n   n 1 ) z n  ......  ( n  k 1   n  k ) z n  k 1
          ( n  k   n  k 1 ) z n  k  ( n  k 1   n  k  2 ) z n  k 1  ......  ( 1   0 ) z   0
               n
          i  (  j   j 1 ) z j  i 0
               j 1

If    nk 1   nk , then  nk 1   nk , and we have

      F ( z)  ( n  i n ) z n1  z n  (    n   n1 ) z n  ......  ( nk 1   nk ) z nk 1
                       ( nk   nk 1 ) z nk  (  1)ank z nk  ( nk 1   nk 2 ) z nk 1  ......
                                                    n
                       (1   0 ) z   0  i  (  j   j 1 ) z j  i 0 .
                                                    j 1

For    z  1,
 F ( z )  an z n1  z n  (    n   n1 ) z n  ( n1   n2 ) z n1  ......  ( nk 1   nk ) z nk 1
             ( n k   n k 1 ) z n k  (  1)a n k z n k  ( n k 1   n k 2 ) z n k 1  ......
                                            n
             ( 1   0 ) z   0  i  (  j   j 1 ) z j  i 0
                                           j 1

          n                                                    1                                 1
        z  a n z    (    n   n 1 )  ( n1   n2 )  ......  ( nk 1   n k ) k 1
                                                               z                               z
                                   1                  1                               1
           ( n k   n k 1 ) k  (  1) n k k  ( n k 1   n  k  2 )       ....
                                  z                  z                              k 1
                                  0     n
                                                                   0
           ( 1   0 ) n 1  n  i  (  j   j 1 ) n  j i n 
                          1                                 1
                        z         z     j 1              z        z
         z
               n
                   a z    
                      n                 n   n1   n1   n2  ......   nk 1   nk
                     n k   n k 1    1  n k   n k 1   n k 2  ......   1   0
                              n
                     0    j   j 1   0            
                              j 1

         z
              n
                   a z      
                      n                    n      n1   n1   n2  ......  nk 1   nk   nn  k   nk 1
                                                                                                     n
                      1  nk   nk 1   nk 2  ......  1   0   0  2  j                      
                                                                                                    j 0

          n                                                                    n
        z  a n z       n  (  1) n k    1  nk   0   0  2  j                                  
           
                                                                             j 0

       >0

||Issn 2250-3005(online)||                                                      ||January || 2013                           Page 229
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


if
                                                                                            n
 a n z       n  (  1) nk    1  nk   0   0  2  j
                                                                                           j 0
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
                                                                                                   n
                             n  (  1) n k    1  n k   0   0  2  j
                                                                                                 j 0
          z                                                                                               .
               an                                              an
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of
F(z) lie in
                                                                                                   n
                             n  (  1) n k    1  n k   0   0  2  j
                                                                                                 j 0
          z                                                                                               .
               an                                              an
Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in
                                                                                                   n
                             n  (  1) n k    1  n k   0   0  2  j
                                                                                                 j 0
          z                                                                                               .
               an                                              an
If    nk   nk 1 , then  nk   nk 1 , and we have
     F ( z)  ( n  i n ) z n1  z n  (    n   n1 ) z n  ......  ( nk 1   nk ) z nk 1
                ( n k   n k 1 ) z n k  (1   ) n k z n k 1  ( n k 1   n k 2 ) z n k 1  ......
                                                n
                (1   0 ) z   0  i  (  j   j 1 ) z j  i 0 .
                                                j 1

For     z  1,
 F ( z )  an z n1  z n  (    n   n1 ) z n  ( n1   n2 ) z n1  ......  ( nk 1   nk ) z nk 1
             ( n k   n k 1 ) z n k  (1   ) n k z n k 1  ( n k 1   n k 2 ) z n k 1  ......
                                            n
             ( 1   0 ) z   0  i  (  j   j 1 ) z j  i 0
                                           j 1

           n                                                         1                                   1
         z  a n z    (    n   n1 )  ( n1   n2 )  ......  ( nk 1   nk ) k 1
                                                                     z                                 z
                                     1                    1                                  1
            ( n  k   n  k 1 ) k  (1   ) n  k k 1  ( n  k 1   n  k  2 ) k 1  ....
                                    z                   z                                  z
                                      0      n
                                                                           0
            ( 1   0 ) n 1  n  i  (  j   j 1 ) n  j i n 
                              1                                  1
                           z          z      j 1              z           z
          z
               n
                   a z    
                      n                 n   n1   n1   n2  ......   nk 1   nk
                     n k   n k 1  1    n k   n k 1   n k 2  ......   1   0
                              n
                     0    j   j 1   0           
                             j 1

          z
               n
                   a z      
                      n                    n      n1   n1   n2  ......  nk 1   nk   nn  k   nk 1

||Issn 2250-3005(online)||                                                       ||January || 2013                          Page 230
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


                                                                                                      n
                 1    nk   nk 1   nk 2  ......  1   0   0  2  j                         
                                                                                                    j 0

          n                                                                     n
        z  a n z       n  (1   ) n k  1    nk   0   0  2  j                               
           
                                                                              j 0

       >0
if
                                                                                         n
 a n z       n  (1   ) nk  1    nk   0   0  2  j
                                                                                        j 0
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
                                                                                                n
                           n  (1   ) n k  1    n k   0   0  2  j
                                                                                              j 0
        z                                                                                                .
               an                                            an
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of
F(z) lie in
                                                                                                n
                           n  (1   ) n k  1    n k   0   0  2  j
                                                                                              j 0
        z                                                                                                .
               an                                            an
Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in
                                                                                                n
                           n  (1   ) n k  1    n k   0   0  2  j
                                                                                              j 0
        z                                                                                                .
               an                                            an

That proves Theorem 1.
Proof of Theorem 3: Consider the polynomial
     F ( z)  (1  z) P( z)
          (1  z )(a n z n  a n1 z n1  ......  a1 z  a0 )
          a n z n1  (a n  a n1 ) z n  ......  (a nk 1  a nk ) z nk 1  (a nk  a nk 1 ) z nk

              (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0 .
If   ank 1  ank , then ank 1  ank ,   1 and we have, for z  1 , by using Lemma1,
 F ( z )  an z n1  z n  (   an  an1 ) z n  (an1  an2 ) z n1  ......  (ank 1  ank ) z nk 1
             (a n k  a n k 1 ) z n k  (  1)a n k z n k  (a n k 1  a n k 2 ) z n k 1  ......
             (a1  a0 ) z  a0
          n                                                    1                                1
        z  a n z    (   a n  a n 1 )  (a n1  a n2 )  ......  (a nk 1  a nk ) k 1
                                                               z                              z
                                   1                  1                            1
           (a n k  a n k 1 ) k  (  1)a n k k  (a n k 1  a n k 2 ) k 1  ....
                                  z                  z                           z
           (a1  a0 ) n 1  0 
                         1        a
                       z          zn

||Issn 2250-3005(online)||                                                    ||January || 2013                          Page 231
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


        z
              n
                  a z    
                      n                     an  an1  an1  an2  ......  ank 1  ank
                   a n k  a n k 1    1 a n k  a n k 1  a n k 2  ......  a1  a0
                   a0          
         z
              n
                   a z    {(   a
                       n                        n    an1 ) cos   (   an  an1 ) sin 
                   ( an1  an2 ) cos   ( an1  an2 ) sin   ......  ( ank 1  ank ) cos 
                        ( ank 1  ank ) sin   ( ank  ank 1 ) cos   ( ank  ank 1 ) sin 
                          1 ank  ( ank 1  ank 2 ) cos   ( ank 1  ank 2 ) sin 
                            ......  ( a1  a0 ) cos   ( a1  a0 ) sin   a0 }                           
          z
                  n
                      a z    {   a
                           n                    n   (cos   sin  )  ank (cos   sin    cos    sin 
                                                                                            n 1
                          1)  a0 (sin   cos   1)  2 sin                           a } 
                                                                                    j 1, j  n  k
                                                                                                       j


          0
if
       a z      a
          n                           n   (cos   sin  )  ank (cos   sin    cos    sin 
                                                                                                    n 1
                                    1)  a0 (sin  cos  1)  2 sin                           a
                                                                                                j 1, j  n  k
                                                                                                                  j

This shows that the zeros of F(z) whose modulus is greater than 1 lie in
                            [   a n (cos   sin  )  a n k (cos   sin    cos    sin     1)
                                                                          n 1


              
                                a0 (cos   sin   1)  2 sin          a
                                                                      j 1, j  n  k
                                                                                        j   ]
        z                                                                                                                ..
              an                                                          an
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of
F(z) lie in
                            [   a n (cos   sin  )  a n k (cos   sin    cos    sin     1)
                                                                          n 1


              
                                a0 (cos   sin   1)  2 sin          a
                                                                      j 1, j  n  k
                                                                                        j   ]
        z                                                                                                                 .
              an                                                          an
Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in
                            [   a n (cos   sin  )  a n k (cos   sin    cos    sin     1)
                                                                          n 1


              
                                a0 (cos   sin   1)  2 sin          a
                                                                      j 1, j  n  k
                                                                                        j   ]
        z             
              an                                                          an
If   ank  ank 1 , then ank  ank 1 ,   1 and we have, for z  1 , by using Lemma 1,
 F ( z )  a n z n 1  z n  (   a n  a n 1 ) z n  (a n 1  a n  2 ) z n 1  ......  (a n k 1  a n  k ) z n k 1

           (a n k  a n k 1 ) z n k  (1   )a n k z n k 1  (a n k 1  a n k 2 ) z n k 1  ......
           (a1  a0 ) z  a0

||Issn 2250-3005(online)||                                                         ||January || 2013                                Page 232
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


          n                                                      1                                1
        z  a n z    (   a n  a n 1 )  (a n1  a n2 )  ......  (a nk 1  a n k ) k 1
                                                                 z                              z
                                  1                   1                               1
           (a n k  a n k 1 ) k  (1   )a n k k 1  (a n k 1  a n k 2 ) k 1  ....
                                 z                  z                               z
           (a1  a0 ) n 1  n 
                           1       a0
                         z         z
        z  an z       an  an1  an1  an2  ......  ank 1  ank
           n


                a n k  a n k 1  1   a n k  a n k 1  a n k 2  ......  a1  a0
                a0             
         z
              n
                   a z    {(   a
                       n                        n    an1 ) cos   (   an  an1 ) sin 
                ( an1  an2 ) cos   ( an1  an2 ) sin   ......  ( ank 1  ank ) cos 
                        ( ank 1  ank ) sin   ( ank  ank 1 ) cos   ( ank  ank 1 ) sin 
                        1   ank  ( ank 1  ank 2 ) cos   ( ank 1  ank 2 ) sin 
                            ......  ( a1  a0 ) cos   ( a1  a0 ) sin   a0 }                              
          z
                  n
                      a z    {   a
                           n                    n   (cos   sin  )  ank (cos   sin    cos    sin 
                                                                                               n 1
                        1   )  a0 (sin   cos   1)  2 sin                             a } 
                                                                                          j 1, j  n  k
                                                                                                            j


          0
if
       a z      a
          n                           n   (cos   sin  )  ank (cos   sin    cos    sin 
                                                                                                       n 1
                                  1   )  a0 (sin   cos   1)  2 sin                           a
                                                                                                   j 1, j  n  k
                                                                                                                     j


This shows that the zeros of F(z) whose modulus is greater than 1 lie in
                            [   a n (cos   sin  )  a n k (cos   sin    cos    sin   1   )
                                                                              n 1


           
                                a0 (sin   cos   1)  2 sin             a
                                                                         j 1, j  n  k
                                                                                           j   ]
        z                                                                                                              .
           an                                                                an
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of
F(z) and therefore P(z) lie in
                  [   a n (cos   sin  )  a nk (cos   sin    cos    sin   1   )
                                                                    n 1


        
                   a0 (sin   cos   1)  2 sin                 a
                                                                j 1, j  n  k
                                                                                  j   ]
     z    
        an                                                          an
That proves Theorem 3.




||Issn 2250-3005(online)||                                                                ||January || 2013                  Page 233
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1


References
[1]   A.Aziz And B.A.Zargar, So me Extensions Of The Enestrom-Kakeya Theorem , Glasnik Mathematiki, 31(1996) ,
      239-244.
[2]   N.K.Gov il And Q.I.Reh man, On The Enestrom-Kakeya Theorem, Tohoku Math. J.,20(1968) , 126-136.
[3]   N.K.Gov il And G.N.Mc-Tu me, So me Extensions Of The Enestrom- Kakeya Theorem , Int.J.Appl.Math.
      Vo l.11,No.3,2002, 246-253.
[4]   M.H.Gu lzar, On The Location Of Zeros Of A Polynomial, Anal. Theory. Appl., Vo l 28, No.3(2012), 242-247.
[5]   M. H. Gu lzar, On The Zeros Of Polynomials, International Journal Of Modern Engineering Research, Vol.2,Issue
      6, Nov-Dec. 2012, 4318- 4322.
[6]    A. Joyal, G. Labelle, Q.I. Rah man, On The Location Of Zeros Of Po lynomials, Canadian Math. Bull.,10(1967) , 55-
      63.
[7]   M. Marden , Geo metry Of Polynomials, Iind Ed.Math. Surveys, No. 3, A mer. Math. Soc. Providence,R. I,1996.
[8]   W. M. Shah And A.Liman, On Enestrom-Kakeya Theorem And Related Analytic Functions, Proc. Indian Acad. Sci.
      (Math. Sci.), 117(2007), 359-370.
[9]    E C. Titch marsh,The Theory Of Functions,2nd Ed ition,Oxfo rd University Press,London,1939.




||Issn 2250-3005(online)||                                   ||January || 2013                                Page 234

Más contenido relacionado

La actualidad más candente

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
A brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTA brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTJiahao Chen
 
The multilayer perceptron
The multilayer perceptronThe multilayer perceptron
The multilayer perceptronESCOM
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfacesnirupam12
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-fieldcerniagigante
 
Continuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDContinuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDValentin De Bortoli
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorSebastian De Haro
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
03 conditional random field
03 conditional random field03 conditional random field
03 conditional random fieldzukun
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiYuri Anischenko
 
Comparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsComparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsBigMC
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...
CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...
CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...zukun
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 

La actualidad más candente (20)

Fourier series
Fourier seriesFourier series
Fourier series
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
A brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTA brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFT
 
The multilayer perceptron
The multilayer perceptronThe multilayer perceptron
The multilayer perceptron
 
Linear prediction
Linear predictionLinear prediction
Linear prediction
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfaces
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-field
 
My PhD Presentation 9-Apr-2008
My PhD Presentation 9-Apr-2008My PhD Presentation 9-Apr-2008
My PhD Presentation 9-Apr-2008
 
16 fft
16 fft16 fft
16 fft
 
Continuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDContinuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGD
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
 
Predicate Logic
Predicate LogicPredicate Logic
Predicate Logic
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Approximate Tree Kernels
Approximate Tree KernelsApproximate Tree Kernels
Approximate Tree Kernels
 
03 conditional random field
03 conditional random field03 conditional random field
03 conditional random field
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nuclei
 
Comparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsComparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering models
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...
CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...
CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 

Similar a Ak03102250234

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Location of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a PolynomialLocation of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a Polynomialijceronline
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
On The Zeros of Certain Class of Polynomials
On The Zeros of Certain Class of PolynomialsOn The Zeros of Certain Class of Polynomials
On The Zeros of Certain Class of PolynomialsIJMER
 
Location of Zeros of Polynomials
Location of Zeros of PolynomialsLocation of Zeros of Polynomials
Location of Zeros of Polynomialsijceronline
 
Some Generalization of Eneström-Kakeya Theorem
Some Generalization of Eneström-Kakeya TheoremSome Generalization of Eneström-Kakeya Theorem
Some Generalization of Eneström-Kakeya Theoreminventionjournals
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasSEENET-MTP
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivativespaperpublications3
 
Bo31240249
Bo31240249Bo31240249
Bo31240249IJMER
 

Similar a Ak03102250234 (20)

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Further Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya TheoremFurther Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya Theorem
 
Location of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a PolynomialLocation of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a Polynomial
 
C04502009018
C04502009018C04502009018
C04502009018
 
J1066069
J1066069J1066069
J1066069
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Zeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given CircleZeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given Circle
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
On The Zeros of Certain Class of Polynomials
On The Zeros of Certain Class of PolynomialsOn The Zeros of Certain Class of Polynomials
On The Zeros of Certain Class of Polynomials
 
Location of Zeros of Polynomials
Location of Zeros of PolynomialsLocation of Zeros of Polynomials
Location of Zeros of Polynomials
 
B02606010
B02606010B02606010
B02606010
 
Some Generalization of Eneström-Kakeya Theorem
Some Generalization of Eneström-Kakeya TheoremSome Generalization of Eneström-Kakeya Theorem
Some Generalization of Eneström-Kakeya Theorem
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivatives
 
Bo31240249
Bo31240249Bo31240249
Bo31240249
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 

Ak03102250234

  • 1. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 On The Enestrom –Kakeya Theorem and Its Generalisations 1, M. H. Gulzar 1, Department of Mathematics University of Kashmir, Srinagar 190006 Abstract Many extensions of the Enestrom –Kakeya Theorem are availab le in the literature. In this paper we prove some results which generalize some known results . Mathematics Subject Classification: 30C10,30C15 Key-Words and Phrases : Comp lex nu mber, Polynomial , Zero, Enestrom – Kakeya Theorem 1. Introduction And Statement Of Results The Enestrom –Kakeya Theorem (see[7]) is well known in the theory of the distribution of zeros of polynomials and is often stated as follo ws: n Theorem A: Let P( z )   a j z j be a polynomial of degree n whose coefficients satisfy j 0 an  an1  ......  a1  a0  0 . Then P(z) has all its zeros in the closed unit disk z  1. In the literature there exist several generalizations and extensions of this resu lt. Joyal et al [6] extended it to polynomials with general monotonic coefficients and proved the following result: n Theorem B : Let P( z )   a j z j be a polynomial of degree n whose coefficients satisfy j 0 an  an1  ......  a1  a0 . Then P(z) has all its zeros in a n  a0  a0 z  . an Aziz and zargar [1] generalized the result of Joyal et al [6] as follows: n Theorem C: Let P( z )   a j z j be a polynomial of degree n such that for some k  1 j 0 kan  an1  ......  a1  a0 . Then P(z) has all its zeros in kan  a0  a0 z  k 1  . an For polynomials ,whose coefficients are not necessarily real, Govil and Rahman [2] proved the following generalization of Theorem A : n Theorem C: If P( z )   a j z j is a polyno mial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n, j 0 such that  n   n1  ......  1   0  0 , where  n  0 , then P(z) has all its zeros in ||Issn 2250-3005(online)|| ||January || 2013 Page 225
  • 2. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 n 2 z  1 ( )(  j ) . n j 0 Gov il and Mc-tume [3] p roved the following generalisations of Theorems B and C: n Theorem D: Let P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. j 0 If for some k  1, k n   n1  ......  1   0 , then P(z) has all its zeros in n k n   0   0  2  j j 0 z  k 1  . n n Theorem E: Let P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. j 0 If for some k  1, k n   n1  ......  1   0 , then P(z) has all its zeros in n k n   0   0  2  j j 0 z  k 1  . n M. H. Gu lzar [4] proved the follo wing generalizations of Theorems D and E: n Theorem F: Let P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. j 0 If for so me real nu mber  0,    n   n1  ......  1   0 , then P(z) has all its zeros in the disk n    n   0   0  2  j  j 0 . z  n n n Theorem G: Let P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. j 0 If for some real nu mber   0,    n   n1  ......  1   0 , then P(z) has all its zeros in the disk n    n   0   0  2  j  j 0 z  . n n In this paper we give generalization of Theorems F and G. In fact, we prove the following : n Theorem 1: Let P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. If j 0 for some real numbers  ,   0 , 1  k  n, ank  0, ||Issn 2250-3005(online)|| ||January || 2013 Page 226
  • 3. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1    n   n1  ... nk 1   nk   nk 1  ...  1   0 , and  nk 1   nk , then P(z) has all its zeros in the disk n    n  (  1) n k    1  n k   0   0  2  j  j 0 z  , an an and if  nk   nk 1 , then P(z) has all its zeros in the disk n    n  (1   ) n k  1    n k   0   0  2  j  j 0 z  an an Remark 1: Taking   1 , Theorem 1 reduces to Theorem F. Taking k=n ,and   1 in Theorem 1, we get a result due to M.H. Gulzar [5, Theorem 1] . If a j are real i.e.  j  0 for all j, we get the following result: n Corollary 1: Let P( z )   a j z j be a polynomial of degree n. If fo r some real numbers  ,   0 , j 0 1  k  n, ank  0,   an  an1  ...  ank 1  ank  ank 1  ...  a1  a0 , and ank 1  ank , then P(z) has all its zeros in the disk    a n  (  1)a nk    1 a nk  a0  a0 z  ,, an an and if ank  ank 1 , then P(z) has all its zeros in the disk    a n  (1   )a nk  1   a nk  a0  a0 z  an an If we apply Theorem 1 to the polynomial –iP(z) , we easily get the follo wing result: n Theorem 2: Let P( z )   a j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1, 2,……,n. j 0 If for some real nu mbers  ,   0 , 1  k  n, ank  0,    n   n1  ....   nk 1   nk   nk 1  ..  1   0 , and  nk 1   nk , then P(z) has all its zeros in the dis k n    n  (  1)  n k    1  n k   0   0  2  j  j 0 z  , an an and if  nk   nk 1 , then P(z) has all its zeros in the disk n    n  (1   )  n k  1    n k   0   0  2  j  j 0 z  an an Remark 2: Taking   1 , Theorem 2 reduces to Theorem G. ||Issn 2250-3005(online)|| ||January || 2013 Page 227
  • 4. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 n Theorem 3: Let P( z )   a j z j be a polynomial of degree n such that for some real numbers  ,   0 , j 0 1  k  n, ank  0, and ,   an  an1  ...  ank 1   ank  ank 1  ...  a1  a0 and  arg a j      , j  0,1,......, n. 2 If ank 1  ank (i.e.   1 ) , then P(z) has all its zeros in the disk [   a n (cos   sin  )  a n  k (cos   sin    cos    sin     1) n 1   a 0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] z  an an If ank  ank 1 (i.e.   1), then P(z) has all its zeros in the disk [   a n (cos   sin  )  a n  k (cos   sin    cos    sin   1   ) n 1   a 0 (sin   cos   1)  2 sin  a j 1, j  n  k j ] z  an an Remark 3: Taking   1 in Theorem 3 , we get the follo wing result: n Corollary 2: Let P( z )   a j z j be a polynomial of degree n. If fo r some real number   0 , j 0   an  an1  ......  a1  a0 , then P(z) has all its zeros in the disk n 1 [   a n (cos   sin  )  a0 (cos   sin   1)  2 sin   a j ]  j 1, z  . an an Remark 4: Taking   (k  1)an , k  1, we get a result of Shah and Liman [8,Theorem 1]. 2. Lemmas For the proofs of the above results , we need the following results: n Lemma 1: . Let P(z)= a z j 0 j j be a polynomial of degree n with complex coefficients such that  arg a j      , j  0,1,...n, for some real  . Then for some t >0, 2 ta j  a j 1     t a j  a j 1 cos   t a j  a j1 sin  .  The proof of lemma 1 follows fro m a lemma due to Govil and Rah man [2]. Lemma 2.If p(z) is regular ,p(0)  0 and p( z )  M in z  1, then the number of zeros of p(z)in z   ,0    1, does not exceed 1 M log (see[9],p 171). 1 p(0) log  ||Issn 2250-3005(online)|| ||January || 2013 Page 228
  • 5. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 3. Proofs Of Theorems Proof of Theorem 1: Consider the polynomial F ( z)  (1  z) P( z)  (1  z )(a n z n  a n1 z n1  ......  a1 z  a0 )  a n z n1  (a n  a n1 ) z n  ......  (a nk 1  a nk ) z nk 1  (a nk  a nk 1 ) z nk  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0  ( n  i n ) z n 1  ( n   n 1 ) z n  ......  ( n  k 1   n  k ) z n  k 1  ( n  k   n  k 1 ) z n  k  ( n  k 1   n  k  2 ) z n  k 1  ......  ( 1   0 ) z   0 n  i  (  j   j 1 ) z j  i 0 j 1 If  nk 1   nk , then  nk 1   nk , and we have F ( z)  ( n  i n ) z n1  z n  (    n   n1 ) z n  ......  ( nk 1   nk ) z nk 1  ( nk   nk 1 ) z nk  (  1)ank z nk  ( nk 1   nk 2 ) z nk 1  ...... n  (1   0 ) z   0  i  (  j   j 1 ) z j  i 0 . j 1 For z  1, F ( z )  an z n1  z n  (    n   n1 ) z n  ( n1   n2 ) z n1  ......  ( nk 1   nk ) z nk 1  ( n k   n k 1 ) z n k  (  1)a n k z n k  ( n k 1   n k 2 ) z n k 1  ...... n  ( 1   0 ) z   0  i  (  j   j 1 ) z j  i 0 j 1 n 1 1  z  a n z    (    n   n 1 )  ( n1   n2 )  ......  ( nk 1   n k ) k 1  z z 1 1 1  ( n k   n k 1 ) k  (  1) n k k  ( n k 1   n  k  2 )  .... z z k 1 0 n 0  ( 1   0 ) n 1  n  i  (  j   j 1 ) n  j i n  1 1 z z j 1 z z  z n a z     n    n   n1   n1   n2  ......   nk 1   nk   n k   n k 1    1  n k   n k 1   n k 2  ......   1   0 n   0    j   j 1   0  j 1  z n a z       n n   n1   n1   n2  ......  nk 1   nk   nn  k   nk 1 n    1  nk   nk 1   nk 2  ......  1   0   0  2  j  j 0 n  n  z  a n z       n  (  1) n k    1  nk   0   0  2  j     j 0 >0 ||Issn 2250-3005(online)|| ||January || 2013 Page 229
  • 6. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 if n a n z       n  (  1) nk    1  nk   0   0  2  j j 0 This shows that the zeros of F(z) whose modulus is greater than 1 lie in n    n  (  1) n k    1  n k   0   0  2  j  j 0 z  . an an But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n    n  (  1) n k    1  n k   0   0  2  j  j 0 z  . an an Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in n    n  (  1) n k    1  n k   0   0  2  j  j 0 z  . an an If  nk   nk 1 , then  nk   nk 1 , and we have F ( z)  ( n  i n ) z n1  z n  (    n   n1 ) z n  ......  ( nk 1   nk ) z nk 1  ( n k   n k 1 ) z n k  (1   ) n k z n k 1  ( n k 1   n k 2 ) z n k 1  ...... n  (1   0 ) z   0  i  (  j   j 1 ) z j  i 0 . j 1 For z  1, F ( z )  an z n1  z n  (    n   n1 ) z n  ( n1   n2 ) z n1  ......  ( nk 1   nk ) z nk 1  ( n k   n k 1 ) z n k  (1   ) n k z n k 1  ( n k 1   n k 2 ) z n k 1  ...... n  ( 1   0 ) z   0  i  (  j   j 1 ) z j  i 0 j 1 n 1 1  z  a n z    (    n   n1 )  ( n1   n2 )  ......  ( nk 1   nk ) k 1  z z 1 1 1  ( n  k   n  k 1 ) k  (1   ) n  k k 1  ( n  k 1   n  k  2 ) k 1  .... z z z 0 n 0  ( 1   0 ) n 1  n  i  (  j   j 1 ) n  j i n  1 1 z z j 1 z z  z n a z     n    n   n1   n1   n2  ......   nk 1   nk   n k   n k 1  1    n k   n k 1   n k 2  ......   1   0 n   0    j   j 1   0  j 1  z n a z       n n   n1   n1   n2  ......  nk 1   nk   nn  k   nk 1 ||Issn 2250-3005(online)|| ||January || 2013 Page 230
  • 7. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 n  1    nk   nk 1   nk 2  ......  1   0   0  2  j  j 0 n  n  z  a n z       n  (1   ) n k  1    nk   0   0  2  j     j 0 >0 if n a n z       n  (1   ) nk  1    nk   0   0  2  j j 0 This shows that the zeros of F(z) whose modulus is greater than 1 lie in n    n  (1   ) n k  1    n k   0   0  2  j  j 0 z  . an an But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n    n  (1   ) n k  1    n k   0   0  2  j  j 0 z  . an an Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in n    n  (1   ) n k  1    n k   0   0  2  j  j 0 z  . an an That proves Theorem 1. Proof of Theorem 3: Consider the polynomial F ( z)  (1  z) P( z)  (1  z )(a n z n  a n1 z n1  ......  a1 z  a0 )  a n z n1  (a n  a n1 ) z n  ......  (a nk 1  a nk ) z nk 1  (a nk  a nk 1 ) z nk  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0 . If ank 1  ank , then ank 1  ank ,   1 and we have, for z  1 , by using Lemma1, F ( z )  an z n1  z n  (   an  an1 ) z n  (an1  an2 ) z n1  ......  (ank 1  ank ) z nk 1  (a n k  a n k 1 ) z n k  (  1)a n k z n k  (a n k 1  a n k 2 ) z n k 1  ......  (a1  a0 ) z  a0 n 1 1  z  a n z    (   a n  a n 1 )  (a n1  a n2 )  ......  (a nk 1  a nk ) k 1  z z 1 1 1  (a n k  a n k 1 ) k  (  1)a n k k  (a n k 1  a n k 2 ) k 1  .... z z z  (a1  a0 ) n 1  0  1 a z zn ||Issn 2250-3005(online)|| ||January || 2013 Page 231
  • 8. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1  z n a z     n   an  an1  an1  an2  ......  ank 1  ank  a n k  a n k 1    1 a n k  a n k 1  a n k 2  ......  a1  a0  a0   z n  a z    {(   a n n  an1 ) cos   (   an  an1 ) sin   ( an1  an2 ) cos   ( an1  an2 ) sin   ......  ( ank 1  ank ) cos   ( ank 1  ank ) sin   ( ank  ank 1 ) cos   ( ank  ank 1 ) sin     1 ank  ( ank 1  ank 2 ) cos   ( ank 1  ank 2 ) sin   ......  ( a1  a0 ) cos   ( a1  a0 ) sin   a0 }   z n a z    {   a n n (cos   sin  )  ank (cos   sin    cos    sin  n 1    1)  a0 (sin   cos   1)  2 sin  a }  j 1, j  n  k j 0 if a z      a n n (cos   sin  )  ank (cos   sin    cos    sin  n 1    1)  a0 (sin  cos  1)  2 sin a j 1, j  n  k j This shows that the zeros of F(z) whose modulus is greater than 1 lie in [   a n (cos   sin  )  a n k (cos   sin    cos    sin     1) n 1   a0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] z  .. an an But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in [   a n (cos   sin  )  a n k (cos   sin    cos    sin     1) n 1   a0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] z  . an an Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in [   a n (cos   sin  )  a n k (cos   sin    cos    sin     1) n 1   a0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] z  an an If ank  ank 1 , then ank  ank 1 ,   1 and we have, for z  1 , by using Lemma 1, F ( z )  a n z n 1  z n  (   a n  a n 1 ) z n  (a n 1  a n  2 ) z n 1  ......  (a n k 1  a n  k ) z n k 1  (a n k  a n k 1 ) z n k  (1   )a n k z n k 1  (a n k 1  a n k 2 ) z n k 1  ......  (a1  a0 ) z  a0 ||Issn 2250-3005(online)|| ||January || 2013 Page 232
  • 9. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 n 1 1  z  a n z    (   a n  a n 1 )  (a n1  a n2 )  ......  (a nk 1  a n k ) k 1  z z 1 1 1  (a n k  a n k 1 ) k  (1   )a n k k 1  (a n k 1  a n k 2 ) k 1  .... z z z  (a1  a0 ) n 1  n  1 a0 z z  z  an z       an  an1  an1  an2  ......  ank 1  ank n  a n k  a n k 1  1   a n k  a n k 1  a n k 2  ......  a1  a0  a0   z n  a z    {(   a n n  an1 ) cos   (   an  an1 ) sin   ( an1  an2 ) cos   ( an1  an2 ) sin   ......  ( ank 1  ank ) cos   ( ank 1  ank ) sin   ( ank  ank 1 ) cos   ( ank  ank 1 ) sin   1   ank  ( ank 1  ank 2 ) cos   ( ank 1  ank 2 ) sin   ......  ( a1  a0 ) cos   ( a1  a0 ) sin   a0 }   z n a z    {   a n n (cos   sin  )  ank (cos   sin    cos    sin  n 1  1   )  a0 (sin   cos   1)  2 sin  a }  j 1, j  n  k j 0 if a z      a n n (cos   sin  )  ank (cos   sin    cos    sin  n 1  1   )  a0 (sin   cos   1)  2 sin  a j 1, j  n  k j This shows that the zeros of F(z) whose modulus is greater than 1 lie in [   a n (cos   sin  )  a n k (cos   sin    cos    sin   1   ) n 1   a0 (sin   cos   1)  2 sin  a j 1, j  n  k j ] z  . an an But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) and therefore P(z) lie in [   a n (cos   sin  )  a nk (cos   sin    cos    sin   1   ) n 1   a0 (sin   cos   1)  2 sin  a j 1, j  n  k j ] z  an an That proves Theorem 3. ||Issn 2250-3005(online)|| ||January || 2013 Page 233
  • 10. I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 References [1] A.Aziz And B.A.Zargar, So me Extensions Of The Enestrom-Kakeya Theorem , Glasnik Mathematiki, 31(1996) , 239-244. [2] N.K.Gov il And Q.I.Reh man, On The Enestrom-Kakeya Theorem, Tohoku Math. J.,20(1968) , 126-136. [3] N.K.Gov il And G.N.Mc-Tu me, So me Extensions Of The Enestrom- Kakeya Theorem , Int.J.Appl.Math. Vo l.11,No.3,2002, 246-253. [4] M.H.Gu lzar, On The Location Of Zeros Of A Polynomial, Anal. Theory. Appl., Vo l 28, No.3(2012), 242-247. [5] M. H. Gu lzar, On The Zeros Of Polynomials, International Journal Of Modern Engineering Research, Vol.2,Issue 6, Nov-Dec. 2012, 4318- 4322. [6] A. Joyal, G. Labelle, Q.I. Rah man, On The Location Of Zeros Of Po lynomials, Canadian Math. Bull.,10(1967) , 55- 63. [7] M. Marden , Geo metry Of Polynomials, Iind Ed.Math. Surveys, No. 3, A mer. Math. Soc. Providence,R. I,1996. [8] W. M. Shah And A.Liman, On Enestrom-Kakeya Theorem And Related Analytic Functions, Proc. Indian Acad. Sci. (Math. Sci.), 117(2007), 359-370. [9] E C. Titch marsh,The Theory Of Functions,2nd Ed ition,Oxfo rd University Press,London,1939. ||Issn 2250-3005(online)|| ||January || 2013 Page 234