SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications
                (IJERA)            ISSN: 2248-9622         www.ijera.com
                   Vol. 3, Issue 1, January -February 2013, pp.457-463
     Iterative Method For The Solution Of Simple And Multiple
              Roots Of Non Linear System Of Equations
                                Author: Dr.V.Kusuma Kumari, Professor,
         Humanities and Basic Sciences Department, Godavari Institute of Engineering and Technology,
                                       Rajahmundry, Andhra Pradesh.


Abstract
         In this paper a method called                            x1( k 1)  f1 ( x1( k ) , x2k ) , x3k ) ,..., xnk ) )
                                                                                              (       (           (
Parametric Method of Iteration is developed for
solving the non linear system of equations and
showed the efficiency of this method over                      x2k 1)  f 2 ( x1( k ) , x2k ) , x3(k ) ,..., xn(k ) )
                                                                (                         (

iteration method and Newton Raphson method
by considering some examples.                                  x3k 1)  f 3 ( x1( k ) , x2k ) , x3k ) ,..., xnk ) )
                                                                (                         (       (           (


                                                               xnk 1)  f n ( x1( k ) , x2k ) , x3k ) ,..., xnk ) ) ,(k=0,1,2,…) (1.4)
                                                                (                         (       (           (
Key words: N-R Method, Iterative Method
                                                                        As is well known that the iterations (1.4)
I. INTRODUCTION
                                                               are to be repeated successively until the
         It is well known that the solution of
                                                               convergence is achieved upto the desired accuracy
systems of non-linear equations play an important
                                                               and this method convergences under the condition.
role in all the fields of science and engineering
applications and there exist a great variety of
problems for the solution of such problems. Many                n
                                                                       fi ( X )
applications in Science and Engineering are                    j 1     x j
                                                                                                 1                             (1.5)
described by a set of n-coupled, non-linear algebraic                              x x   (k )


equations in n-variables        x1 , x2 ,..., xn of the form
                                                               (i=1,2,….,n), for each k.
F1 ( x1 , x2 ,..., xn )  0                                              whereas in the multivariable Newton-
F2 ( x1 , x2 ,..., xn )  0                        (1.1)
                                                               Raphson method, the system (1.2) is solved by
                                                               iterating the scheme
Fn ( x1 , x2 ,..., xn )  0
                                                                                                      1
The equations (1.1) can be expressed as a system               x ( k 1)  x( k )   J ( k )  F ( x ( k ) )
                                                                                                                     (1.6)
Fi ( X )  0
             (i  1, 2,..., n)                                 (k=0,1,2,..)
(1.2) where X is an n-dimensional vector.                       where the Jacobian J ( k ) is
                                                                        F1         F1                        F1 
                                                                        x                           . . .
                                                                                                                xn 
         Though we have various techniques like
                                                                                     x2
the method of steepest discent, Riks/Wempner                            1                                          
method, Von-Mises method, Power method,                                 F2         F2                        F2 
                                                                        x                           . . .
                                                                                                                xn 
Gradient method and Graphical method [1,2] for the
                                                                                     x2
solution of (1.2), the most generally used methods                      1                                          
for its solution are the successive approximation                       .                 .          . . .      . 
method also known as method of iteration, and the                                                                  
multivariable Newton-Raphson method.                                    .                 .          . . .      . 
     In the Successive approximation mehod the                          .                 .          . . .      . 
system (1.2) is written as                                                                                         
xi  fi ( x1 , x2 ,..., xn )                                            Fn         Fn
                                                                                                      . . .
                                                                                                                Fn 
                                                                        x1         x2                        xn 
                      (i  1, 2,..., n)
                                                    (1.3)                                                          
                                                                           The              multivariable         Newton-Raphson
                    (0)       (0)     (0)
          If    x , x2 ,..., xn
                    1              be the initial              method converges if the functions Fi ( X ) , all have
approximation to the solution of (1.2), then in this           continuous first order partial derivatives near a root
iterative method the improved values are found as
indicated below                                                 X * , and if the Jacobian is non-singular in the



                                                                                                                         457 | P a g e
Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications
                                     (IJERA)            ISSN: 2248-9622         www.ijera.com
                                        Vol. 3, Issue 1, January -February 2013, pp.457-463
                                                                                         (k )
                  neighbourhood of this root and if X          is taken
                                                      *
                  sufficiently close to the solution X .                                                           f1                   f            f
                                                                                                             1         (1   2 )   2 2  ...   n n  1                                         (2.4)
                  In this paper we develop a method for the solution                                               x2                   x2           x2
                  of the simultaneous non-linear equations (1.1) which
                  will be presented in the next section. This method is
                  also compared with           the other methods by                                                f1      f                         f
                  considering some numerical examples.                                                       1          2 2  ...  (1   n )   n n  1
                                                                                                                   x1      xn                        xn
                  2.  PARAMETRIC                                       METHOD                           OF
                  ITERATION                                                                                  hold true for all x  x ( k ) and                      ( k ) for each
                           To solve the system (1.1), we rewrite each                                        k.
                  equation of (1.1) by introducing a set of parameters                                        If we choose
                  1 ,  2 ,...,  n all of them are positive, in the form                                                   f                 
                                                                                                                                                  1

                                                                                                                  (k )
                                                                                                                           1  i          (k )  , (i=1,2,…,n), for each k                           (2.5)
                                                                                                                             xi
                                                                                                                  i                    x x
                   x1  (1  1 ) x1  1 f1 ( x1 , x2 ,..., xn )                                                                                
                   x2  (1   2 ) x2   2 f 2 ( x1 , x2 ,..., xn )                               (2.1)     Then the iteration process (2.3) takes the form
                   xn  (1   n ) xn   n f n ( x1 , x2 ,..., xn )
                  For the solution of the system (1.1), the method is                                                                      f                     f1                      
                                                                                                             xi( k 1)   f1( k )  x1( k ) 1                    / 1                      
                                                                                                                                            x1    x x
                                                                                                                                                                   x1
                                                                                                                                                                                x x
                                                                                                                                                          (k )                         (k )
                  defined as
                                                                                                                                                                                             

x1( k 1)  (1  1(k ) ) x1(k )  1(k ) f1 ( x1(k ) , x2(k ) , x3(k ),..., xn(k ) )                                                   f                            f 2                     
                                                                                                             x2k 1)   f 2( k )  x2k ) 2
                                                                                                              (                      (
                                                                                                                                                                      / 1                         (2.6)
x( k 1)
            (1      (k )
                              )x(k )
                                          (k )         (k )        (k )
                                                   f 2 ( x , x , x ,..., x )      (k)           (k)
                                                                                                                                        x2           x  x( k )
                                                                                                                                                                       x2
                                                                                                                                                                                  x  x( k )
                                                                                                                                                                                                  
 2                     2        2           2            1           2            3             n
                                                                                                                                   .
x( k 1)
            (1      (k )
                              )x(k )
                                          (k )
                                                   f ( x1( k ) , x2k ) , x3k ) ,..., xnk ) ) (2.2)
                                                                  (       (           (
 3                     3        3           3    3
                                                                                                                                       f                             f n                     
                                                                                                             xnk 1)   f n(k )  xnk ) n
                                                                                                              (                     (
                                                                                                                                                                      / 1                      
                                                                                                                                        xn            x x
                                                                                                                                                                       xn
                                                                                                                                                                                  x x
                                                                                                                                                              (k )                        (k )

 xnk 1)  (1   nk ) ) xnk )   nk ) f n ( x1( k ) , x2k ) , x3k ) ,..., xnk ) )
  (               (       (        (                     (       (           (                                                                                                                   
                   (k = 0,1,2,…)
                      The equations (2.2) are expressed as                                                   For the choices of  i given (2.5) , the conditions
                                                                                                             for convergence of the method (2.6) can be obtained
                   x1( k 1)  (1  1( k ) ) x1( k )  1( k ) f1( k )                                      from (2.4) as
                                                                                                                      f 2      f            f
                   x2k 1)  (1   2k ) ) x2k )   2k ) f 2( k )
                    (               (       (        (
                                                                                                               2            3 3  ...   n n  1
                                                                                                                      x1       x1           x1
                   x3k 1)  (1   3 k ) ) x3k )   3 k ) f3( k )
                    (               (        (        (
                                                                                                (2.3)
                                                                                                                      f1      f            f
                   x ( k 1)
                                (1       (k )
                                                   )x (k )
                                                                   (k )
                                                                            f    (k )
                                                                                                               1           3 3  ...   n n  1                                      (2.7)
                     n                      n         n              n          n
                                                                                                                      x2      x2           x2
                                   It can directly be seen that the method (2.3)                                   f1      f              f
                                                                     i( k )  1                             1          2 2  ...   n1 n1  1
                  coincides with ( 1.4) when                                            for each i and             xn      xn             xn
                  k. As the parameters  i
                                                             (k )
                                              in (2.3) accelerates or
                  improves the convergence of (1.4), the method (2.3)                                        For all x  x ( k ) and    ( k ) for each k.
                  may be called as parametric method of iteration.                                           For solving non-linear equations in single variable
                           As given in [3] and [1], one can easily                                           of the form
                  show that the method (2.3) converges when the                                                 F(x)=0                                   (2.8)
                  conditions                                                                                 The Parametric method of iteration can be defined
                                                                                                             from (2.3) as
                                         f1      f            f
                   (1  1 )  1              2 2  ...   n n  1                                       x ( k 1)  (1   ( k ) ) x ( k )   ( k ) f ( x ( k ) ) (2.9)
                                         x1      x1           x1
                                                                                                             Where  is a parameter, whose choice using (2.5)
                                                                                                             obtained as




                                                                                                                                                                       458 | P a g e
Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications
                                      (IJERA)            ISSN: 2248-9622         www.ijera.com
                                         Vol. 3, Issue 1, January -February 2013, pp.457-463
                                                 1                                                             The parametric method of iteration (2.6 ) for the
                    (k )                                                for each k             (2.10)        solution of (3.1) can be written as
                                 1  f '( x)                        
                                                       x  x( k )   
                  With this choice of (2.9) the method (2.8) reduce to                                                                         f          f            
                                                                                                               x1( k 1)  k  f1( k )  x1( k ) 1 x  xk  / 1  1 x  xk 
                                                                                                                                               x1         x1           
x( k 1)   f ( x ( k ) )  x ( k ) f '( x)
                                                    x  x( k )
                                                                   / 1  f '( x)
                                                                                      x  x( k )
                                                                                                      2.11)
                                                                                                     
                                                                                                                                          ( f             f             
                                                                                                               x2k 1)  k  f 2( k )  x2k ) 2 x  xk  / 1  2 x  xk 
                                                                                                                 (
                  As it is well known that the Newton-Raphson
                                                                                                                                               x2         x2            
                  method for the solution of (2.8) is given by
                                                     F ( x( k ) )                                                                        ( f            f            
                   x   ( k 1)
                                 x   (k )
                                                                                      (2.12)                  x3( k 1)  k  f3( k )  x3k ) 3 x  xk  / 1  3 x  xk 
                                                 F '( x)                                                                                     x3         x3           
                                                                  x  x( k )
                  It is interesting to note that F(x) of equation (2.8) is                                                                             (3.3)
                  expressed in the form                                                                        The iteration method for solving (3.1) can be taken
                                                                                                               by writing (3.1) into the form (3.2) as
                   F ( x)  x  f ( x)                       (2.13)
                  Then the Newton-Raphson iteration (2.12) exactly                                             x1( k 1)  (cos x2k ) x3k )  0.5  x1( k ) ) / 4,
                                                                                                                                 (     (

                                                                                                               * ( k 1)
                  takes the form (2.11).
                                                                                                                x2           x1( k 1) / 25,                                 (3.4)

                                                                                                               x3k 1)  ( x3k )  9  e x1
                                                                                                                                                 (k ) (k )
                  3. NUMERICAL EXAMPLES:                                                                        (           (                        x2
                                                                                                                                                             ) / 21
                  We consider the non-linear system of three
                                                                                                               (*Here + or – sign should be taken in accordance
                  equations in three unknowns:
                                                                                                               with the initial guess)
                   F1 ( x1 , x2 , x3 )  3 x1  cos x2 x3  0.5  0                                            And, the Newton-Raphson iteration for the solution
                   F2 ( x1 , x2 , x3 )  x12  625 x2  0
                                                    2                                                          of (3.1) is

                   F3 ( x1 , x2 , x3 )  e  x1x2  20 x3  9  0                                                                                  1
                                                                                                               x1( k 1)  x( k )   J ( x( k )  F ( x( k ) )
                                                                                                                                                                           (3.5)
                                                          (3.1)
                                                                                                               Where X  ( x1 , x2 , x3 )
                                                                                                                                                  T
                  As noted by William W.Hager [4], this system has                                                                                      and the Jacobian J is a
                  more than one solution. Expressing the system (3.1)                                          3x3 matrix:
                  as
                    x1  f1 ( x1 , x2 , x3 )                                                                              F1 ( X ) F1 ( X ) F1 ( X ) 
                                                                                                                                                        
                    x2  f 2 ( x1 , x2 , x3 )                                            (3.2)                            x1          x2        x3 
                                                                                                                          F ( X ) F2 ( X ) F2 ( X )       (3.6)
                    x3  f3 ( x1 , x2 , x3 )                                                                    J ( x)   2                             
                               f1  (cos x2 x3  0.5  x1 ) / 4,                                                          x1          x2        x3 
                                                                                                                          F3 ( X ) F3 ( X ) F3 ( X ) 
                                                                                                                                                        
                    where
                                  *
                                      f 2   x1 / 25,                                                                    x1          x2        x3 
                                   f 3  ( x3  9  e  x1x2 ) ) / 21                                          to compare the methods (3.3), (3.4) and (3.5) for the
                                                                                                               solution of (3.1), we tabulate the following results
                  (*Here + or – sign should be taken in accordance                                             for various initial approximation to the unknowns
                  with the initial guess)




                                                                                                                                                                      459 | P a g e
Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications
                        (IJERA)            ISSN: 2248-9622         www.ijera.com
                           Vol. 3, Issue 1, January -February 2013, pp.457-463
       TABLE 3.1
       For x1(0) = 0, x2(0) = 0, x3(0) = 0
Iteration                                                                             Parametric       Method   of
              Variable         Iteration Method   Newton- Raphson Method
Number                                                                                Iteration
              X1                0.375                                                  0.5
                                                  Since J-1 does not exist, Newton-
1             X2                0.015                                                  0.02
                                                  Raphson Method fails to converge
              X3              -0.475923371                                            -0.4995024917
              X1                0.4687436296                                           0.4999833666
2             X2                0.01874974519     ---                                  0.01999933467
              X3              -0.4984368122                                           -0.4995025246
              X1                0.49217499                                             0.4999833677
3             X2                0.0196869996      ---                                  0.01999933471
              X3              -0.4994663883                                           -0.4995025246
              X1                0.4980316616
4             X2                0.01992126647     ---                                 ---
              X3              -0.4995044772
              X1                0.4994955383
5             X2                0.01997982153     ---                                 ---
              X3              -0.4995035371
              X1                0.4998614347
6             X2                0.01999445739     ---                                 ---
              X3              -0.4995028027
              X1                0.4999528905
7             X2                0.01999811562     ---                                 ---
              X3              -0.4995025953
              X1                0.4999757499
8             X2                0.01999903        ---                                 ---
              X3              -0.4995025424
              X1                0.4999814637
9             X2                0.01999925855     ---                                 ---
              X3              -0.4995025291
              X1                0.4999828918
10            X2                0.01999931567     ---                                 ---
              X3              -0.4995025257
              X1                0.4999832488
11            X2                0.01999932995     ---                                 ---
              X3              -0.4995025249
              X1                0.499983338
12            X2                0.01999933352     ---                                 ---
              X3              -0.4995025247
              X1                0.4999833603
13            X2                0.01999933441     ---                                 ---
              X3              -0.4995025246
              X1               0.4999833659
14            X2                 0.01999933463    ---                                 ---
              X3              -0.4995025246
              X1               0.4999833673
15            X2               0.0199933469       ---                                 ---
              X3              -0.4995025246
              X1               0.4999833676
16            X2               0.0199993347       ---                                 ---
              X3              -0.4995025246
              X1               0.4999833676
17            X2                0.01999933471     ---                                 ---
              X3              -0.4995025246
                                                                                      CONVERGED IN
                              CONVERGED IN 17
CONCLUSION                                        NO CONVERGENCE                      3
                              ITERATIONS
                                                                                      ITERATIONS

                                                                                              460 | P a g e
Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications
                      (IJERA)            ISSN: 2248-9622         www.ijera.com
                         Vol. 3, Issue 1, January -February 2013, pp.457-463
     TABLE 3.2
     For x1(0) = 1, x2(0) = 1, x3(0) = 0
Iteration                                                                              Parametric Method of
                     Variable              Iteration Method   Newton- Raphson Method
Number                                                                                 Iteration
                     X1                     0.625              0.5                       0.5
1                    X2                     0.025              0.5                       0.02
                     X3                    -0.475452213       -0.4867879441            -0.4995024917
                     X1                     0.5312323397       0.4996539197              0.4999833666
2                    X2                     0.02124929359      0.2503994463              0.01999933467
                     X3                    -0.4982965416      -0.493806505             -0.4995025246
                     X1                     0.5077940706       0.4999491556              0.4999833677
3                    X2                     0.02031176283      0.1259982842              0.01999933471
                     X3                    -0.4994302551      -0.4968557293            -0.4995025246
                     X1                     0.5019356544       0.4999793144
4                    X2                     0.02007742618      0.06458633398           ---
                     X3                    -0.4994953947      -0.4983882295
                     X1                     0.5004713422       0.4999829242
5                    X2                     0.02001885369      0.0353895858            ---
                     X3                    -0.4995012645      -0.4991178073
                     X1                     0.500105337        0.49998333
6                    X2                     0.02000421348      0.02334579615           ---
                     X3                    -0.4995022346      -0.4994188656
                     X1                     0.500013854        0.4999833662
7                    X2                     0.02000055416      0.02023918093           ---
                     X3                    -0.4995024533      -0.4994965282
                     X1                     0.4999909878       0.4999833677
8                    X2                     0.01999963951      0.02000075587           ---
                     X3                    -0.4995025069      -0.4995024891
                     X1                     0.4999852724       0.4999833677
9                    X2                     0.01999941089      0.01999933476           ---
                     X3                    -0.4995025202      -0.4995025246
                     X1                     0.4999838438       0.4999833677
10                   X2                     0.01999935375      0.01999933471           ---
                     X3                    -0.4995025235      -0.4995025246
                     X1                     0.4999834867
11                   X2                     0.01999933947     ---                      ---
                     X3                    -0.4995025243
                     X1                     0.4999833975
12                   X2                     0.0199993359      ---                      ---
                     X3                    -0.4995025245
                     X1                     0.4999833752
13                   X2                     0.01999933501     ---                      ---
                     X3                    -0.4995025246

                     X1                     0.4999833696
                                                              ---
14                   X2                     0.01999933478
                     X3                    -0.4995025246
                                                              ---
                     X1                     0.4999833682
15                   X2                     0.01999933473     ---                      ---
                     X3                    -0.4995025246
                     X1                     0.4999833678
16                   X2                     0.01999933471     ---                      ---
                     X3                    -0.4995025246



                                                                                        461 | P a g e
Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications
                        (IJERA)            ISSN: 2248-9622         www.ijera.com
                           Vol. 3, Issue 1, January -February 2013, pp.457-463
                     CONVERGED             CONVERGED IN       CONVERGED IN
CONCLUSION           IN 16                 10                 3
                     ITERATIONS            ITERATIONS         ITERATIONS

     TABLE 3.3
     For x1(0) = 5, x2(0) = 5, x3(0) = 5
Iteration                                                                              Parametric Method of
                     Variable              Iteration Method   Newton- Raphson Method
Number                                                                                 Iteration
                     X1                     1.622800703       -1.257919398              0.497067604
1                    X2                     0.06491202812      2.493987329              0.01988270416
                     X3                    -0.2333342432      -0.4500000001            -0.4995082814
                     X1                     0.7806715004      -0.1892295183             0.4999835608
2                    X2                     0.03122686002      1.246638798              0.01999934243
                     X3                    -0.4861548126      -1.343104476             -0.4995025242
                     X1                     0.5701390675       0.751266281              0.4999833677
3                    X2                     0.0228055627       0.6231139626             0.01999933471
                     X3                    -0.4987255541      -0.5170993363            -0.4995025246
                     X1                     0.5175185969       0.501323845
4                    X2                     0.02070074387      0.3117994466            ---
                     X3                    -0.4994318911      -0.494510231
                     X1                     0.5043662885       0.499950191
5                    X2                     0.02017465154      0.1565410286            ---
                     X3                    -0.4994908605      -0.4961226146
                     X1                     0.5010788789       0.4999754417
6                    X2                     0.02004315515      0.07954800913           ---
                     X3                    -0.4994999011      -0.4980152391
                     X1                     0.5002571909       0.4999824598
7                    X2                     0.0200128764       0.04228803314           ---
                     X3                    -0.4995018832      -0.49894539
                     X1                     0.5000518099       0.4999832811
8                    X2                     0.0200020724       0.02587317067           ---
                     X3                    -0.499502365       -0.4993556857
                     X1                     0.5000004749       0.4999833629
9                    X2                     0.02000001899      0.02066608603           ---
                     X3                    -0.4995024848      -0.4994848556
                     X1                     0.4999876437       0.4999833677
10                   X2                     0.01999950575      0.02001009043           ---
                     X3                    -0.4995025147      -0.4995022556
                     X1                     0.4999844365       0.4999833677
11                   X2                     0.01999937746      0.0199993376            ---
                     X3                    -0.4995025221      -0.4995025245
                     X1                     0.4999836349       0.4999833677
12                   X2                     0.0199993454       0.01999933471           ---
                     X3                    -0.499502524       -0.4995025246
                     X1                     0.4999834345
13                   X2                     0.01999933738     ---                      ---
                     X3                    -0.4995025245
                     X1                     0.4999833844
14                   X2                     0.01999933538     ---                      ---
                     X3                    -0.4995025246
                     X1                     0.4999833719
15                   X2                     0.01999933488     ---                      ---
                     X3                    -0.4995025246
                     X1                     0.4999833688
16                   X2                     0.01999933475     ---                      ---
                     X3                    -0.4995025246

                                                                                             462 | P a g e
Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications
                     (IJERA)            ISSN: 2248-9622         www.ijera.com
                        Vol. 3, Issue 1, January -February 2013, pp.457-463
                  X1                 0.499983368
17                X2                 0.01999933472        ---                    ---
                  X3                -0.4995025246
                  X1                 0.4999833678
18                X2                 0.01999933471        ---                    ---
                  X3                -0.4995025246
                  CONVERGED         CONVERGED IN          CONVERGED IN
CONCLUSION        IN 18             12                    3
                  ITERATIONS        ITERATIONS            ITERATIONS

              Conclusion: From the above tabulated
     results it can be observed that the Parametric
     method of iteration looks more efficient than the
     Newton-Raphson method and Iteration method for
     the problems considered. It can also observed that
     Parametric method of Iteration converges even
     though Newton-Raphson method fails to converge
     from example (3.1).

     REFERENCES
       [1]   GOURDIN, A., BOUMAHRAT, M.,
             Applied Numerical Methods, Prentice-
             Hall of India Pvt Ltd, (1989).
       [2]   RAJASEKARAN, S., (1986) ‘Numerical
             Methods in Science and Engineering’,
             A.H.wheeler & Co., Pvt Ltd.,1st edition.
       [3]   SCARBOUROUGH, J. B. (1966), ‘
             Numerical     Mathematical      Analysis’;
             Oxford & IBH Publishing Co., Pvt.Ltd.
       [4]   WILLIAM         W.HAGER,          Applied
             Numerical Linear Algebra, Prentice Hall,
             Englrwood Cliffs, New Jersey 07637,
             (1988).




                                                                                       463 | P a g e

Más contenido relacionado

La actualidad más candente

CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slidesCVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slideszukun
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
Tro07 sparse-solutions-talk
Tro07 sparse-solutions-talkTro07 sparse-solutions-talk
Tro07 sparse-solutions-talkmpbchina
 
MATHEON D-Day: Numerical simulation of integrated circuits for future chip ge...
MATHEON D-Day: Numerical simulation of integrated circuits for future chip ge...MATHEON D-Day: Numerical simulation of integrated circuits for future chip ge...
MATHEON D-Day: Numerical simulation of integrated circuits for future chip ge...Dagmar Monett
 
2012 mdsp pr02 1004
2012 mdsp pr02 10042012 mdsp pr02 1004
2012 mdsp pr02 1004nozomuhamada
 
Nonparametric Density Estimation
Nonparametric Density EstimationNonparametric Density Estimation
Nonparametric Density Estimationjachno
 
Uncertainty in deep learning
Uncertainty in deep learningUncertainty in deep learning
Uncertainty in deep learningYujiro Katagiri
 
Harvard_University_-_Linear_Al
Harvard_University_-_Linear_AlHarvard_University_-_Linear_Al
Harvard_University_-_Linear_Alramiljayureta
 
A Numerical Method for the Evaluation of Kolmogorov Complexity, An alternativ...
A Numerical Method for the Evaluation of Kolmogorov Complexity, An alternativ...A Numerical Method for the Evaluation of Kolmogorov Complexity, An alternativ...
A Numerical Method for the Evaluation of Kolmogorov Complexity, An alternativ...Hector Zenil
 
Functional Analysis (Gerald Teschl)
Functional Analysis (Gerald Teschl)Functional Analysis (Gerald Teschl)
Functional Analysis (Gerald Teschl)nloayza17
 
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesSignal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesGabriel Peyré
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkHiroshi Kuwajima
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, Registration
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, RegistrationCVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, Registration
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, Registrationzukun
 
Fractal dimension versus Computational Complexity
Fractal dimension versus Computational ComplexityFractal dimension versus Computational Complexity
Fractal dimension versus Computational ComplexityHector Zenil
 
Fractal Dimension of Space-time Diagrams and the Runtime Complexity of Small ...
Fractal Dimension of Space-time Diagrams and the Runtime Complexity of Small ...Fractal Dimension of Space-time Diagrams and the Runtime Complexity of Small ...
Fractal Dimension of Space-time Diagrams and the Runtime Complexity of Small ...Hector Zenil
 
Summary of "A Universally-Truthful Approximation Scheme for Multi-unit Auction"
Summary of "A Universally-Truthful Approximation Scheme for Multi-unit Auction"Summary of "A Universally-Truthful Approximation Scheme for Multi-unit Auction"
Summary of "A Universally-Truthful Approximation Scheme for Multi-unit Auction"Thatchaphol Saranurak
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 

La actualidad más candente (20)

CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slidesCVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Nn3
Nn3Nn3
Nn3
 
Tro07 sparse-solutions-talk
Tro07 sparse-solutions-talkTro07 sparse-solutions-talk
Tro07 sparse-solutions-talk
 
MATHEON D-Day: Numerical simulation of integrated circuits for future chip ge...
MATHEON D-Day: Numerical simulation of integrated circuits for future chip ge...MATHEON D-Day: Numerical simulation of integrated circuits for future chip ge...
MATHEON D-Day: Numerical simulation of integrated circuits for future chip ge...
 
2012 mdsp pr02 1004
2012 mdsp pr02 10042012 mdsp pr02 1004
2012 mdsp pr02 1004
 
Nonparametric Density Estimation
Nonparametric Density EstimationNonparametric Density Estimation
Nonparametric Density Estimation
 
Uncertainty in deep learning
Uncertainty in deep learningUncertainty in deep learning
Uncertainty in deep learning
 
Harvard_University_-_Linear_Al
Harvard_University_-_Linear_AlHarvard_University_-_Linear_Al
Harvard_University_-_Linear_Al
 
A Numerical Method for the Evaluation of Kolmogorov Complexity, An alternativ...
A Numerical Method for the Evaluation of Kolmogorov Complexity, An alternativ...A Numerical Method for the Evaluation of Kolmogorov Complexity, An alternativ...
A Numerical Method for the Evaluation of Kolmogorov Complexity, An alternativ...
 
Functional Analysis (Gerald Teschl)
Functional Analysis (Gerald Teschl)Functional Analysis (Gerald Teschl)
Functional Analysis (Gerald Teschl)
 
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesSignal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal Bases
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Qd hankel
Qd hankelQd hankel
Qd hankel
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural Network
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, Registration
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, RegistrationCVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, Registration
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, Registration
 
Fractal dimension versus Computational Complexity
Fractal dimension versus Computational ComplexityFractal dimension versus Computational Complexity
Fractal dimension versus Computational Complexity
 
Fractal Dimension of Space-time Diagrams and the Runtime Complexity of Small ...
Fractal Dimension of Space-time Diagrams and the Runtime Complexity of Small ...Fractal Dimension of Space-time Diagrams and the Runtime Complexity of Small ...
Fractal Dimension of Space-time Diagrams and the Runtime Complexity of Small ...
 
Summary of "A Universally-Truthful Approximation Scheme for Multi-unit Auction"
Summary of "A Universally-Truthful Approximation Scheme for Multi-unit Auction"Summary of "A Universally-Truthful Approximation Scheme for Multi-unit Auction"
Summary of "A Universally-Truthful Approximation Scheme for Multi-unit Auction"
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 

Destacado

Tarjetas intel
Tarjetas intelTarjetas intel
Tarjetas intelKelly Soto
 
Alimentadores para Peixes
Alimentadores para PeixesAlimentadores para Peixes
Alimentadores para PeixesAlcon Pet
 
RENACIMIENTO. GENESIS MENDOZA. PSM SAIA B. ARQUITECTURA
RENACIMIENTO. GENESIS MENDOZA. PSM SAIA B. ARQUITECTURARENACIMIENTO. GENESIS MENDOZA. PSM SAIA B. ARQUITECTURA
RENACIMIENTO. GENESIS MENDOZA. PSM SAIA B. ARQUITECTURAGenesis De C. Mendoza
 
Concepción arenal
Concepción arenalConcepción arenal
Concepción arenalSergio C
 
3조프레젠테이션
3조프레젠테이션3조프레젠테이션
3조프레젠테이션수민 오
 
Quais produtos Alcon Pet são indicados para aquários marinhos?
Quais produtos Alcon Pet são indicados para aquários marinhos?Quais produtos Alcon Pet são indicados para aquários marinhos?
Quais produtos Alcon Pet são indicados para aquários marinhos?Alcon Pet
 
Garbell eratòstenes
Garbell eratòstenesGarbell eratòstenes
Garbell eratòstenesXisca Vindel
 
Pdfunificado 130627135051-phpapp02
Pdfunificado 130627135051-phpapp02Pdfunificado 130627135051-phpapp02
Pdfunificado 130627135051-phpapp02Tom Pereira
 
La luna es imprescindible
La luna es imprescindibleLa luna es imprescindible
La luna es imprescindibleanaispreciado
 
Presentación de power point 22 01 2010
Presentación de power point 22 01 2010Presentación de power point 22 01 2010
Presentación de power point 22 01 2010Parvularia8cmario
 
Trabajo de sistemas natalie kelly laura
Trabajo de sistemas natalie kelly lauraTrabajo de sistemas natalie kelly laura
Trabajo de sistemas natalie kelly lauraKelly Soto
 
Conheça as linhas de produtos da AlconPet para aves!
Conheça as linhas de produtos da AlconPet para aves!Conheça as linhas de produtos da AlconPet para aves!
Conheça as linhas de produtos da AlconPet para aves!Alcon Pet
 

Destacado (20)

I26043047
I26043047I26043047
I26043047
 
Iv2616901694
Iv2616901694Iv2616901694
Iv2616901694
 
Ig2616051609
Ig2616051609Ig2616051609
Ig2616051609
 
W26142147
W26142147W26142147
W26142147
 
Ht2515231526
Ht2515231526Ht2515231526
Ht2515231526
 
Ic2615781586
Ic2615781586Ic2615781586
Ic2615781586
 
Tarjetas intel
Tarjetas intelTarjetas intel
Tarjetas intel
 
CV
CVCV
CV
 
Alimentadores para Peixes
Alimentadores para PeixesAlimentadores para Peixes
Alimentadores para Peixes
 
RENACIMIENTO. GENESIS MENDOZA. PSM SAIA B. ARQUITECTURA
RENACIMIENTO. GENESIS MENDOZA. PSM SAIA B. ARQUITECTURARENACIMIENTO. GENESIS MENDOZA. PSM SAIA B. ARQUITECTURA
RENACIMIENTO. GENESIS MENDOZA. PSM SAIA B. ARQUITECTURA
 
Concepción arenal
Concepción arenalConcepción arenal
Concepción arenal
 
3조프레젠테이션
3조프레젠테이션3조프레젠테이션
3조프레젠테이션
 
Quais produtos Alcon Pet são indicados para aquários marinhos?
Quais produtos Alcon Pet são indicados para aquários marinhos?Quais produtos Alcon Pet são indicados para aquários marinhos?
Quais produtos Alcon Pet são indicados para aquários marinhos?
 
Garbell eratòstenes
Garbell eratòstenesGarbell eratòstenes
Garbell eratòstenes
 
Pdfunificado 130627135051-phpapp02
Pdfunificado 130627135051-phpapp02Pdfunificado 130627135051-phpapp02
Pdfunificado 130627135051-phpapp02
 
Restaurador 03
Restaurador 03Restaurador 03
Restaurador 03
 
La luna es imprescindible
La luna es imprescindibleLa luna es imprescindible
La luna es imprescindible
 
Presentación de power point 22 01 2010
Presentación de power point 22 01 2010Presentación de power point 22 01 2010
Presentación de power point 22 01 2010
 
Trabajo de sistemas natalie kelly laura
Trabajo de sistemas natalie kelly lauraTrabajo de sistemas natalie kelly laura
Trabajo de sistemas natalie kelly laura
 
Conheça as linhas de produtos da AlconPet para aves!
Conheça as linhas de produtos da AlconPet para aves!Conheça as linhas de produtos da AlconPet para aves!
Conheça as linhas de produtos da AlconPet para aves!
 

Similar a Bp31457463

Particle filter
Particle filterParticle filter
Particle filterbugway
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingSSA KPI
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Convolution and FFT
Convolution and FFTConvolution and FFT
Convolution and FFTChenghao Jin
 
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...Xin-She Yang
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningzukun
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2zukun
 
(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel LearningMasahiro Suzuki
 

Similar a Bp31457463 (20)

Particle filter
Particle filterParticle filter
Particle filter
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programming
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Paper06
Paper06Paper06
Paper06
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Convolution and FFT
Convolution and FFTConvolution and FFT
Convolution and FFT
 
Pres metabief2020jmm
Pres metabief2020jmmPres metabief2020jmm
Pres metabief2020jmm
 
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
 
Section5 stochastic
Section5 stochasticSection5 stochastic
Section5 stochastic
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Fourier Transforms
Fourier TransformsFourier Transforms
Fourier Transforms
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
Section3 stochastic
Section3 stochasticSection3 stochastic
Section3 stochastic
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
 
1 - Linear Regression
1 - Linear Regression1 - Linear Regression
1 - Linear Regression
 
(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning
 

Bp31457463

  • 1. Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.457-463 Iterative Method For The Solution Of Simple And Multiple Roots Of Non Linear System Of Equations Author: Dr.V.Kusuma Kumari, Professor, Humanities and Basic Sciences Department, Godavari Institute of Engineering and Technology, Rajahmundry, Andhra Pradesh. Abstract In this paper a method called x1( k 1)  f1 ( x1( k ) , x2k ) , x3k ) ,..., xnk ) ) ( ( ( Parametric Method of Iteration is developed for solving the non linear system of equations and showed the efficiency of this method over x2k 1)  f 2 ( x1( k ) , x2k ) , x3(k ) ,..., xn(k ) ) ( ( iteration method and Newton Raphson method by considering some examples. x3k 1)  f 3 ( x1( k ) , x2k ) , x3k ) ,..., xnk ) ) ( ( ( ( xnk 1)  f n ( x1( k ) , x2k ) , x3k ) ,..., xnk ) ) ,(k=0,1,2,…) (1.4) ( ( ( ( Key words: N-R Method, Iterative Method As is well known that the iterations (1.4) I. INTRODUCTION are to be repeated successively until the It is well known that the solution of convergence is achieved upto the desired accuracy systems of non-linear equations play an important and this method convergences under the condition. role in all the fields of science and engineering applications and there exist a great variety of problems for the solution of such problems. Many n fi ( X ) applications in Science and Engineering are j 1 x j 1 (1.5) described by a set of n-coupled, non-linear algebraic x x (k ) equations in n-variables x1 , x2 ,..., xn of the form (i=1,2,….,n), for each k. F1 ( x1 , x2 ,..., xn )  0 whereas in the multivariable Newton- F2 ( x1 , x2 ,..., xn )  0 (1.1) Raphson method, the system (1.2) is solved by iterating the scheme Fn ( x1 , x2 ,..., xn )  0 1 The equations (1.1) can be expressed as a system x ( k 1)  x( k )   J ( k )  F ( x ( k ) )   (1.6) Fi ( X )  0 (i  1, 2,..., n) (k=0,1,2,..) (1.2) where X is an n-dimensional vector. where the Jacobian J ( k ) is  F1 F1 F1   x . . . xn  Though we have various techniques like x2 the method of steepest discent, Riks/Wempner  1  method, Von-Mises method, Power method,  F2 F2 F2   x . . . xn  Gradient method and Graphical method [1,2] for the x2 solution of (1.2), the most generally used methods  1  for its solution are the successive approximation  . . . . . .  method also known as method of iteration, and the   multivariable Newton-Raphson method.  . . . . . .  In the Successive approximation mehod the  . . . . . .  system (1.2) is written as   xi  fi ( x1 , x2 ,..., xn )  Fn Fn . . . Fn   x1 x2 xn  (i  1, 2,..., n) (1.3)   The multivariable Newton-Raphson (0) (0) (0) If x , x2 ,..., xn 1 be the initial method converges if the functions Fi ( X ) , all have approximation to the solution of (1.2), then in this continuous first order partial derivatives near a root iterative method the improved values are found as indicated below X * , and if the Jacobian is non-singular in the 457 | P a g e
  • 2. Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.457-463 (k ) neighbourhood of this root and if X is taken * sufficiently close to the solution X . f1 f f 1  (1   2 )   2 2  ...   n n  1 (2.4) In this paper we develop a method for the solution x2 x2 x2 of the simultaneous non-linear equations (1.1) which will be presented in the next section. This method is also compared with the other methods by f1 f f considering some numerical examples. 1   2 2  ...  (1   n )   n n  1 x1 xn xn 2. PARAMETRIC METHOD OF ITERATION hold true for all x  x ( k ) and    ( k ) for each To solve the system (1.1), we rewrite each k. equation of (1.1) by introducing a set of parameters If we choose 1 ,  2 ,...,  n all of them are positive, in the form  f  1  (k )  1  i (k )  , (i=1,2,…,n), for each k (2.5)  xi i x x x1  (1  1 ) x1  1 f1 ( x1 , x2 ,..., xn )  x2  (1   2 ) x2   2 f 2 ( x1 , x2 ,..., xn ) (2.1) Then the iteration process (2.3) takes the form xn  (1   n ) xn   n f n ( x1 , x2 ,..., xn ) For the solution of the system (1.1), the method is  f   f1  xi( k 1)   f1( k )  x1( k ) 1  / 1   x1 x x   x1 x x (k ) (k ) defined as   x1( k 1)  (1  1(k ) ) x1(k )  1(k ) f1 ( x1(k ) , x2(k ) , x3(k ),..., xn(k ) )  f   f 2  x2k 1)   f 2( k )  x2k ) 2 ( (  / 1   (2.6) x( k 1)  (1   (k ) )x(k )  (k ) (k ) (k ) f 2 ( x , x , x ,..., x ) (k) (k)  x2 x  x( k )   x2 x  x( k )  2 2 2 2 1 2 3 n . x( k 1)  (1   (k ) )x(k )  (k ) f ( x1( k ) , x2k ) , x3k ) ,..., xnk ) ) (2.2) ( ( ( 3 3 3 3 3  f   f n  xnk 1)   f n(k )  xnk ) n ( (  / 1   xn x x   xn x x (k ) (k ) xnk 1)  (1   nk ) ) xnk )   nk ) f n ( x1( k ) , x2k ) , x3k ) ,..., xnk ) ) ( ( ( ( ( ( (   (k = 0,1,2,…) The equations (2.2) are expressed as For the choices of  i given (2.5) , the conditions for convergence of the method (2.6) can be obtained x1( k 1)  (1  1( k ) ) x1( k )  1( k ) f1( k ) from (2.4) as f 2 f f x2k 1)  (1   2k ) ) x2k )   2k ) f 2( k ) ( ( ( ( 2   3 3  ...   n n  1 x1 x1 x1 x3k 1)  (1   3 k ) ) x3k )   3 k ) f3( k ) ( ( ( ( (2.3) f1 f f x ( k 1)  (1   (k ) )x (k )  (k ) f (k ) 1   3 3  ...   n n  1 (2.7) n n n n n x2 x2 x2 It can directly be seen that the method (2.3) f1 f f  i( k )  1 1   2 2  ...   n1 n1  1 coincides with ( 1.4) when for each i and xn xn xn k. As the parameters  i (k ) in (2.3) accelerates or improves the convergence of (1.4), the method (2.3) For all x  x ( k ) and    ( k ) for each k. may be called as parametric method of iteration. For solving non-linear equations in single variable As given in [3] and [1], one can easily of the form show that the method (2.3) converges when the F(x)=0 (2.8) conditions The Parametric method of iteration can be defined from (2.3) as f1 f f (1  1 )  1   2 2  ...   n n  1 x ( k 1)  (1   ( k ) ) x ( k )   ( k ) f ( x ( k ) ) (2.9) x1 x1 x1 Where  is a parameter, whose choice using (2.5) obtained as 458 | P a g e
  • 3. Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.457-463 1 The parametric method of iteration (2.6 ) for the  (k )  for each k (2.10) solution of (3.1) can be written as 1  f '( x)   x  x( k )  With this choice of (2.9) the method (2.8) reduce to  f   f  x1( k 1)  k  f1( k )  x1( k ) 1 x  xk  / 1  1 x  xk   x1   x1  x( k 1)   f ( x ( k ) )  x ( k ) f '( x)  x  x( k )  / 1  f '( x)   x  x( k )  2.11)   ( f   f  x2k 1)  k  f 2( k )  x2k ) 2 x  xk  / 1  2 x  xk  ( As it is well known that the Newton-Raphson  x2   x2  method for the solution of (2.8) is given by F ( x( k ) )  ( f   f  x ( k 1) x (k )  (2.12) x3( k 1)  k  f3( k )  x3k ) 3 x  xk  / 1  3 x  xk  F '( x)  x3   x3  x  x( k ) It is interesting to note that F(x) of equation (2.8) is (3.3) expressed in the form The iteration method for solving (3.1) can be taken by writing (3.1) into the form (3.2) as F ( x)  x  f ( x) (2.13) Then the Newton-Raphson iteration (2.12) exactly x1( k 1)  (cos x2k ) x3k )  0.5  x1( k ) ) / 4, ( ( * ( k 1) takes the form (2.11). x2   x1( k 1) / 25, (3.4) x3k 1)  ( x3k )  9  e x1 (k ) (k ) 3. NUMERICAL EXAMPLES: ( ( x2 ) / 21 We consider the non-linear system of three (*Here + or – sign should be taken in accordance equations in three unknowns: with the initial guess) F1 ( x1 , x2 , x3 )  3 x1  cos x2 x3  0.5  0 And, the Newton-Raphson iteration for the solution F2 ( x1 , x2 , x3 )  x12  625 x2  0 2 of (3.1) is F3 ( x1 , x2 , x3 )  e  x1x2  20 x3  9  0 1 x1( k 1)  x( k )   J ( x( k )  F ( x( k ) )   (3.5) (3.1) Where X  ( x1 , x2 , x3 ) T As noted by William W.Hager [4], this system has and the Jacobian J is a more than one solution. Expressing the system (3.1) 3x3 matrix: as x1  f1 ( x1 , x2 , x3 )  F1 ( X ) F1 ( X ) F1 ( X )    x2  f 2 ( x1 , x2 , x3 ) (3.2)  x1 x2 x3   F ( X ) F2 ( X ) F2 ( X )  (3.6) x3  f3 ( x1 , x2 , x3 ) J ( x)   2  f1  (cos x2 x3  0.5  x1 ) / 4,  x1 x2 x3   F3 ( X ) F3 ( X ) F3 ( X )    where * f 2   x1 / 25,  x1 x2 x3  f 3  ( x3  9  e  x1x2 ) ) / 21 to compare the methods (3.3), (3.4) and (3.5) for the solution of (3.1), we tabulate the following results (*Here + or – sign should be taken in accordance for various initial approximation to the unknowns with the initial guess) 459 | P a g e
  • 4. Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.457-463 TABLE 3.1 For x1(0) = 0, x2(0) = 0, x3(0) = 0 Iteration Parametric Method of Variable Iteration Method Newton- Raphson Method Number Iteration X1 0.375 0.5 Since J-1 does not exist, Newton- 1 X2 0.015 0.02 Raphson Method fails to converge X3 -0.475923371 -0.4995024917 X1 0.4687436296 0.4999833666 2 X2 0.01874974519 --- 0.01999933467 X3 -0.4984368122 -0.4995025246 X1 0.49217499 0.4999833677 3 X2 0.0196869996 --- 0.01999933471 X3 -0.4994663883 -0.4995025246 X1 0.4980316616 4 X2 0.01992126647 --- --- X3 -0.4995044772 X1 0.4994955383 5 X2 0.01997982153 --- --- X3 -0.4995035371 X1 0.4998614347 6 X2 0.01999445739 --- --- X3 -0.4995028027 X1 0.4999528905 7 X2 0.01999811562 --- --- X3 -0.4995025953 X1 0.4999757499 8 X2 0.01999903 --- --- X3 -0.4995025424 X1 0.4999814637 9 X2 0.01999925855 --- --- X3 -0.4995025291 X1 0.4999828918 10 X2 0.01999931567 --- --- X3 -0.4995025257 X1 0.4999832488 11 X2 0.01999932995 --- --- X3 -0.4995025249 X1 0.499983338 12 X2 0.01999933352 --- --- X3 -0.4995025247 X1 0.4999833603 13 X2 0.01999933441 --- --- X3 -0.4995025246 X1 0.4999833659 14 X2 0.01999933463 --- --- X3 -0.4995025246 X1 0.4999833673 15 X2 0.0199933469 --- --- X3 -0.4995025246 X1 0.4999833676 16 X2 0.0199993347 --- --- X3 -0.4995025246 X1 0.4999833676 17 X2 0.01999933471 --- --- X3 -0.4995025246 CONVERGED IN CONVERGED IN 17 CONCLUSION NO CONVERGENCE 3 ITERATIONS ITERATIONS 460 | P a g e
  • 5. Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.457-463 TABLE 3.2 For x1(0) = 1, x2(0) = 1, x3(0) = 0 Iteration Parametric Method of Variable Iteration Method Newton- Raphson Method Number Iteration X1 0.625 0.5 0.5 1 X2 0.025 0.5 0.02 X3 -0.475452213 -0.4867879441 -0.4995024917 X1 0.5312323397 0.4996539197 0.4999833666 2 X2 0.02124929359 0.2503994463 0.01999933467 X3 -0.4982965416 -0.493806505 -0.4995025246 X1 0.5077940706 0.4999491556 0.4999833677 3 X2 0.02031176283 0.1259982842 0.01999933471 X3 -0.4994302551 -0.4968557293 -0.4995025246 X1 0.5019356544 0.4999793144 4 X2 0.02007742618 0.06458633398 --- X3 -0.4994953947 -0.4983882295 X1 0.5004713422 0.4999829242 5 X2 0.02001885369 0.0353895858 --- X3 -0.4995012645 -0.4991178073 X1 0.500105337 0.49998333 6 X2 0.02000421348 0.02334579615 --- X3 -0.4995022346 -0.4994188656 X1 0.500013854 0.4999833662 7 X2 0.02000055416 0.02023918093 --- X3 -0.4995024533 -0.4994965282 X1 0.4999909878 0.4999833677 8 X2 0.01999963951 0.02000075587 --- X3 -0.4995025069 -0.4995024891 X1 0.4999852724 0.4999833677 9 X2 0.01999941089 0.01999933476 --- X3 -0.4995025202 -0.4995025246 X1 0.4999838438 0.4999833677 10 X2 0.01999935375 0.01999933471 --- X3 -0.4995025235 -0.4995025246 X1 0.4999834867 11 X2 0.01999933947 --- --- X3 -0.4995025243 X1 0.4999833975 12 X2 0.0199993359 --- --- X3 -0.4995025245 X1 0.4999833752 13 X2 0.01999933501 --- --- X3 -0.4995025246 X1 0.4999833696 --- 14 X2 0.01999933478 X3 -0.4995025246 --- X1 0.4999833682 15 X2 0.01999933473 --- --- X3 -0.4995025246 X1 0.4999833678 16 X2 0.01999933471 --- --- X3 -0.4995025246 461 | P a g e
  • 6. Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.457-463 CONVERGED CONVERGED IN CONVERGED IN CONCLUSION IN 16 10 3 ITERATIONS ITERATIONS ITERATIONS TABLE 3.3 For x1(0) = 5, x2(0) = 5, x3(0) = 5 Iteration Parametric Method of Variable Iteration Method Newton- Raphson Method Number Iteration X1 1.622800703 -1.257919398 0.497067604 1 X2 0.06491202812 2.493987329 0.01988270416 X3 -0.2333342432 -0.4500000001 -0.4995082814 X1 0.7806715004 -0.1892295183 0.4999835608 2 X2 0.03122686002 1.246638798 0.01999934243 X3 -0.4861548126 -1.343104476 -0.4995025242 X1 0.5701390675 0.751266281 0.4999833677 3 X2 0.0228055627 0.6231139626 0.01999933471 X3 -0.4987255541 -0.5170993363 -0.4995025246 X1 0.5175185969 0.501323845 4 X2 0.02070074387 0.3117994466 --- X3 -0.4994318911 -0.494510231 X1 0.5043662885 0.499950191 5 X2 0.02017465154 0.1565410286 --- X3 -0.4994908605 -0.4961226146 X1 0.5010788789 0.4999754417 6 X2 0.02004315515 0.07954800913 --- X3 -0.4994999011 -0.4980152391 X1 0.5002571909 0.4999824598 7 X2 0.0200128764 0.04228803314 --- X3 -0.4995018832 -0.49894539 X1 0.5000518099 0.4999832811 8 X2 0.0200020724 0.02587317067 --- X3 -0.499502365 -0.4993556857 X1 0.5000004749 0.4999833629 9 X2 0.02000001899 0.02066608603 --- X3 -0.4995024848 -0.4994848556 X1 0.4999876437 0.4999833677 10 X2 0.01999950575 0.02001009043 --- X3 -0.4995025147 -0.4995022556 X1 0.4999844365 0.4999833677 11 X2 0.01999937746 0.0199993376 --- X3 -0.4995025221 -0.4995025245 X1 0.4999836349 0.4999833677 12 X2 0.0199993454 0.01999933471 --- X3 -0.499502524 -0.4995025246 X1 0.4999834345 13 X2 0.01999933738 --- --- X3 -0.4995025245 X1 0.4999833844 14 X2 0.01999933538 --- --- X3 -0.4995025246 X1 0.4999833719 15 X2 0.01999933488 --- --- X3 -0.4995025246 X1 0.4999833688 16 X2 0.01999933475 --- --- X3 -0.4995025246 462 | P a g e
  • 7. Dr.V.Kusuma Kumari, / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.457-463 X1 0.499983368 17 X2 0.01999933472 --- --- X3 -0.4995025246 X1 0.4999833678 18 X2 0.01999933471 --- --- X3 -0.4995025246 CONVERGED CONVERGED IN CONVERGED IN CONCLUSION IN 18 12 3 ITERATIONS ITERATIONS ITERATIONS Conclusion: From the above tabulated results it can be observed that the Parametric method of iteration looks more efficient than the Newton-Raphson method and Iteration method for the problems considered. It can also observed that Parametric method of Iteration converges even though Newton-Raphson method fails to converge from example (3.1). REFERENCES [1] GOURDIN, A., BOUMAHRAT, M., Applied Numerical Methods, Prentice- Hall of India Pvt Ltd, (1989). [2] RAJASEKARAN, S., (1986) ‘Numerical Methods in Science and Engineering’, A.H.wheeler & Co., Pvt Ltd.,1st edition. [3] SCARBOUROUGH, J. B. (1966), ‘ Numerical Mathematical Analysis’; Oxford & IBH Publishing Co., Pvt.Ltd. [4] WILLIAM W.HAGER, Applied Numerical Linear Algebra, Prentice Hall, Englrwood Cliffs, New Jersey 07637, (1988). 463 | P a g e