SlideShare una empresa de Scribd logo
1 de 20
Descargar para leer sin conexión
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
DOI:10.5121/ijfcst.2016.6101 1
OPTIMIZATION OF TECHNOLOGICAL PROCESS TO
DECREASE DIMENSIONS OF CIRCUITS XOR, MANU-
FECTURED BASED ON FIELD-EFFECT HETEROTRAN-
SISTORS
E.L. Pankratov1
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
Street, Nizhny Novgorod, 603950, Russia
ABSTRACT
The paper describes an approach of increasing of integration rate of elements of integrated circuits. The
approach has been illustrated by example of manufacturing of a circuit XOR. Framework the approach one
should manufacture a heterostructure with specific configuration. After that several special areas of the
heterostructure should be doped by diffusion and/or ion implantation and optimization of annealing of do-
pant and/or radiation defects. We analyzed redistribution of dopant with account redistribution of radiation
defects to formulate recommendations to decrease dimensions of integrated circuits by using analytical
approaches of modeling of technological process.
KEYWORDS
Circuits XOR; increasing of density of elements; optimization of technological process.
1. INTRODUCTION
One of intensively solving problems of solid state electronics is improvement of frequency cha-
racteristics of electronic devices and their reliability. Another intensively solving problem is in-
creasing of integration rate of integrated circuits with decreasing of their dimensions [1-9]. To
solve these problems they were used searching materials with higher values of charge carriers
motilities, development new and elaboration existing technological approaches [1-14]. In the
present paper we consider circuit XOR from [15]. Based on recently considered approaches [16-
23] we consider an approach to decrease dimensions of the circuit. The approach based on manu-
facturing a heterostructure, which consist of a substrate and an epitaxial layer. The epitaxial layer
manufactured with several sections. To manufacture these sections another materials have been
used. These sections have been doped by diffusion or ion implantation. The doping gives a possi-
bility to generate another type of conductivity (p or n). After finishing of manufacturing of the
circuit XOR these sections will be used by sources, drains and gates (see Fig. 1). Dopant and rad-
iation defects should be annealed after finishing the dopant diffusion and the ion implantation.
Our aim framework the paper is analysis of redistribution of dopant and redistribution of radiation
defects to prognosis technological process. The accompanying aim of the present paper is devel-
opment of analytical approach for prognosis technological processes with account all required
influenced factors.
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
2
2. METHOD OF SOLUTION
We solve our aim by calculation and analysis distribution of concentrations of dopants in space
and time. The required distribution has been determined by solving the second Fick's law in the
following form [24,25]
( ) ( ) ( ) ( )






+






+






=
z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
t
t
z
y
x
C
C
C
C
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
. (1)
Boundary and initial conditions for the equations are
Fig. 1. Structure of epitaxial layer. View from top
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
3
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= y
L
x
y
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= z
L
x
z
t
z
y
x
C
, C(x,y,z,0)=f (x,y,z). (2)
Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and
time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem-
perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of
heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation
defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate
in heterostructure, temperature of annealing and concentrations of dopant and radiation defects
could be written as [26-28]
( ) ( )
( )
( ) ( )
( ) 







+
+






+
= 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
D L
C ς
ς
ξ γ
γ
. (3)
Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate
and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit
of solubility of dopant. The parameter γ is integer and usually could be varying in the following
interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver-
age) with each atom of dopant. Ref.[26] describes more detailed information about dependence of
dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen-
tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of
concentration of vacancies has been denoted as V*
. It is known, that doping of materials by diffu-
sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa-
tio-temporal distributions of concentrations of radiation defects by solving the following system
of equations [27,28]
( ) ( ) ( ) ( ) ( ) ( ) ×
−






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
T
z
y
x
k
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
t
z
y
x
I V
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
2
−






∂
∂
∂
∂
+
× (4)
( ) ( ) ( ) ( ) ( ) ( )×
−






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
T
z
y
x
k
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
t
z
y
x
V V
I
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
2
−






∂
∂
∂
∂
+
× .
Boundary and initial conditions for these equations are
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= y
L
y
y
t
z
y
x
ρ
,
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
4
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= z
L
z
z
t
z
y
x
ρ
, ρ (x,y,z,0)=fρ (x,y,z). (5)
Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I
(x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and
temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4)
describes generation divacancies and diinterstitials. Parameter of recombination of point radiation
defects and parameters of generation of simplest complexes of point radiation defects have been
denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively.
Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials
ΦI(x,y,z,t) in space and time by solving the following system of equations [27,28]
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
.
Boundary and initial conditions for these equations are
( )
0
,
,
,
0
=
∂
Φ
∂
=
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= x
L
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= y
L
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
z
z
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= z
L
z
z
t
z
y
x
ρ
, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)
The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com-
plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z,
T) describe the parameters of decay of these complexes on coordinate and temperature.
To describe physical processes they are usually solving nonlinear equations with space and time
varying coefficients. In this situation only several limiting cases have been analyzed [29-32]. One
way to solve the problem is solving the Eqs. (1), (4), (6) by the Bubnov-Galerkin approach [33]
after appropriate transformation of these transformation. To determine the spatio-temporal distri-
bution of concentration of dopant we transform the Eq.(1) to the following integro- differential
form
( ) ( )
( ) ( )
( )
×
∫ ∫ ∫ 





+
+
=
∫ ∫ ∫
t y
L
z
L
L
x
L
y
L
z
L
z
y
x y z
x y z V
w
v
x
V
V
w
v
x
V
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
C
L
L
L
z
y
x
0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
τ
ς
τ
ς
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
5
( )
( )
( ) ( ) ( )
( )
×
∫ ∫ ∫ 





+
+






+
×
t x
L
z
L
L
z
y x z T
z
y
x
P
w
y
u
C
T
w
y
u
D
L
L
z
y
d
x
w
v
x
C
T
w
v
x
P
w
v
x
C
0 ,
,
,
,
,
,
1
,
,
,
,
,
,
,
,
,
,
,
,
1 γ
γ
γ
γ
τ
ξ
τ
∂
τ
∂
τ
ξ
( ) ( )
( )
( ) ( ) ×
∫ ∫ ∫
+






+
+
×
t x
L
y
L
L
z
x x y
T
z
v
u
D
L
L
z
x
d
y
w
y
u
C
V
w
y
u
V
V
w
y
u
V
0
2
*
2
2
*
1 ,
,
,
,
,
,
,
,
,
,
,
,
1 τ
∂
τ
∂
τ
ς
τ
ς
( ) ( )
( )
( )
( )
( ) +






+






+
+
×
y
x
L
L
y
x
d
z
z
v
u
C
T
z
y
x
P
z
v
u
C
V
z
v
u
V
V
z
v
u
V
τ
∂
τ
∂
τ
ξ
τ
ς
τ
ς γ
γ
,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
1 2
*
2
2
*
1
( )
∫ ∫ ∫
+
x
L
y
L
z
L
z
y
x x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
,
, . (1a)
Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [33]. To use the ap-
proach we consider solution of the Eq.(1a) as the following series
( ) ( ) ( ) ( ) ( )
∑
=
=
N
n
nC
n
n
n
nC t
e
z
c
y
c
x
c
a
t
z
y
x
C
0
0 ,
,
, .
Here ( ) ( )
[ ]
2
2
2
0
2
2
exp −
−
−
+
+
−
= z
y
x
C
nC L
L
L
t
D
n
t
e π , cn(χ) =cos(π nχ/Lχ). Number of terms N in the
series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0)
and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the
following result
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫



×





∑
+
−
=
∑
=
=
t y
L
z
L
N
n
nC
n
n
n
nC
z
y
N
n
nC
n
n
n
C
y z
e
w
c
v
c
x
c
a
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
0 1
1
3
2
1
γ
τ
π
( )
( ) ( )
( )
( ) ( ) ( )×
∑






+
+



×
=
N
n
n
n
nC
L v
c
x
s
a
T
w
v
x
D
V
w
v
x
V
V
w
v
x
V
T
w
v
x
P 1
2
*
2
2
*
1 ,
,
,
,
,
,
,
,
,
1
,
,
,
τ
ς
τ
ς
ξ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ×











∑
+
−
×
=
t x
L
z
L
N
m
mC
m
m
m
mC
z
x
nC
n
x z T
w
y
u
P
e
w
c
y
c
u
c
a
L
L
z
x
d
e
w
c
n
0 1 ,
,
,
1 γ
γ
ξ
τ
τ
τ
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ×
∑






+
+
×
=
τ
τ
τ
ς
τ
ς d
e
w
c
y
s
u
c
n
V
w
y
u
V
V
w
y
u
V
T
w
y
u
D
N
n
nC
n
n
n
L
1
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
( )
( )
( ) ( ) ( ) ( ) ×
∫ ∫ ∫











∑
+
−
×
=
t x
L
y
L
N
n
nC
n
n
n
nC
L
y
x
nC
x y
e
z
c
v
c
u
c
a
T
z
v
u
P
T
z
v
u
D
L
L
y
x
a
0 1
,
,
,
1
,
,
,
γ
γ
τ
ξ
( ) ( )
( )
( ) ( ) ( ) ( ) ×
+
∑






+
+
×
=
z
y
x
N
n
nC
n
n
n
nC
L
L
L
z
y
x
d
e
z
s
v
c
u
c
a
n
V
z
v
u
V
V
z
v
u
V
τ
τ
τ
ς
τ
ς
1
2
*
2
2
*
1
,
,
,
,
,
,
1
( )
∫ ∫ ∫
×
x
L
y
L
z
L
x y z
u
d
v
d
w
d
w
v
u
f ,
, ,
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
6
where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the
considered series. The coefficients an could be calculated for any quantity of terms N. In the
common case the relations could be written as
( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫ ∫



×





∑
+
−
=
∑
−
=
=
t L L L N
n
nC
n
n
n
nC
L
z
y
N
n
nC
nC
z
y
x
x y z
e
z
c
y
c
x
c
a
T
z
y
x
D
L
L
t
e
n
a
L
L
L
0 0 0 0 1
2
1
6
5
2
2
2
1
,
,
,
2
γ
τ
π
π
( )
( ) ( )
( )
( ) ( ) ( ) ( )×
∑






+
+



×
=
N
n
nC
n
n
n
nC
e
z
c
y
c
x
s
n
a
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P 1
2
*
2
2
*
1 2
,
,
,
,
,
,
1
,
,
,
τ
τ
ς
τ
ς
ξ
γ
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∫ ∫ ∫ ∫
−






−
+






−
+
×
t L L L
L
n
z
n
n
y
n
x y z
T
z
y
x
D
d
x
d
y
d
z
d
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0 0 0
,
,
,
1
1 τ
π
π
( ) ( ) ( ) ( ) ( )
( )
( )



+
+











∑
+
×
=
*
1
1
,
,
,
1
,
,
,
1
,
,
,
V
z
y
x
V
T
z
y
x
P
e
z
c
y
c
x
c
a
T
z
y
x
D
N
n
nC
n
n
n
nC
L
τ
ς
ξ
τ γ
γ
( )
( )
( ) ( )
( )
( ) ( )
[ ]
∑ ×






−
+






+
+



+
=
N
n
nC
n
x
n
n
a
x
c
n
L
x
s
x
V
z
y
x
V
V
z
y
x
V
V
z
y
x
V
1
2
*
2
2
*
1
2
*
2
2
1
,
,
,
,
,
,
1
,
,
,
π
τ
ς
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( ) ( )
[ ] ×
−






−
+
× 2
2
2
1
2
2 π
τ
π
τ
π
y
x
n
z
n
nC
n
n
n
z
x
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
e
z
c
y
s
x
c
L
L
( ) ( ) ( ) ( )
( )
( )
( )
∫ ∫ ∫ ∫ 


+
+











∑
+
×
=
t L L L N
n
nC
n
n
n
nC
x y z
V
z
y
x
V
T
z
y
x
P
e
z
c
y
c
x
c
a
0 0 0 0
2
*
2
2
1
,
,
,
1
,
,
,
1
τ
ς
ξ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ] ×
∑






−
+



+
=
N
n
n
x
n
n
n
n
nC
L x
c
n
L
x
s
x
z
s
y
c
x
c
n
a
T
z
y
x
D
V
z
y
x
V
1
*
1 1
,
,
,
,
,
,
π
τ
ς
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∑ ∫ ×






−
+
+






−
+
×
=
N
n
L
n
x
n
nC
n
y
n
x
x
c
n
L
x
s
x
d
x
d
y
d
z
d
e
y
c
n
L
y
s
y
1 0
1
1
π
τ
τ
π
( ) ( )
[ ] ( ) ( )
[ ] ( )
∫ ∫






−
+






−
+
×
y z
L L
n
z
n
n
y
n x
d
y
d
z
d
z
y
x
f
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0
,
,
1
1
π
π
.
As an example for γ=0 we obtain
( ) ( )
[ ] ( ) ( )
[ ] ( ) ( )
{
∫ ∫ ∫ +






−
+






−
+
=
x y z
L L L
n
n
y
n
n
y
n
nC x
s
x
y
d
z
d
z
y
x
f
z
c
n
L
z
s
z
y
c
n
L
y
s
y
a
0 0 0
,
,
1
1
π
π
( )
[ ] ( ) ( ) ( ) ( )
[ ] ( )







∫ ∫ ∫ ∫ ×






−
+



−
×
t L L L
L
n
y
n
n
n
x
n
x y z
T
z
y
x
D
y
c
n
L
y
s
y
y
c
x
s
n
x
d
n
L
x
c
0 0 0 0
,
,
,
1
2
2
1
π
π
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
7
( ) ( )
[ ] ( ) ( )
( ) ( )
×






+






+
+






−
+
×
T
z
y
x
P
V
z
y
x
V
V
z
y
x
V
z
c
n
L
z
s
z n
y
n
,
,
,
1
,
,
,
,
,
,
1
1 2
*
2
2
*
1 γ
ξ
τ
ς
τ
ς
π
( ) ( ) ( ) ( ) ( ) ( )
[ ] ( ) ( )×
∫ ∫ ∫ ∫






−
+
+
×
t L L L
n
n
n
y
n
n
nC
nC
n
x y z
z
c
y
s
x
c
n
L
x
s
x
x
c
e
d
e
x
d
y
d
z
d
z
c
0 0 0 0
2
1
π
τ
τ
τ
( ) ( )
[ ]
( )
( ) ( )
( )
×






+
+






+






−
+
× 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
1
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
z
c
n
L
z
s
z n
y
n
τ
ς
τ
ς
ξ
π γ
( ) ( ) ( ) ( ) ( )
[ ] ( ) ( )
{
∫ ∫ ∫ ×






−
+
+
×
t L L
n
n
n
x
n
n
nC
L
x y
y
s
y
c
x
c
n
L
x
s
x
x
c
e
d
x
d
y
d
z
d
T
z
y
x
D
0 0 0
1
,
,
,
π
τ
τ
( )
[ ] ( ) ( )
( )
( )
( )
∫ 


+
+






+



−
+
×
z
L
L
n
n
y
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D
z
s
y
c
n
L
y
0
2
*
2
2
,
,
,
1
,
,
,
1
,
,
,
2
1
τ
ς
ξ
π γ
( ) ( )
1
6
5
2
2
2
*
1
,
,
,
−




−






+ t
e
n
L
L
L
d
x
d
y
d
z
d
V
z
y
x
V
nC
z
z
z
π
τ
τ
ς .
For γ = 1 one can obtain the following relation to determine required parameters
( ) ( ) ( ) ( )
∫ ∫ ∫
+
±
−
=
x y z
L L L
n
n
n
n
n
n
n
nC
x
d
y
d
z
d
z
y
x
f
z
c
y
c
x
c
a
0 0 0
2
,
,
4
2
α
β
α
β
,
where ( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫ ×






+
+
=
t L L L
n
n
n
nC
z
y
n
x y z
V
z
y
x
V
V
z
y
x
V
z
c
y
c
x
s
e
n
L
L
0 0 0 0
2
*
2
2
*
1
2
,
,
,
,
,
,
1
2
2
τ
ς
τ
ς
τ
π
ξ
α
( )
( )
( ) ( )
[ ] ( ) ( )
[ ] ×
+






−
+






−
+
×
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
y
c
n
L
y
s
y
T
z
y
x
P
T
z
y
x
D z
x
n
z
n
n
y
n
L
2
2
1
1
,
,
,
,
,
,
π
ξ
τ
π
π
( ) ( ) ( ) ( )
[ ] ( ) ( )
( )
( ) ( )
[ ] ×
∫ ∫ ∫ ∫






−
−






−
+
×
t L L L
n
z
n
L
n
n
x
n
n
nC
x y z
z
c
n
L
z
s
z
T
z
y
x
P
T
z
y
x
D
z
c
x
c
n
L
x
s
x
x
c
e
0 0 0 0
1
,
,
,
,
,
,
1
π
π
τ
( )
( )
( ) ( )
( )
( ) ×
+






+
+
×
n
L
L
d
x
d
y
d
y
s
z
d
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D y
x
n
L
2
2
*
2
2
*
1
2
2
,
,
,
,
,
,
1
,
,
,
,
,
,
π
ξ
τ
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( )
( )
( ) ( )
( )
×
∫ ∫ ∫ ∫ 





+
+
×
t L L L
L
n
n
n
nC
x y z
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D
z
s
y
c
x
c
e
0 0 0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
2
τ
ς
τ
ς
τ
( ) ( )
[ ] ( ) ( )
[ ] τ
π
π
d
x
d
y
d
z
d
y
c
n
L
y
s
y
x
c
n
L
x
s
x n
y
n
n
x
n






−
+






−
+
× 1
1 , ( )×
∫
=
t
nC
z
y
n e
n
L
L
0
2
2
τ
π
β
( ) ( ) ( ) ( )
[ ] ( ) ( ) ( )
( )
∫ ∫ ∫ ×






+
+






−
+
×
x y z
L L L
n
n
y
n
n
n
V
z
y
x
V
V
z
y
x
V
z
c
y
c
n
L
y
s
y
y
c
x
s
0 0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
1
2
τ
ς
τ
ς
π
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
8
( ) ( ) ( )
[ ] ( ) ( ) ( )×
∫ ∫ ∫
+






−
+
×
t L L
n
n
nC
z
x
n
z
n
L
x y
y
s
x
c
e
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
0 0 0
2
2
2
1
,
,
, τ
π
τ
π
( ) ( )
[ ] ( ) ( ) ( ) ( )
( )
×
∫ 





+
+






−
+
×
z
L
n
L
n
x
n
V
z
y
x
V
V
z
y
x
V
z
c
T
z
y
x
D
x
c
n
L
x
s
x
0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
τ
ς
τ
ς
π
( ) ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
+






−
+
×
t L
n
x
n
nC
y
x
n
z
n
x
x
c
n
L
x
s
x
e
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
0 0
2
1
2
1
π
τ
π
τ
π
( ) ( ) ( )
[ ] ( ) ( ) ( )
( )
∫ ∫ ×






+
+






−
+
×
y z
L L
L
n
y
n
n
V
z
y
x
V
V
z
y
x
V
T
z
y
x
D
y
c
n
L
y
s
y
x
c
0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
τ
ς
τ
ς
π
( ) ( ) ( ) 6
5
2
2
2
2 n
t
e
L
L
L
d
x
d
y
d
y
c
z
d
z
s nC
z
y
x
n
n π
τ −
× .
The same approach could be used for calculation parameters an for different values of parameterγ.
However the relations are bulky and will not be presented in the paper. Advantage of the ap-
proach is absent of necessity to join dopant concentration on interfaces of heterostructure.
The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans-
form the differential equations to the following integro- differential form
( ) ( ) ( ) +
∫ ∫ ∫
∂
∂
=
∫ ∫ ∫
t y
L
z
L
I
z
y
x
L
y
L
z
L
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
I
T
w
v
x
D
L
L
z
y
u
d
v
d
w
d
t
w
v
u
I
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∫ ∫ ∫
∂
∂
+
x
L
y
L
z
L
V
I
z
y
x
t x
L
z
L
I
z
x x y z
x z
t
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
w
d
x
w
y
u
I
T
w
y
u
D
L
L
z
x
,
,
,
,
,
,
,
,
,
,
,
, ,
0
τ
τ
( ) ( ) ( ) ×
−
∫ ∫ ∫
∂
∂
+
×
z
y
x
t x
L
y
L
I
y
x
L
L
L
z
y
x
d
u
d
v
d
T
z
v
u
D
z
z
v
u
I
L
L
y
x
u
d
v
d
w
d
t
w
v
u
V
x y
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
×
x
L
y
L
z
L
I
z
y
x
x
L
y
L
z
L
I
I
x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
t
w
v
u
I
T
w
v
u
k ,
,
,
,
,
,
,
, 2
, (4a)
( ) ( ) ( ) +
∫ ∫ ∫
∂
∂
=
∫ ∫ ∫
t y
L
z
L
V
z
y
x
L
y
L
z
L
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
V
T
w
v
x
D
L
L
z
y
u
d
v
d
w
d
t
w
v
u
V
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( ) ×
∫ ∫ ∫
∂
∂
+
∫ ∫ ∫
∂
∂
+
t x
L
y
L
y
x
t x
L
z
L
V
z
x x y
x z z
z
v
u
V
L
L
y
x
d
u
d
w
d
x
w
y
u
V
T
w
y
u
D
L
L
z
x
0
0
,
,
,
,
,
,
,
,
,
τ
τ
τ
( ) ( ) ( ) ( ) −
∫ ∫ ∫
−
×
x
L
y
L
z
L
V
I
z
y
x
V
x y z
u
d
v
d
w
d
t
w
v
u
V
t
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
T
z
v
u
D ,
,
,
,
,
,
,
,
,
,
,
, ,
τ
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
−
x
L
y
L
z
L
V
z
y
x
x
L
y
L
z
L
V
V
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
t
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, 2
, .
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
9
We determine spatio-temporal distributions of concentrations of point defects as the same series
( ) ( ) ( ) ( ) ( )
∑
=
=
N
n
n
n
n
n
n t
e
z
c
y
c
x
c
a
t
z
y
x
1
0 ,
,
, ρ
ρ
ρ .
Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the
following results
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
=
∑
=
=
N
n
t y
L
z
L
I
n
n
nI
z
y
x
N
n
nI
n
n
n
nI
y z
v
d
w
d
T
w
v
x
D
z
c
y
c
a
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
,
,
,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −
∑ ∫ ∫ ∫
−
×
=
N
n
t x
L
z
L
I
n
n
nI
n
nI
z
y
x
n
nI
x z
d
u
d
w
d
T
w
y
u
D
z
c
x
c
e
y
s
a
L
L
L
z
x
x
s
d
e
1 0
,
,
, τ
τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∑ ∫ ∫ ∫
−
=
x
L
y
L
z
L
I
I
N
n
t x
L
y
L
I
n
n
nI
n
nI
z
y
x x y z
x y
T
v
v
u
k
d
u
d
v
d
T
z
v
u
D
y
c
x
c
e
z
s
a
L
L
L
y
x
,
,
,
,
,
, ,
1 0
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫ ∑
−





∑
×
=
=
x
L
y
L
z
L
N
n
n
n
n
nI
z
y
x
z
y
x
N
n
nI
n
n
n
nI
x y z
w
c
v
c
u
c
a
L
L
L
z
y
x
L
L
L
z
y
x
u
d
v
d
w
d
t
e
w
c
v
c
u
c
a
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∫ ∫ ∫
+
∑
×
=
x
L
y
L
z
L
I
N
n
V
I
nV
n
n
n
nV
nI
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
T
v
v
u
k
t
e
w
c
v
c
u
c
a
t
e ,
,
,
,
,
1
,
z
y
x
L
L
L
z
y
x
×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
=
∑
=
=
N
n
t y
L
z
L
V
n
n
nV
z
y
x
N
n
nV
n
n
n
nV
y z
v
d
w
d
T
w
v
x
D
z
c
y
c
a
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
,
,
,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −
∑ ∫ ∫ ∫
−
×
=
N
n
t x
L
z
L
V
n
n
nV
n
nV
z
y
x
n
nV
x z
d
u
d
w
d
T
w
y
u
D
z
c
x
c
e
y
s
a
L
L
L
z
x
x
s
d
e
1 0
,
,
, τ
τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∑ ∫ ∫ ∫
−
=
x
L
y
L
z
L
V
V
N
n
t x
L
y
L
V
n
n
nV
n
nV
z
y
x x y z
x y
T
v
v
u
k
d
u
d
v
d
T
z
v
u
D
y
c
x
c
e
z
s
a
L
L
L
y
x
,
,
,
,
,
, ,
1 0
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫ ∑
−





∑
×
=
=
x
L
y
L
z
L
N
n
n
n
n
nI
z
y
x
z
y
x
N
n
nI
n
n
n
nV
x y z
w
c
v
c
u
c
a
L
L
L
z
y
x
L
L
L
z
y
x
u
d
v
d
w
d
t
e
w
c
v
c
u
c
a
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∫ ∫ ∫
+
∑
×
=
x
L
y
L
z
L
V
N
n
V
I
nV
n
n
n
nV
nI
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
T
v
v
u
k
t
e
w
c
v
c
u
c
a
t
e ,
,
,
,
,
1
,
z
y
x
L
L
L
z
y
x
× .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms
N. In the common case equations for the required coefficients could be written as
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
N
n
t L L
n
y
n
y
n
nI
x
N
n
nI
nI
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
n
a
L
t
e
n
a
L
L
L
1 0 0 0
2
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
10
( ) ( ) ( )
[ ] ( ) ( )
{
∑ ∫ ∫ +
−
∫






−
+
×
=
N
n
t L
n
nI
y
L
nI
n
z
n
I
x
z
x
s
x
n
a
L
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
1 0 0
2
0
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( ) ( ) ( )
[ ] ( )
[ ]×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
z
n
z
I
n
x
x
y
c
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
x
c
n
L
L
0 0
2
1
1
2
2
2
,
,
,
1
2
π
π
( ) ( ) ( ) ( )
[ ] ( ) −
∫






−
+
+
×
z
L
nI
n
z
n
z
I
nI d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
d
e
x
d
y
d
0
1
2
2
2
,
,
, τ
τ
π
τ
τ
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+






−
+
+
−
=
N
n
t L L
n
y
n
y
n
x
n
x
nI
z
x y
y
c
n
L
y
s
y
L
x
c
n
L
x
s
x
L
n
a
L 1 0 0 0
2
1
2
2
2
1
2
2
2
2
1
π
π
π
( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫



+
−
+
−
∫ −
×
=
N
n
L
n
x
x
nI
nI
L
nI
I
n
x
z
x
c
n
L
L
t
e
a
d
e
x
d
y
d
z
d
T
z
y
x
D
z
c
1 0
2
0
1
2
2
2
,
,
,
2
1
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫



+
−
+






−
+
+
+
y z
L L
n
z
z
I
I
n
y
n
y
n z
c
n
L
L
T
z
y
x
k
y
c
n
L
y
s
y
L
x
s
x
0 0
, 1
2
2
,
,
,
1
2
2
2
2
π
π
( )} ( ) ( ) ( ) ( )
[ ] {
∑ ∫ ∫ +






−
+
+
−
+
=
N
n
L L
y
n
x
n
x
nV
nI
nV
nI
n
x y
L
x
c
n
L
x
s
x
L
t
e
t
e
a
a
x
d
y
d
z
d
z
s
z
1 0 0
1
2
2
2
2
π
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫ ×






−
+
+



−
+
+
z
L
n
z
n
z
V
I
n
y
n z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
c
n
L
y
s
y
0
, 1
2
2
2
,
,
,
1
2
2
2
π
π
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∑ ∫ ∫ ∫






−
+






−
+
+
×
=
N
n
L L L
I
n
y
n
n
x
n
x y z
T
z
y
x
f
y
c
n
L
y
s
y
x
c
n
L
x
s
x
x
d
y
d
1 0 0 0
,
,
,
1
1
π
π
( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L n
z
n
z






−
+
+
× 1
2
2
2
π
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
N
n
t L L
n
y
n
y
n
nV
x
N
n
nV
nV
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
n
a
L
t
e
n
a
L
L
L
1 0 0 0
2
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑ ∫ ∫ +
−
∫






−
+
×
=
N
n
t L
n
nV
y
L
nV
n
z
n
V
x
z
x
s
x
n
a
L
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
1 0 0
2
0
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( ) ( ) ( )
[ ] ( )
[ ]×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
z
n
z
V
n
x
x
y
c
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
x
c
n
L
L
0 0
2
1
1
2
2
2
,
,
,
1
2
π
π
( ) ( ) ( ) ( )
[ ] ( ) −
∫






−
+
+
×
z
L
nV
n
z
n
z
V
nV
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
d
e
x
d
y
d
0
1
2
2
2
,
,
, τ
τ
π
τ
τ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
11
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+






−
+
+
−
=
N
n
t L L
n
y
n
y
n
x
n
x
nV
z
x y
y
c
n
L
y
s
y
L
x
c
n
L
x
s
x
L
n
a
L 1 0 0 0
2
1
2
2
2
1
2
2
2
2
1
π
π
π
( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫



+
−
+
−
∫ −
×
=
N
n
L
n
x
x
nV
nV
L
nV
V
n
x
z
x
c
n
L
L
t
e
a
d
e
x
d
y
d
z
d
T
z
y
x
D
z
c
1 0
2
0
1
2
2
2
,
,
,
2
1
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫



+
−
+






−
+
+
+
y z
L L
n
z
z
V
V
n
y
n
y
n z
c
n
L
L
T
z
y
x
k
y
c
n
L
y
s
y
L
x
s
x
0 0
, 1
2
2
,
,
,
1
2
2
2
2
π
π
( )} ( ) ( ) ( ) ( )
[ ] {
∑ ∫ ∫ +






−
+
+
−
+
=
N
n
L L
y
n
x
n
x
nV
nI
nV
nI
n
x y
L
x
c
n
L
x
s
x
L
t
e
t
e
a
a
x
d
y
d
z
d
z
s
z
1 0 0
1
2
2
2
2
π
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫ ×






−
+
+



−
+
+
z
L
n
z
n
z
V
I
n
y
n z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
c
n
L
y
s
y
0
, 1
2
2
2
,
,
,
1
2
2
2
π
π
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∑ ∫ ∫ ∫






−
+






−
+
+
×
=
N
n
L L L
V
n
y
n
n
x
n
x y z
T
z
y
x
f
y
c
n
L
y
s
y
x
c
n
L
x
s
x
x
d
y
d
1 0 0 0
,
,
,
1
1
π
π
( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L n
z
n
z






−
+
+
× 1
2
2
2
π
.
In the final form relations for required parameters could be written as
( )







 −
+
−
+
±
+
−
=
A
y
b
y
b
A
b
b
A
b
a nI
nV
nI
2
3
4
2
3
4
3
4
4
4
λ
γ
,
nI
nI
nI
nI
nI
nI
nI
nV
a
a
a
a
χ
λ
δ
γ +
+
−
=
2
,
where ( ) ( ) ( ) ( )
[ ] ( )
{
∫ ∫ ∫ +
+






−
+
+
=
x y z
L L L
y
n
n
x
n
x
n
n L
y
s
y
x
c
n
L
x
s
x
L
T
z
y
x
k
t
e
0 0 0
, 2
1
2
2
2
,
,
,
2
π
γ ρ
ρ
ρ
ρ
( )
[ ] ( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L
y
c
n
L
n
z
n
z
n
y






−
+
+



−
+ 1
2
2
2
1
2
2 π
π
, ( )×
∫
=
t
n
x
n e
n
L 0
2
2
1
τ
π
δ ρ
ρ
( ) ( )
[ ] ( ) ( )
[ ] ( ) [
∫ ∫ ∫ −






−
+






−
+
×
x y z
L L L
n
z
n
n
y
n y
d
z
d
T
z
y
x
D
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0 0
1
,
,
,
1
2
1
2
ρ
π
π
( )] ( ) ( ) ( )
[ ] ( )
[ ] {
∫ ∫ ∫ ∫ +
−






−
+
+
+
−
t L L L
z
n
n
x
n
x
n
y
n
x y z
L
y
c
x
c
n
L
x
s
x
L
e
n
L
d
x
d
x
c
0 0 0 0
2
2
1
1
2
2
2
1
2
π
τ
π
τ ρ
( ) ( )
[ ] ( ) ( ) ( )
{
∫ ∫ +
+



−
+
+
t L
n
n
z
n
z
n
x
x
s
x
e
n
L
d
x
d
y
d
z
d
T
z
y
x
D
z
c
n
L
z
s
z
0 0
2
2
2
1
,
,
,
1
2
2
2 τ
π
τ
π
ρ
ρ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
12
( )
[ ] ( ) ( )
[ ] ( )
[ ] ( ) ×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
y
n
y
n
x
x z
d
T
z
y
x
D
z
c
y
c
n
L
y
s
y
L
x
c
n
L
L
0 0
,
,
,
2
1
1
2
1
2 ρ
π
π
( )
t
e
n
L
L
L
d
x
d
y
d n
z
y
x
ρ
π
τ 6
5
2
2
2
−
× , ( ) ( )
[ ] ( )
[ ]
∫ ∫



+
−
+






−
+
=
x y
L L
n
y
y
n
x
n
nIV y
c
n
L
L
x
c
n
L
x
s
x
0 0
1
2
2
1
π
π
χ
( )} ( ) ( ) ( )
[ ] ( ) ( )
t
e
t
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
s
y nV
nI
L
n
z
n
z
V
I
n
z
∫






−
+
+
+
0
, 1
2
2
2
,
,
,
2
π
,
( ) ( )
[ ] ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫ ∫ ×






−
+






−
+






−
+
=
x y z
L L L
n
z
n
n
y
n
n
x
n
n z
c
n
L
z
s
z
y
c
n
L
y
s
y
x
c
n
L
x
s
x
0 0 0
1
1
1
π
π
π
λ ρ
( ) x
d
y
d
z
d
T
z
y
x
f ,
,
,
ρ
× , 2
2
4 nI
nI
nI
nV
b χ
γ
γ
γ −
= , nI
nI
nV
nI
nI
nI
nI
nV
b γ
χ
δ
χ
δ
δ
γ
γ −
−
= 2
3
2 ,
2
2
3
4
8 b
b
y
A −
+
= , ( ) 2
2
2
2 nI
nI
nV
nI
nI
nV
nI
nV
nI
nI
nV
b χ
λ
λ
δ
χ
δ
γ
γ
λ
δ
γ −
+
−
+
= , ×
= nI
b λ
2
1
nI
nI
nV
nI
nV
λ
χ
δ
δ
γ −
× ,
4
3
3 3
2
3 3
2
3b
b
q
p
q
q
p
q
y −
+
+
−
−
+
= , 2
4
2
3
4
2
9
3
b
b
b
b
p
−
= ,
( ) 3
4
2
4
1
3
2
3
3
54
27
9
2 b
b
b
b
b
b
q +
−
= .
We determine distributions of concentrations of simplest complexes of radiation defects in space
and time as the following functional series
( ) ( ) ( ) ( ) ( )
∑
=
Φ
=
Φ
N
n
n
n
n
n
n t
e
z
c
y
c
x
c
a
t
z
y
x
1
0 ,
,
, ρ
ρ
ρ .
Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs.
(6) to the following integro-differential form
( ) ( ) ( ) ×
∫ ∫ ∫
Φ
=
∫ ∫ ∫Φ Φ
t y
L
z
L
I
I
x
L
y
L
z
L
I
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( )
∫ ∫ ∫ ×
+
∫ ∫ ∫
Φ
+
× Φ
Φ
t x
L
y
L
I
y
x
t x
L
z
L
I
I
z
x
z
y x y
x z
T
z
v
u
D
L
L
y
x
d
u
d
w
d
y
w
y
u
T
w
y
u
D
L
L
z
x
L
L
z
y
0
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( ) −
∫ ∫ ∫
+
Φ
×
x
L
y
L
z
L
I
I
z
y
x
I
x y z
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
z
z
v
u
τ
τ
∂
τ
∂
,
,
,
,
,
,
,
,
, 2
, (6a)
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
− Φ
x
L
y
L
z
L
I
z
y
x
x
L
y
L
z
L
I
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, τ
( ) ( ) ( ) ×
∫ ∫ ∫
Φ
=
∫ ∫ ∫Φ Φ
t y
L
z
L
V
V
x
L
y
L
z
L
V
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( )
∫ ∫ ∫ ×
+
∫ ∫ ∫
Φ
+
× Φ
Φ
t x
L
y
L
V
y
x
t x
L
z
L
V
V
z
x
z
y x y
x z
T
z
v
u
D
L
L
y
x
d
u
d
w
d
y
w
y
u
T
w
y
u
D
L
L
z
x
L
L
z
y
0
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
13
( ) ( ) ( ) −
∫ ∫ ∫
+
Φ
×
x
L
y
L
z
L
V
V
z
y
x
V
x y z
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
z
z
v
u
τ
τ
∂
τ
∂
,
,
,
,
,
,
,
,
, 2
,
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
− Φ
x
L
y
L
z
L
V
z
y
x
x
L
y
L
z
L
V
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, τ .
Substitution of the previously considered series in the Eqs.(6a) leads to the following form
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫
−
=
∑
−
=
Φ
=
Φ
N
n
t y
L
z
L
n
n
nI
n
I
n
z
y
x
N
n
nI
n
n
n
I
n
y z
w
c
v
c
t
e
x
s
a
n
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
π
π
( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
N
n
t x
L
z
L
I
n
n
I
n
z
y
x
I
x z
d
u
d
w
d
T
w
v
u
D
w
c
u
c
a
L
L
L
z
x
d
v
d
w
d
T
w
v
x
D
1 0
,
,
,
,
,
, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) +
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
Φ
N
n
t x
L
y
L
I
n
n
I
n
n
I
n
z
y
x
I
n
n
x y
d
u
d
v
d
T
z
v
u
D
v
c
u
c
t
e
z
s
a
n
L
L
L
y
x
t
e
y
s
n
1 0
,
,
, τ
π
( ) ( ) ( ) ×
∫ ∫ ∫
+
∫ ∫ ∫
+ Φ
x
L
y
L
z
L
I
x
L
y
L
z
L
I
I
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, 2
, τ
( ) ( )
∫ ∫ ∫
−
×
x
L
y
L
z
L
I
z
y
x
z
y
x x y z
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
L
L
L
z
y
x
τ
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫
−
=
∑
−
=
Φ
=
Φ
N
n
t y
L
z
L
n
n
nV
n
V
n
z
y
x
N
n
nV
n
n
n
V
n
y z
w
c
v
c
t
e
x
s
a
n
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
π
π
( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
N
n
t x
L
z
L
V
n
n
z
y
x
V
x z
d
u
d
w
d
T
w
v
u
D
w
c
u
c
n
L
L
L
z
x
d
v
d
w
d
T
w
v
x
D
1 0
,
,
,
,
,
, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
Φ
N
n
t x
L
y
L
V
n
n
V
n
n
z
y
x
V
n
n
V
n
x y
d
u
d
v
d
T
z
v
u
D
v
c
u
c
t
e
z
s
n
L
L
L
y
x
t
e
y
s
a
1 0
,
,
, τ
π
( ) ( ) ( ) ×
∫ ∫ ∫
+
∫ ∫ ∫
+
× Φ
Φ
x
L
y
L
z
L
V
x
L
y
L
z
L
V
V
z
y
x
V
n
x y z
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
a ,
,
,
,
,
,
,
, 2
,
τ
( ) ( )
∫ ∫ ∫
−
×
x
L
y
L
z
L
V
z
y
x
z
y
x x y z
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
L
L
L
z
y
x
τ
,
,
,
,
,
, .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of
terms N. In the common case equations for the required coefficients could be written as
( ) ( )
[ ] ( ) ( )
[ ] ×
∑∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
Φ
Φ
N
n
t L L
n
y
n
y
n
x
N
n
I
n
I
n
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
L
t
e
n
a
L
L
L
1 0 0 0
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
14
( ) ( ) ( )
[ ] ( ) ( )
{
∑∫ ∫ +
−
∫






−
+
×
=
Φ
Φ
Φ
N
n
t L
n
L
I
n
n
z
n
I
I
n
x
z
x
s
x
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
n
a
1 0 0
0
2
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
−



−
+
+ Φ
y z
L L
n
z
n
I
n
n
x
x x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
y
c
x
c
n
L
L
0 0
1
2
,
,
,
2
1
1
2
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ]
∑ ∫ ∫ ∫



+
−
+






−
+
−
×
=
Φ
Φ
Φ
N
n
t L L
n
y
n
n
x
n
I
n
x
y
I
n
I
n
x y
y
c
n
L
y
s
y
x
c
n
L
x
s
x
n
a
L
d
L
n
e
a
1 0 0 0
2
2
1
2
2
2
1
2
2
1
π
π
π
τ
τ
} ( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫ ∫



+
−
+
∫ −
+
=
Φ
Φ
Φ
Φ
N
n
t L
n
x
I
n
I
n
L
I
n
I
n
y
x
z
x
c
n
L
e
n
a
d
e
x
d
y
d
z
d
T
z
y
x
D
y
c
L
1 0 0
3
3
0
1
2
1
,
,
,
2
1
π
τ
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫



+
−
∫






−
+
+
z
y L
n
z
I
I
L
n
y
n
n z
c
n
L
T
z
y
x
k
t
z
y
x
I
y
c
n
L
y
s
y
x
s
x
0
,
2
0
1
2
,
,
,
,
,
,
1
2 π
π
( )} ( ) ( ) ( )
[ ] ( )
[ ]
∑ ∫ ∫ ∫



+
−






−
+
−
+
=
Φ
Φ
N
n
t L L
n
y
n
x
n
I
n
I
n
n
x y
y
c
n
L
x
c
n
L
x
s
x
e
n
a
x
d
y
d
z
d
z
s
z
1 0 0 0
3
3
1
2
1
2
1
π
π
τ
π
( )} ( ) ( )
[ ] ( ) ( ) ×
∑
+
∫






−
+
+
=
Φ
N
n
I
n
L
I
n
z
n
n
n
a
x
d
y
d
z
d
t
z
y
x
I
T
z
y
x
k
z
c
n
L
z
s
z
y
s
y
z
1
3
3
0
1
,
,
,
,
,
,
1
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ]
∫ ∫ ∫ ∫



+
−






−
+






−
+
× Φ
t L L L
n
z
n
y
n
n
x
n
I
n
x y z
z
c
n
L
y
c
n
L
y
s
y
x
c
n
L
x
s
x
e
0 0 0 0
1
2
1
2
1
2 π
π
π
τ
( )} ( ) x
d
y
d
z
d
z
y
x
f
z
s
z I
n
,
,
Φ
+
( ) ( )
[ ] ( ) ( )
[ ] ×
∑∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
Φ
Φ
N
n
t L L
n
y
n
y
n
x
N
n
V
n
V
n
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
L
t
e
n
a
L
L
L
1 0 0 0
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑∫ ∫ +
−
∫






−
+
×
=
Φ
Φ
Φ
N
n
t L
n
L
V
n
n
z
n
V
V
n
x
z
x
s
x
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
n
a
1 0 0
0
2
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
−



−
+
+ Φ
y z
L L
n
z
n
V
n
n
x
x x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
y
c
x
c
n
L
L
0 0
1
2
,
,
,
2
1
1
2
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ]
∑ ∫ ∫ ∫



+
−
+






−
+
−
×
=
Φ
Φ
Φ
N
n
t L L
n
y
n
n
x
n
V
n
x
y
V
n
V
n
x y
y
c
n
L
y
s
y
x
c
n
L
x
s
x
n
a
L
d
L
n
e
a
1 0 0 0
2
2
1
2
2
2
1
2
2
1
π
π
π
τ
τ
} ( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫ ∫



+
−
+
∫ −
+
=
Φ
Φ
Φ
Φ
N
n
t L
n
x
V
n
V
n
L
V
n
V
n
y
x
z
x
c
n
L
e
n
a
d
e
x
d
y
d
z
d
T
z
y
x
D
y
c
L
1 0 0
3
3
0
1
2
1
,
,
,
2
1
π
τ
π
τ
τ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
15
( )} ( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫



+
−
∫






−
+
+
z
y L
n
z
V
V
L
n
y
n
n z
c
n
L
T
z
y
x
k
t
z
y
x
V
y
c
n
L
y
s
y
x
s
x
0
,
2
0
1
2
,
,
,
,
,
,
1
2 π
π
( )} ( ) ( ) ( )
[ ] ( )
[ ]
∑ ∫ ∫ ∫



+
−






−
+
−
+
=
Φ
Φ
N
n
t L L
n
y
n
x
n
V
n
V
n
n
x y
y
c
n
L
x
c
n
L
x
s
x
e
n
a
x
d
y
d
z
d
z
s
z
1 0 0 0
3
3
1
2
1
2
1
π
π
τ
π
( )} ( ) ( )
[ ] ( ) ( ) ×
∑
+
∫






−
+
+
=
Φ
N
n
V
n
L
V
n
z
n
n
n
a
x
d
y
d
z
d
t
z
y
x
V
T
z
y
x
k
z
c
n
L
z
s
z
y
s
y
z
1
3
3
0
1
,
,
,
,
,
,
1
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ]
∫ ∫ ∫ ∫



+
−






−
+






−
+
× Φ
t L L L
n
z
n
y
n
n
x
n
V
n
x y z
z
c
n
L
y
c
n
L
y
s
y
x
c
n
L
x
s
x
e
0 0 0 0
1
2
1
2
1
2 π
π
π
τ
( )} ( ) x
d
y
d
z
d
z
y
x
f
z
s
z V
n
,
,
Φ
+ .
3. DISCUSSION
In this section we analyzed redistribution of dopant with account redistribution of radiation de-
fects. The analysis shown, that presents of interface between materials of heterostructure gives a
possibility to increase absolute value of gradient of concentration of dopant outside of enriched
are by the dopant (see Figs. 2 and 3). At the same time homogeneity of concentration of dopant in
enriched area increases (see Figs. 2 and 3). The effects could be find, when dopant diffusion coef-
ficient in the doped area is larger, than in the nearest areas. Otherwise absolute value of gradient
of concentration of dopant decreases outside enriched by the dopant area (see Fig. 4). However
the decreasing could be partially or fully compensated by using high doping of materials. The
high doping leads to significant nonlinearity of diffusion of dopant. To increase compactness of
the considered circuits XOR it is attracted an interest the first relation between values of dopant
diffusion coefficient.
Fig.2a. Spatial distributions of infused dopant concentration in the considered heterostructure. The consi-
dered direction perpendicular to the interface between epitaxial layer substrate. Difference between values
of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
16
x
0.0
0.5
1.0
1.5
2.0
C(x,
Θ
)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.2b. Spatial distributions of infused dopant concentration in the considered heterostructure. Curves 1 and
3 corresponds to annealing time Θ=0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 2 and 4 corresponds to annealing time
Θ=0.0057(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corres-
ponds to the considered heterostructure. Difference between values of dopant diffusion coefficient in layers
of heterostructure increases with increasing of number of curves
x
0.00000
0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
C(x,
Θ
)
fC(x)
L/4
0 L/2 3L/4 L
x0
1
2
Substrate
Epitaxial
layer 1
Epitaxial
layer 2
Fig.3. Implanted dopant distributions in heterostructure in heterostructure with two epitaxial layers (solid
lines) and with one epitaxial layer (dushed lines) for different values of annealing time. Difference between
values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of
curves
Increasing of annealing time leads to acceleration of diffusion. In this situation one can find in-
creasing quantity of dopant in materials near doped sections. If annealing time is small, the do-
pant can not achieves nearest interface between layers of heterostructure. These effects are shown
by Figs. 5 and 6. We used recently introduced criterion [16-23] to estimate compromise value of
annealing time. Framework the criterion we approximate real distribution of concentration of do-
pant by idealized step-wise distribution ψ (x,y,z), which would be better to use for minimization
dimensions of elements of the considered circuit XOR [19-26]. Farther the required compromise
annealing time has been calculated by minimization the following mean-squared error
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
17
( ) ( )
[ ]
∫ ∫ ∫ −
Θ
=
x y z
L L L
z
y
x
x
d
y
d
z
d
z
y
x
z
y
x
C
L
L
L
U
0 0 0
,
,
,
,
,
1
ψ . (8)
C(x,
Θ
)
0 Lx
2
1
3
4
Fig. 4. Distributions of concentrations of infused dopant in the considered heterostructure. Curve 1 is the
idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ-
ent values of annealing time for increasing of annealing time with increasing of number of curve
x
C(x,
Θ
)
1
2
3
4
0 L
Fig. 5. Distributions of concentrations of implanted dopant in the considered heterostructure. Curve 1 is the
idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ-
ent values of annealing time for increasing of annealing time with increasing of number of curve
We analyzed optimal value of annealing time. The analysis shows, that optimal value of anneal-
ing time for ion type of doping is smaller, than optimal value of annealing time for diffusion type
of doping. It is known, that ion doping of materials leads to radiation damage of doped materials.
In this situation radiation defects should be annealed. The annealing leads to the above difference
between optimal values of annealing time of dopant. The annealing of implanted dopant is neces-
sary in the case, when the dopant did not achieved nearest interface between layers of heterostruc-
ture during annealing of radiation defects.
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
18
It should be noted, that using diffusion type of doping did not leads to radiation damage of mate-
rials. However radiation damage of materials during ion doping gives a possibility to decrease
mismatch-induced stress in heterostructure [34].
4. CONCLUSIONS
In this paper we introduced an approach to decrease dimensions of a circuit XOR. The approach
based on optimization of manufacturing field-effect heterotransistors, which includes into itself
the considered circuit.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu-
cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia
and of Nizhny Novgorod State University of Architecture and Civil Engineering.
REFERENCES
[1] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n-junctions in Si prepared by pulse photon
annealing. Semiconductors. Vol. 36 (5). P. 611-617 (2002).
[2] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int.
J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008).
[3] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4 (3).
P. 171-176 (2009).
[4] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale
technologies. Nano. Vol. 4 (4). P. 233-238 (2009).
[5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit-
vin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of cur-
rent flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[6] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs
pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). С. 971-974 (2009).
[7] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,
R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-
sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
[8] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal-
low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
[9] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS
0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014).
[10] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S.
Yastrebov. Investigation of technological processes of manufacturing of the bipolar power high-
voltage transistors with a grid of inclusions in the collector region. Semiconductors. Vol. 35 (8). P.
1013-1017 (2001).
[11] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2.
P. 10-17 (2006).
[12] M.V. Dunga, L. Chung-Hsun, X. Xuemei, D.D. Lu, A.M. Niknejad, H. Chenming. Modeling ad-
vanced FET technology in a compact model. IEEE Transactions on Electron Devices. Vol. 53 (9). P.
157-162 (2006).
[13] A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Electron-
ics. Issue 1. P. 34-38 (2008).
[14] C. Senthilpari, K. Diwakar, A.K. Singh. Low Energy, Low Latency and High Speed Array Divider
Circuit Using a Shannon Theorem Based Adder Cell. Recent Patents on Nanotechnology. Vol. 3 (1).
P. 61-72 (2009).
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
19
[15] M.M. Fouad, H.H. Amer, A.H. Madian, M.B. Abdelhalim. Current Mode Logic Testing of
XOR/XNOR Circuit: A Case Study Original. Circuits and Systems. Vol. 4 (4). P. 364-368 (2013).
[16] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39.
[17] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc-
ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P.
187–197 (2008).
[18] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[19] E.L.Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using
radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1-1250028-8 (2012).
[20] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of
vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
[21] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[22] E.L. Pankratov, E.A. Bulaeva. Optimization of annealing of dopant to increase sharp-ness of p-n-
junctions in a heterostructure with drain of dopant. Applied Nanoscience. Vol. 4 (5). P. 537-541
(2014).
[23] E.L. Pankratov, E.A. Bulaeva. An approach to optimize regimes of manufacturing of complementary
horizontal field-effect transistor. Int. J. Rec. Adv. Phys. Vol. 3 (2). P. 55-73 (2014).
[24] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[25] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,
Moscow, 1991).
[26] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[27] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[28] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.
Phys. 1989. Vol. 61. № 2. P. 289-388.
[29] W.-X. Ni, G.V. Hansson, J.-E. Sundgren, L. Hultman, L.R. Wallenberg, J.-Y. Yao, L.C. Markert, J.E.
Greene, -function-shaped Sb-doping profiles in Si(001) obtained using a low-energy accelerated-ion
source during molecular-beam epitaxy. Phys. Rev. B. Vol. 46 (12). P. 7551-7558 (1992).
[30] B.A. Zon, S.B. Ledovskii, A.N. Likholet. Lattice diffusion of impurity enhanced by a surface hetero-
geneous reaction. Tech. Phys. Vol. 45 (4). P. 419-424 (2000).
[31] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Ratzke, H. R. Schober, S.K. Sharma,
H. Teichler. Diffusion in metallic glasses and supercooled melts. Reviews of modern physics. Vol. 75
(1). P. 237-280 (2003).
[32] S.A. Bahrani, Y. Jannot, A. Degiovanni. A New Silicon p‐n Junction Photocell for Con-verting Solar
Radiation into Electrical Power. J. Appl. Phys. Vol. 114 (14). P. 143509-143516 (2014).
[33] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations (Science, Moscow, 1976).
[34] E.L. Pankratov, E.A. Bulaeva. On the relations between porosity of heterostructured materials and
mismatch-induced stress. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).
AUTHORS
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radi-
ophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate
Professor of Nizhny Novgorod State University. He has 135 published papers in area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
20
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny
Novgorod State University. She has 90 published papers in area of her researches.

Más contenido relacionado

Similar a Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect Heterotransistors

Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitBRNSS Publication Hub
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...BRNSS Publication Hub
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ijfcstjournal
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensionsijrap
 

Similar a Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect Heterotransistors (20)

Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
 

Más de ijfcstjournal

A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLESA COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLESijfcstjournal
 
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...ijfcstjournal
 
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...ijfcstjournal
 
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...ijfcstjournal
 
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...ijfcstjournal
 
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDINGAN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDINGijfcstjournal
 
EAGRO CROP MARKETING FOR FARMING COMMUNITY
EAGRO CROP MARKETING FOR FARMING COMMUNITYEAGRO CROP MARKETING FOR FARMING COMMUNITY
EAGRO CROP MARKETING FOR FARMING COMMUNITYijfcstjournal
 
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHSEDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHSijfcstjournal
 
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEMCOMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEMijfcstjournal
 
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMSPSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMSijfcstjournal
 
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...ijfcstjournal
 
A MUTATION TESTING ANALYSIS AND REGRESSION TESTING
A MUTATION TESTING ANALYSIS AND REGRESSION TESTINGA MUTATION TESTING ANALYSIS AND REGRESSION TESTING
A MUTATION TESTING ANALYSIS AND REGRESSION TESTINGijfcstjournal
 
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...ijfcstjournal
 
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCHA NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCHijfcstjournal
 
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKSAGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKSijfcstjournal
 
International Journal on Foundations of Computer Science & Technology (IJFCST)
International Journal on Foundations of Computer Science & Technology (IJFCST)International Journal on Foundations of Computer Science & Technology (IJFCST)
International Journal on Foundations of Computer Science & Technology (IJFCST)ijfcstjournal
 
AN INTRODUCTION TO DIGITAL CRIMES
AN INTRODUCTION TO DIGITAL CRIMESAN INTRODUCTION TO DIGITAL CRIMES
AN INTRODUCTION TO DIGITAL CRIMESijfcstjournal
 
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...ijfcstjournal
 
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMSA STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMSijfcstjournal
 
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERINGA LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERINGijfcstjournal
 

Más de ijfcstjournal (20)

A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLESA COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
 
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
 
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
 
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
 
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
 
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDINGAN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
 
EAGRO CROP MARKETING FOR FARMING COMMUNITY
EAGRO CROP MARKETING FOR FARMING COMMUNITYEAGRO CROP MARKETING FOR FARMING COMMUNITY
EAGRO CROP MARKETING FOR FARMING COMMUNITY
 
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHSEDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
 
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEMCOMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
 
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMSPSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
 
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
 
A MUTATION TESTING ANALYSIS AND REGRESSION TESTING
A MUTATION TESTING ANALYSIS AND REGRESSION TESTINGA MUTATION TESTING ANALYSIS AND REGRESSION TESTING
A MUTATION TESTING ANALYSIS AND REGRESSION TESTING
 
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
 
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCHA NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
 
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKSAGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
 
International Journal on Foundations of Computer Science & Technology (IJFCST)
International Journal on Foundations of Computer Science & Technology (IJFCST)International Journal on Foundations of Computer Science & Technology (IJFCST)
International Journal on Foundations of Computer Science & Technology (IJFCST)
 
AN INTRODUCTION TO DIGITAL CRIMES
AN INTRODUCTION TO DIGITAL CRIMESAN INTRODUCTION TO DIGITAL CRIMES
AN INTRODUCTION TO DIGITAL CRIMES
 
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
 
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMSA STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
 
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERINGA LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
 

Último

办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一diploma 1
 
1:1原版定制美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
1:1原版定制美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree1:1原版定制美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
1:1原版定制美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degreeyuu sss
 
毕业文凭制作#回国入职#diploma#degree美国威斯康星大学麦迪逊分校毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#d...
毕业文凭制作#回国入职#diploma#degree美国威斯康星大学麦迪逊分校毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#d...毕业文凭制作#回国入职#diploma#degree美国威斯康星大学麦迪逊分校毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#d...
毕业文凭制作#回国入职#diploma#degree美国威斯康星大学麦迪逊分校毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#d...ttt fff
 
Vip Udupi Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Vip Udupi Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesVip Udupi Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Vip Udupi Call Girls 7001305949 WhatsApp Number 24x7 Best Servicesnajka9823
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uk England Northern ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uk England Northern ...NO1 Certified Black Magic Specialist Expert Amil baba in Uk England Northern ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uk England Northern ...Amil Baba Dawood bangali
 
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degreeyuu sss
 
Erfurt FH学位证,埃尔福特应用技术大学毕业证书1:1制作
Erfurt FH学位证,埃尔福特应用技术大学毕业证书1:1制作Erfurt FH学位证,埃尔福特应用技术大学毕业证书1:1制作
Erfurt FH学位证,埃尔福特应用技术大学毕业证书1:1制作f3774p8b
 
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degreeyuu sss
 
the cOMPUTER SYSTEM - computer hardware servicing.pptx
the cOMPUTER SYSTEM - computer hardware servicing.pptxthe cOMPUTER SYSTEM - computer hardware servicing.pptx
the cOMPUTER SYSTEM - computer hardware servicing.pptxLeaMaePahinagGarciaV
 
existing product research b2 Sunderland Culture
existing product research b2 Sunderland Cultureexisting product research b2 Sunderland Culture
existing product research b2 Sunderland CultureChloeMeadows1
 
NO1 Certified Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot,...
NO1 Certified Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot,...NO1 Certified Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot,...
NO1 Certified Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot,...Amil Baba Dawood bangali
 
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...Amil baba
 
NO1 Certified Vashikaran Specialist in Uk Black Magic Specialist in Uk Black ...
NO1 Certified Vashikaran Specialist in Uk Black Magic Specialist in Uk Black ...NO1 Certified Vashikaran Specialist in Uk Black Magic Specialist in Uk Black ...
NO1 Certified Vashikaran Specialist in Uk Black Magic Specialist in Uk Black ...Amil baba
 
Call Girls In Munirka>༒9599632723 Incall_OutCall Available
Call Girls In Munirka>༒9599632723 Incall_OutCall AvailableCall Girls In Munirka>༒9599632723 Incall_OutCall Available
Call Girls In Munirka>༒9599632723 Incall_OutCall AvailableCall Girls in Delhi
 
RBS学位证,鹿特丹商学院毕业证书1:1制作
RBS学位证,鹿特丹商学院毕业证书1:1制作RBS学位证,鹿特丹商学院毕业证书1:1制作
RBS学位证,鹿特丹商学院毕业证书1:1制作f3774p8b
 
美国IUB学位证,印第安纳大学伯明顿分校毕业证书1:1制作
美国IUB学位证,印第安纳大学伯明顿分校毕业证书1:1制作美国IUB学位证,印第安纳大学伯明顿分校毕业证书1:1制作
美国IUB学位证,印第安纳大学伯明顿分校毕业证书1:1制作ss846v0c
 
Hindu amil baba kala jadu expert in pakistan islamabad lahore karachi atar ...
Hindu amil baba kala jadu expert  in pakistan islamabad lahore karachi atar  ...Hindu amil baba kala jadu expert  in pakistan islamabad lahore karachi atar  ...
Hindu amil baba kala jadu expert in pakistan islamabad lahore karachi atar ...amilabibi1
 
萨斯喀彻温大学毕业证学位证成绩单-购买流程
萨斯喀彻温大学毕业证学位证成绩单-购买流程萨斯喀彻温大学毕业证学位证成绩单-购买流程
萨斯喀彻温大学毕业证学位证成绩单-购买流程1k98h0e1
 

Último (20)

办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
 
1:1原版定制美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
1:1原版定制美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree1:1原版定制美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
1:1原版定制美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
 
毕业文凭制作#回国入职#diploma#degree美国威斯康星大学麦迪逊分校毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#d...
毕业文凭制作#回国入职#diploma#degree美国威斯康星大学麦迪逊分校毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#d...毕业文凭制作#回国入职#diploma#degree美国威斯康星大学麦迪逊分校毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#d...
毕业文凭制作#回国入职#diploma#degree美国威斯康星大学麦迪逊分校毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#d...
 
Vip Udupi Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Vip Udupi Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesVip Udupi Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Vip Udupi Call Girls 7001305949 WhatsApp Number 24x7 Best Services
 
young call girls in Khanpur,🔝 9953056974 🔝 escort Service
young call girls in  Khanpur,🔝 9953056974 🔝 escort Serviceyoung call girls in  Khanpur,🔝 9953056974 🔝 escort Service
young call girls in Khanpur,🔝 9953056974 🔝 escort Service
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uk England Northern ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uk England Northern ...NO1 Certified Black Magic Specialist Expert Amil baba in Uk England Northern ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uk England Northern ...
 
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
 
Erfurt FH学位证,埃尔福特应用技术大学毕业证书1:1制作
Erfurt FH学位证,埃尔福特应用技术大学毕业证书1:1制作Erfurt FH学位证,埃尔福特应用技术大学毕业证书1:1制作
Erfurt FH学位证,埃尔福特应用技术大学毕业证书1:1制作
 
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
 
the cOMPUTER SYSTEM - computer hardware servicing.pptx
the cOMPUTER SYSTEM - computer hardware servicing.pptxthe cOMPUTER SYSTEM - computer hardware servicing.pptx
the cOMPUTER SYSTEM - computer hardware servicing.pptx
 
existing product research b2 Sunderland Culture
existing product research b2 Sunderland Cultureexisting product research b2 Sunderland Culture
existing product research b2 Sunderland Culture
 
NO1 Certified Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot,...
NO1 Certified Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot,...NO1 Certified Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot,...
NO1 Certified Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot,...
 
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
 
NO1 Certified Vashikaran Specialist in Uk Black Magic Specialist in Uk Black ...
NO1 Certified Vashikaran Specialist in Uk Black Magic Specialist in Uk Black ...NO1 Certified Vashikaran Specialist in Uk Black Magic Specialist in Uk Black ...
NO1 Certified Vashikaran Specialist in Uk Black Magic Specialist in Uk Black ...
 
Call Girls In Munirka>༒9599632723 Incall_OutCall Available
Call Girls In Munirka>༒9599632723 Incall_OutCall AvailableCall Girls In Munirka>༒9599632723 Incall_OutCall Available
Call Girls In Munirka>༒9599632723 Incall_OutCall Available
 
RBS学位证,鹿特丹商学院毕业证书1:1制作
RBS学位证,鹿特丹商学院毕业证书1:1制作RBS学位证,鹿特丹商学院毕业证书1:1制作
RBS学位证,鹿特丹商学院毕业证书1:1制作
 
美国IUB学位证,印第安纳大学伯明顿分校毕业证书1:1制作
美国IUB学位证,印第安纳大学伯明顿分校毕业证书1:1制作美国IUB学位证,印第安纳大学伯明顿分校毕业证书1:1制作
美国IUB学位证,印第安纳大学伯明顿分校毕业证书1:1制作
 
Hindu amil baba kala jadu expert in pakistan islamabad lahore karachi atar ...
Hindu amil baba kala jadu expert  in pakistan islamabad lahore karachi atar  ...Hindu amil baba kala jadu expert  in pakistan islamabad lahore karachi atar  ...
Hindu amil baba kala jadu expert in pakistan islamabad lahore karachi atar ...
 
萨斯喀彻温大学毕业证学位证成绩单-购买流程
萨斯喀彻温大学毕业证学位证成绩单-购买流程萨斯喀彻温大学毕业证学位证成绩单-购买流程
萨斯喀彻温大学毕业证学位证成绩单-购买流程
 
young call girls in Gtb Nagar,🔝 9953056974 🔝 escort Service
young call girls in Gtb Nagar,🔝 9953056974 🔝 escort Serviceyoung call girls in Gtb Nagar,🔝 9953056974 🔝 escort Service
young call girls in Gtb Nagar,🔝 9953056974 🔝 escort Service
 

Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect Heterotransistors

  • 1. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 DOI:10.5121/ijfcst.2016.6101 1 OPTIMIZATION OF TECHNOLOGICAL PROCESS TO DECREASE DIMENSIONS OF CIRCUITS XOR, MANU- FECTURED BASED ON FIELD-EFFECT HETEROTRAN- SISTORS E.L. Pankratov1 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky Street, Nizhny Novgorod, 603950, Russia ABSTRACT The paper describes an approach of increasing of integration rate of elements of integrated circuits. The approach has been illustrated by example of manufacturing of a circuit XOR. Framework the approach one should manufacture a heterostructure with specific configuration. After that several special areas of the heterostructure should be doped by diffusion and/or ion implantation and optimization of annealing of do- pant and/or radiation defects. We analyzed redistribution of dopant with account redistribution of radiation defects to formulate recommendations to decrease dimensions of integrated circuits by using analytical approaches of modeling of technological process. KEYWORDS Circuits XOR; increasing of density of elements; optimization of technological process. 1. INTRODUCTION One of intensively solving problems of solid state electronics is improvement of frequency cha- racteristics of electronic devices and their reliability. Another intensively solving problem is in- creasing of integration rate of integrated circuits with decreasing of their dimensions [1-9]. To solve these problems they were used searching materials with higher values of charge carriers motilities, development new and elaboration existing technological approaches [1-14]. In the present paper we consider circuit XOR from [15]. Based on recently considered approaches [16- 23] we consider an approach to decrease dimensions of the circuit. The approach based on manu- facturing a heterostructure, which consist of a substrate and an epitaxial layer. The epitaxial layer manufactured with several sections. To manufacture these sections another materials have been used. These sections have been doped by diffusion or ion implantation. The doping gives a possi- bility to generate another type of conductivity (p or n). After finishing of manufacturing of the circuit XOR these sections will be used by sources, drains and gates (see Fig. 1). Dopant and rad- iation defects should be annealed after finishing the dopant diffusion and the ion implantation. Our aim framework the paper is analysis of redistribution of dopant and redistribution of radiation defects to prognosis technological process. The accompanying aim of the present paper is devel- opment of analytical approach for prognosis technological processes with account all required influenced factors.
  • 2. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 2 2. METHOD OF SOLUTION We solve our aim by calculation and analysis distribution of concentrations of dopants in space and time. The required distribution has been determined by solving the second Fick's law in the following form [24,25] ( ) ( ) ( ) ( )       +       +       = z t z y x C D z y t z y x C D y x t z y x C D x t t z y x C C C C ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , . (1) Boundary and initial conditions for the equations are Fig. 1. Structure of epitaxial layer. View from top
  • 3. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 3 ( ) 0 , , , 0 = ∂ ∂ = x x t z y x C , ( ) 0 , , , = ∂ ∂ = x L x x t z y x C , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x C , ( ) 0 , , , = ∂ ∂ = y L x y t z y x C , ( ) 0 , , , 0 = ∂ ∂ = z z t z y x C , ( ) 0 , , , = ∂ ∂ = z L x z t z y x C , C(x,y,z,0)=f (x,y,z). (2) Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem- perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate in heterostructure, temperature of annealing and concentrations of dopant and radiation defects could be written as [26-28] ( ) ( ) ( ) ( ) ( ) ( )         + +       + = 2 * 2 2 * 1 , , , , , , 1 , , , , , , 1 , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D D L C ς ς ξ γ γ . (3) Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit of solubility of dopant. The parameter γ is integer and usually could be varying in the following interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver- age) with each atom of dopant. Ref.[26] describes more detailed information about dependence of dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen- tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of concentration of vacancies has been denoted as V* . It is known, that doping of materials by diffu- sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa- tio-temporal distributions of concentrations of radiation defects by solving the following system of equations [27,28] ( ) ( ) ( ) ( ) ( ) ( ) × −       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ T z y x k y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I I I I I , , , , , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V t z y x I T z y x k z t z y x I T z y x D z t z y x I V I I , , , , , , , , , , , , , , , , , , , 2 −       ∂ ∂ ∂ ∂ + × (4) ( ) ( ) ( ) ( ) ( ) ( )× −       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ T z y x k y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V V V V , , , , , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V t z y x I T z y x k z t z y x V T z y x D z t z y x V V I V , , , , , , , , , , , , , , , , , , , 2 −       ∂ ∂ ∂ ∂ + × . Boundary and initial conditions for these equations are ( ) 0 , , , 0 = ∂ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ ∂ = y L y y t z y x ρ ,
  • 4. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 4 ( ) 0 , , , 0 = ∂ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ ∂ = z L z z t z y x ρ , ρ (x,y,z,0)=fρ (x,y,z). (5) Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I (x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4) describes generation divacancies and diinterstitials. Parameter of recombination of point radiation defects and parameters of generation of simplest complexes of point radiation defects have been denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively. Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y,z,t) in space and time by solving the following system of equations [27,28] ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z I I I I I , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z V V V V V , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ . Boundary and initial conditions for these equations are ( ) 0 , , , 0 = ∂ Φ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = z L z z t z y x ρ , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7) The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com- plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z, T) describe the parameters of decay of these complexes on coordinate and temperature. To describe physical processes they are usually solving nonlinear equations with space and time varying coefficients. In this situation only several limiting cases have been analyzed [29-32]. One way to solve the problem is solving the Eqs. (1), (4), (6) by the Bubnov-Galerkin approach [33] after appropriate transformation of these transformation. To determine the spatio-temporal distri- bution of concentration of dopant we transform the Eq.(1) to the following integro- differential form ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫       + + = ∫ ∫ ∫ t y L z L L x L y L z L z y x y z x y z V w v x V V w v x V T w v x D u d v d w d t w v u C L L L z y x 0 2 * 2 2 * 1 , , , , , , 1 , , , , , , τ ς τ ς
  • 5. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 5 ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫       + +       + × t x L z L L z y x z T z y x P w y u C T w y u D L L z y d x w v x C T w v x P w v x C 0 , , , , , , 1 , , , , , , , , , , , , 1 γ γ γ γ τ ξ τ ∂ τ ∂ τ ξ ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ +       + + × t x L y L L z x x y T z v u D L L z x d y w y u C V w y u V V w y u V 0 2 * 2 2 * 1 , , , , , , , , , , , , 1 τ ∂ τ ∂ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) +       +       + + × y x L L y x d z z v u C T z y x P z v u C V z v u V V z v u V τ ∂ τ ∂ τ ξ τ ς τ ς γ γ , , , , , , , , , 1 , , , , , , 1 2 * 2 2 * 1 ( ) ∫ ∫ ∫ + x L y L z L z y x x y z u d v d w d w v u f L L L z y x , , . (1a) Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [33]. To use the ap- proach we consider solution of the Eq.(1a) as the following series ( ) ( ) ( ) ( ) ( ) ∑ = = N n nC n n n nC t e z c y c x c a t z y x C 0 0 , , , . Here ( ) ( ) [ ] 2 2 2 0 2 2 exp − − − + + − = z y x C nC L L L t D n t e π , cn(χ) =cos(π nχ/Lχ). Number of terms N in the series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0) and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫    ×      ∑ + − = ∑ = = t y L z L N n nC n n n nC z y N n nC n n n C y z e w c v c x c a L L z y t e z s y s x s n a z y x 0 1 1 3 2 1 γ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑       + +    × = N n n n nC L v c x s a T w v x D V w v x V V w v x V T w v x P 1 2 * 2 2 * 1 , , , , , , , , , 1 , , , τ ς τ ς ξ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ×            ∑ + − × = t x L z L N m mC m m m mC z x nC n x z T w y u P e w c y c u c a L L z x d e w c n 0 1 , , , 1 γ γ ξ τ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑       + + × = τ τ τ ς τ ς d e w c y s u c n V w y u V V w y u V T w y u D N n nC n n n L 1 2 * 2 2 * 1 , , , , , , 1 , , , ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫            ∑ + − × = t x L y L N n nC n n n nC L y x nC x y e z c v c u c a T z v u P T z v u D L L y x a 0 1 , , , 1 , , , γ γ τ ξ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × + ∑       + + × = z y x N n nC n n n nC L L L z y x d e z s v c u c a n V z v u V V z v u V τ τ τ ς τ ς 1 2 * 2 2 * 1 , , , , , , 1 ( ) ∫ ∫ ∫ × x L y L z L x y z u d v d w d w v u f , , ,
  • 6. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 6 where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the considered series. The coefficients an could be calculated for any quantity of terms N. In the common case the relations could be written as ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫    ×      ∑ + − = ∑ − = = t L L L N n nC n n n nC L z y N n nC nC z y x x y z e z c y c x c a T z y x D L L t e n a L L L 0 0 0 0 1 2 1 6 5 2 2 2 1 , , , 2 γ τ π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑       + +    × = N n nC n n n nC e z c y c x s n a V z y x V V z y x V T z y x P 1 2 * 2 2 * 1 2 , , , , , , 1 , , , τ τ ς τ ς ξ γ ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∫ ∫ ∫ ∫ −       − +       − + × t L L L L n z n n y n x y z T z y x D d x d y d z d z c n L z s z y c n L y s y 0 0 0 0 , , , 1 1 τ π π ( ) ( ) ( ) ( ) ( ) ( ) ( )    + +            ∑ + × = * 1 1 , , , 1 , , , 1 , , , V z y x V T z y x P e z c y c x c a T z y x D N n nC n n n nC L τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ∑ ×       − +       + +    + = N n nC n x n n a x c n L x s x V z y x V V z y x V V z y x V 1 2 * 2 2 * 1 2 * 2 2 1 , , , , , , 1 , , , π τ ς τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) [ ] × −       − + × 2 2 2 1 2 2 π τ π τ π y x n z n nC n n n z x L L d x d y d z d z c n L z s z e z c y s x c L L ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫    + +            ∑ + × = t L L L N n nC n n n nC x y z V z y x V T z y x P e z c y c x c a 0 0 0 0 2 * 2 2 1 , , , 1 , , , 1 τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] × ∑       − +    + = N n n x n n n n nC L x c n L x s x z s y c x c n a T z y x D V z y x V 1 * 1 1 , , , , , , π τ ς ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∑ ∫ ×       − + +       − + × = N n L n x n nC n y n x x c n L x s x d x d y d z d e y c n L y s y 1 0 1 1 π τ τ π ( ) ( ) [ ] ( ) ( ) [ ] ( ) ∫ ∫       − +       − + × y z L L n z n n y n x d y d z d z y x f z c n L z s z y c n L y s y 0 0 , , 1 1 π π . As an example for γ=0 we obtain ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) { ∫ ∫ ∫ +       − +       − + = x y z L L L n n y n n y n nC x s x y d z d z y x f z c n L z s z y c n L y s y a 0 0 0 , , 1 1 π π ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( )        ∫ ∫ ∫ ∫ ×       − +    − × t L L L L n y n n n x n x y z T z y x D y c n L y s y y c x s n x d n L x c 0 0 0 0 , , , 1 2 2 1 π π
  • 7. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 7 ( ) ( ) [ ] ( ) ( ) ( ) ( ) ×       +       + +       − + × T z y x P V z y x V V z y x V z c n L z s z n y n , , , 1 , , , , , , 1 1 2 * 2 2 * 1 γ ξ τ ς τ ς π ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )× ∫ ∫ ∫ ∫       − + + × t L L L n n n y n n nC nC n x y z z c y s x c n L x s x x c e d e x d y d z d z c 0 0 0 0 2 1 π τ τ τ ( ) ( ) [ ] ( ) ( ) ( ) ( ) ×       + +       +       − + × 2 * 2 2 * 1 , , , , , , 1 , , , 1 1 V z y x V V z y x V T z y x P z c n L z s z n y n τ ς τ ς ξ π γ ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) { ∫ ∫ ∫ ×       − + + × t L L n n n x n n nC L x y y s y c x c n L x s x x c e d x d y d z d T z y x D 0 0 0 1 , , , π τ τ ( ) [ ] ( ) ( ) ( ) ( ) ( ) ∫    + +       +    − + × z L L n n y V z y x V T z y x P T z y x D z s y c n L y 0 2 * 2 2 , , , 1 , , , 1 , , , 2 1 τ ς ξ π γ ( ) ( ) 1 6 5 2 2 2 * 1 , , , −     −       + t e n L L L d x d y d z d V z y x V nC z z z π τ τ ς . For γ = 1 one can obtain the following relation to determine required parameters ( ) ( ) ( ) ( ) ∫ ∫ ∫ + ± − = x y z L L L n n n n n n n nC x d y d z d z y x f z c y c x c a 0 0 0 2 , , 4 2 α β α β , where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×       + + = t L L L n n n nC z y n x y z V z y x V V z y x V z c y c x s e n L L 0 0 0 0 2 * 2 2 * 1 2 , , , , , , 1 2 2 τ ς τ ς τ π ξ α ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] × +       − +       − + × n L L d x d y d z d z c n L z s z y c n L y s y T z y x P T z y x D z x n z n n y n L 2 2 1 1 , , , , , , π ξ τ π π ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] × ∫ ∫ ∫ ∫       − −       − + × t L L L n z n L n n x n n nC x y z z c n L z s z T z y x P T z y x D z c x c n L x s x x c e 0 0 0 0 1 , , , , , , 1 π π τ ( ) ( ) ( ) ( ) ( ) ( ) × +       + + × n L L d x d y d y s z d V z y x V V z y x V T z y x P T z y x D y x n L 2 2 * 2 2 * 1 2 2 , , , , , , 1 , , , , , , π ξ τ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ ∫       + + × t L L L L n n n nC x y z V z y x V V z y x V T z y x P T z y x D z s y c x c e 0 0 0 0 2 * 2 2 * 1 , , , , , , 1 , , , , , , 2 τ ς τ ς τ ( ) ( ) [ ] ( ) ( ) [ ] τ π π d x d y d z d y c n L y s y x c n L x s x n y n n x n       − +       − + × 1 1 , ( )× ∫ = t nC z y n e n L L 0 2 2 τ π β ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ∫ ∫ ∫ ×       + +       − + × x y z L L L n n y n n n V z y x V V z y x V z c y c n L y s y y c x s 0 0 0 2 * 2 2 * 1 , , , , , , 1 1 2 τ ς τ ς π
  • 8. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 8 ( ) ( ) ( ) [ ] ( ) ( ) ( )× ∫ ∫ ∫ +       − + × t L L n n nC z x n z n L x y y s x c e n L L d x d y d z d z c n L z s z T z y x D 0 0 0 2 2 2 1 , , , τ π τ π ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) × ∫       + +       − + × z L n L n x n V z y x V V z y x V z c T z y x D x c n L x s x 0 2 * 2 2 * 1 , , , , , , 1 , , , 1 τ ς τ ς π ( ) ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + +       − + × t L n x n nC y x n z n x x c n L x s x e n L L d x d y d z d z c n L z s z 0 0 2 1 2 1 π τ π τ π ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ∫ ∫ ×       + +       − + × y z L L L n y n n V z y x V V z y x V T z y x D y c n L y s y x c 0 0 2 * 2 2 * 1 , , , , , , 1 , , , 1 τ ς τ ς π ( ) ( ) ( ) 6 5 2 2 2 2 n t e L L L d x d y d y c z d z s nC z y x n n π τ − × . The same approach could be used for calculation parameters an for different values of parameterγ. However the relations are bulky and will not be presented in the paper. Advantage of the ap- proach is absent of necessity to join dopant concentration on interfaces of heterostructure. The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans- form the differential equations to the following integro- differential form ( ) ( ) ( ) + ∫ ∫ ∫ ∂ ∂ = ∫ ∫ ∫ t y L z L I z y x L y L z L z y x y z x y z d v d w d x w v x I T w v x D L L z y u d v d w d t w v u I L L L z y x 0 , , , , , , , , , τ τ ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∫ ∫ ∫ ∂ ∂ + x L y L z L V I z y x t x L z L I z x x y z x z t w v u I T w v u k L L L z y x d u d w d x w y u I T w y u D L L z x , , , , , , , , , , , , , 0 τ τ ( ) ( ) ( ) × − ∫ ∫ ∫ ∂ ∂ + × z y x t x L y L I y x L L L z y x d u d v d T z v u D z z v u I L L y x u d v d w d t w v u V x y 0 , , , , , , , , , τ τ ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ × x L y L z L I z y x x L y L z L I I x y z x y z u d v d w d w v u f L L L z y x u d v d w d t w v u I T w v u k , , , , , , , , 2 , (4a) ( ) ( ) ( ) + ∫ ∫ ∫ ∂ ∂ = ∫ ∫ ∫ t y L z L V z y x L y L z L z y x y z x y z d v d w d x w v x V T w v x D L L z y u d v d w d t w v u V L L L z y x 0 , , , , , , , , , τ τ ( ) ( ) ( ) × ∫ ∫ ∫ ∂ ∂ + ∫ ∫ ∫ ∂ ∂ + t x L y L y x t x L z L V z x x y x z z z v u V L L y x d u d w d x w y u V T w y u D L L z x 0 0 , , , , , , , , , τ τ τ ( ) ( ) ( ) ( ) − ∫ ∫ ∫ − × x L y L z L V I z y x V x y z u d v d w d t w v u V t w v u I T w v u k L L L z y x d u d v d T z v u D , , , , , , , , , , , , , τ ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − x L y L z L V z y x x L y L z L V V z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d t w v u V T w v u k L L L z y x , , , , , , , , 2 , .
  • 9. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 9 We determine spatio-temporal distributions of concentrations of point defects as the same series ( ) ( ) ( ) ( ) ( ) ∑ = = N n n n n n n t e z c y c x c a t z y x 1 0 , , , ρ ρ ρ . Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the following results ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − = ∑ = = N n t y L z L I n n nI z y x N n nI n n n nI y z v d w d T w v x D z c y c a L L L z y t e z s y s x s n a z y x 1 0 1 3 3 , , , π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) − ∑ ∫ ∫ ∫ − × = N n t x L z L I n n nI n nI z y x n nI x z d u d w d T w y u D z c x c e y s a L L L z x x s d e 1 0 , , , τ τ π τ τ ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∑ ∫ ∫ ∫ − = x L y L z L I I N n t x L y L I n n nI n nI z y x x y z x y T v v u k d u d v d T z v u D y c x c e z s a L L L y x , , , , , , , 1 0 τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ ∑ −      ∑ × = = x L y L z L N n n n n nI z y x z y x N n nI n n n nI x y z w c v c u c a L L L z y x L L L z y x u d v d w d t e w c v c u c a 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ + ∑ × = x L y L z L I N n V I nV n n n nV nI x y z u d v d w d w v u f u d v d w d T v v u k t e w c v c u c a t e , , , , , 1 , z y x L L L z y x × ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − = ∑ = = N n t y L z L V n n nV z y x N n nV n n n nV y z v d w d T w v x D z c y c a L L L z y t e z s y s x s n a z y x 1 0 1 3 3 , , , π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) − ∑ ∫ ∫ ∫ − × = N n t x L z L V n n nV n nV z y x n nV x z d u d w d T w y u D z c x c e y s a L L L z x x s d e 1 0 , , , τ τ π τ τ ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∑ ∫ ∫ ∫ − = x L y L z L V V N n t x L y L V n n nV n nV z y x x y z x y T v v u k d u d v d T z v u D y c x c e z s a L L L y x , , , , , , , 1 0 τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ ∑ −      ∑ × = = x L y L z L N n n n n nI z y x z y x N n nI n n n nV x y z w c v c u c a L L L z y x L L L z y x u d v d w d t e w c v c u c a 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ + ∑ × = x L y L z L V N n V I nV n n n nV nI x y z u d v d w d w v u f u d v d w d T v v u k t e w c v c u c a t e , , , , , 1 , z y x L L L z y x × . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + + − − = ∑ − = = N n t L L n y n y n nI x N n nI nI z y x x y y c n L y s y L x c n a L t e n a L L L 1 0 0 0 2 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π
  • 10. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 10 ( ) ( ) ( ) [ ] ( ) ( ) { ∑ ∫ ∫ + − ∫       − + × = N n t L n nI y L nI n z n I x z x s x n a L d e x d y d z d z c n L z s z T z y x D 1 0 0 2 0 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) ( ) ( ) [ ] ( ) [ ]× ∫ ∫ −       − + +    − + + y z L L n n z n z I n x x y c z d z c n L z s z L T z y x D x c n L L 0 0 2 1 1 2 2 2 , , , 1 2 π π ( ) ( ) ( ) ( ) [ ] ( ) − ∫       − + + × z L nI n z n z I nI d e x d y d z d z c n L z s z L T z y x D d e x d y d 0 1 2 2 2 , , , τ τ π τ τ ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + +       − + + − = N n t L L n y n y n x n x nI z x y y c n L y s y L x c n L x s x L n a L 1 0 0 0 2 1 2 2 2 1 2 2 2 2 1 π π π ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫    + − + − ∫ − × = N n L n x x nI nI L nI I n x z x c n L L t e a d e x d y d z d T z y x D z c 1 0 2 0 1 2 2 2 , , , 2 1 π τ τ ( )} ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫    + − +       − + + + y z L L n z z I I n y n y n z c n L L T z y x k y c n L y s y L x s x 0 0 , 1 2 2 , , , 1 2 2 2 2 π π ( )} ( ) ( ) ( ) ( ) [ ] { ∑ ∫ ∫ +       − + + − + = N n L L y n x n x nV nI nV nI n x y L x c n L x s x L t e t e a a x d y d z d z s z 1 0 0 1 2 2 2 2 π ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫ ×       − + +    − + + z L n z n z V I n y n z d z c n L z s z L T z y x k y c n L y s y 0 , 1 2 2 2 , , , 1 2 2 2 π π ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∑ ∫ ∫ ∫       − +       − + + × = N n L L L I n y n n x n x y z T z y x f y c n L y s y x c n L x s x x d y d 1 0 0 0 , , , 1 1 π π ( ) ( ) [ ] x d y d z d z c n L z s z L n z n z       − + + × 1 2 2 2 π ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + + − − = ∑ − = = N n t L L n y n y n nV x N n nV nV z y x x y y c n L y s y L x c n a L t e n a L L L 1 0 0 0 2 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑ ∫ ∫ + − ∫       − + × = N n t L n nV y L nV n z n V x z x s x n a L d e x d y d z d z c n L z s z T z y x D 1 0 0 2 0 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) ( ) ( ) [ ] ( ) [ ]× ∫ ∫ −       − + +    − + + y z L L n n z n z V n x x y c z d z c n L z s z L T z y x D x c n L L 0 0 2 1 1 2 2 2 , , , 1 2 π π ( ) ( ) ( ) ( ) [ ] ( ) − ∫       − + + × z L nV n z n z V nV d e x d y d z d z c n L z s z L T z y x D d e x d y d 0 1 2 2 2 , , , τ τ π τ τ
  • 11. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 11 ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + +       − + + − = N n t L L n y n y n x n x nV z x y y c n L y s y L x c n L x s x L n a L 1 0 0 0 2 1 2 2 2 1 2 2 2 2 1 π π π ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫    + − + − ∫ − × = N n L n x x nV nV L nV V n x z x c n L L t e a d e x d y d z d T z y x D z c 1 0 2 0 1 2 2 2 , , , 2 1 π τ τ ( )} ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫    + − +       − + + + y z L L n z z V V n y n y n z c n L L T z y x k y c n L y s y L x s x 0 0 , 1 2 2 , , , 1 2 2 2 2 π π ( )} ( ) ( ) ( ) ( ) [ ] { ∑ ∫ ∫ +       − + + − + = N n L L y n x n x nV nI nV nI n x y L x c n L x s x L t e t e a a x d y d z d z s z 1 0 0 1 2 2 2 2 π ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫ ×       − + +    − + + z L n z n z V I n y n z d z c n L z s z L T z y x k y c n L y s y 0 , 1 2 2 2 , , , 1 2 2 2 π π ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∑ ∫ ∫ ∫       − +       − + + × = N n L L L V n y n n x n x y z T z y x f y c n L y s y x c n L x s x x d y d 1 0 0 0 , , , 1 1 π π ( ) ( ) [ ] x d y d z d z c n L z s z L n z n z       − + + × 1 2 2 2 π . In the final form relations for required parameters could be written as ( )         − + − + ± + − = A y b y b A b b A b a nI nV nI 2 3 4 2 3 4 3 4 4 4 λ γ , nI nI nI nI nI nI nI nV a a a a χ λ δ γ + + − = 2 , where ( ) ( ) ( ) ( ) [ ] ( ) { ∫ ∫ ∫ + +       − + + = x y z L L L y n n x n x n n L y s y x c n L x s x L T z y x k t e 0 0 0 , 2 1 2 2 2 , , , 2 π γ ρ ρ ρ ρ ( ) [ ] ( ) ( ) [ ] x d y d z d z c n L z s z L y c n L n z n z n y       − + +    − + 1 2 2 2 1 2 2 π π , ( )× ∫ = t n x n e n L 0 2 2 1 τ π δ ρ ρ ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ∫ ∫ ∫ −       − +       − + × x y z L L L n z n n y n y d z d T z y x D z c n L z s z y c n L y s y 0 0 0 1 , , , 1 2 1 2 ρ π π ( )] ( ) ( ) ( ) [ ] ( ) [ ] { ∫ ∫ ∫ ∫ + −       − + + + − t L L L z n n x n x n y n x y z L y c x c n L x s x L e n L d x d x c 0 0 0 0 2 2 1 1 2 2 2 1 2 π τ π τ ρ ( ) ( ) [ ] ( ) ( ) ( ) { ∫ ∫ + +    − + + t L n n z n z n x x s x e n L d x d y d z d T z y x D z c n L z s z 0 0 2 2 2 1 , , , 1 2 2 2 τ π τ π ρ ρ
  • 12. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 12 ( ) [ ] ( ) ( ) [ ] ( ) [ ] ( ) × ∫ ∫ −       − + +    − + + y z L L n n y n y n x x z d T z y x D z c y c n L y s y L x c n L L 0 0 , , , 2 1 1 2 1 2 ρ π π ( ) t e n L L L d x d y d n z y x ρ π τ 6 5 2 2 2 − × , ( ) ( ) [ ] ( ) [ ] ∫ ∫    + − +       − + = x y L L n y y n x n nIV y c n L L x c n L x s x 0 0 1 2 2 1 π π χ ( )} ( ) ( ) ( ) [ ] ( ) ( ) t e t e x d y d z d z c n L z s z L T z y x k y s y nV nI L n z n z V I n z ∫       − + + + 0 , 1 2 2 2 , , , 2 π , ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫ ∫ ×       − +       − +       − + = x y z L L L n z n n y n n x n n z c n L z s z y c n L y s y x c n L x s x 0 0 0 1 1 1 π π π λ ρ ( ) x d y d z d T z y x f , , , ρ × , 2 2 4 nI nI nI nV b χ γ γ γ − = , nI nI nV nI nI nI nI nV b γ χ δ χ δ δ γ γ − − = 2 3 2 , 2 2 3 4 8 b b y A − + = , ( ) 2 2 2 2 nI nI nV nI nI nV nI nV nI nI nV b χ λ λ δ χ δ γ γ λ δ γ − + − + = , × = nI b λ 2 1 nI nI nV nI nV λ χ δ δ γ − × , 4 3 3 3 2 3 3 2 3b b q p q q p q y − + + − − + = , 2 4 2 3 4 2 9 3 b b b b p − = , ( ) 3 4 2 4 1 3 2 3 3 54 27 9 2 b b b b b b q + − = . We determine distributions of concentrations of simplest complexes of radiation defects in space and time as the following functional series ( ) ( ) ( ) ( ) ( ) ∑ = Φ = Φ N n n n n n n t e z c y c x c a t z y x 1 0 , , , ρ ρ ρ . Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs. (6) to the following integro-differential form ( ) ( ) ( ) × ∫ ∫ ∫ Φ = ∫ ∫ ∫Φ Φ t y L z L I I x L y L z L I z y x y z x y z d v d w d x w v x T w v x D u d v d w d t w v u L L L z y x 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) ∫ ∫ ∫ × + ∫ ∫ ∫ Φ + × Φ Φ t x L y L I y x t x L z L I I z x z y x y x z T z v u D L L y x d u d w d y w y u T w y u D L L z x L L z y 0 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) − ∫ ∫ ∫ + Φ × x L y L z L I I z y x I x y z u d v d w d w v u I T w v u k L L L z y x d u d v d z z v u τ τ ∂ τ ∂ , , , , , , , , , 2 , (6a) ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − Φ x L y L z L I z y x x L y L z L I z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d w v u I T w v u k L L L z y x , , , , , , , , τ ( ) ( ) ( ) × ∫ ∫ ∫ Φ = ∫ ∫ ∫Φ Φ t y L z L V V x L y L z L V z y x y z x y z d v d w d x w v x T w v x D u d v d w d t w v u L L L z y x 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) ∫ ∫ ∫ × + ∫ ∫ ∫ Φ + × Φ Φ t x L y L V y x t x L z L V V z x z y x y x z T z v u D L L y x d u d w d y w y u T w y u D L L z x L L z y 0 0 , , , , , , , , , τ ∂ τ ∂
  • 13. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 13 ( ) ( ) ( ) − ∫ ∫ ∫ + Φ × x L y L z L V V z y x V x y z u d v d w d w v u V T w v u k L L L z y x d u d v d z z v u τ τ ∂ τ ∂ , , , , , , , , , 2 , ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − Φ x L y L z L V z y x x L y L z L V z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d w v u V T w v u k L L L z y x , , , , , , , , τ . Substitution of the previously considered series in the Eqs.(6a) leads to the following form ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ − = ∑ − = Φ = Φ N n t y L z L n n nI n I n z y x N n nI n n n I n y z w c v c t e x s a n L L L z y t e z s y s x s n a z y x 1 0 1 3 3 π π ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ Φ N n t x L z L I n n I n z y x I x z d u d w d T w v u D w c u c a L L L z x d v d w d T w v x D 1 0 , , , , , , τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) + ∑ ∫ ∫ ∫ − × = Φ Φ Φ Φ N n t x L y L I n n I n n I n z y x I n n x y d u d v d T z v u D v c u c t e z s a n L L L y x t e y s n 1 0 , , , τ π ( ) ( ) ( ) × ∫ ∫ ∫ + ∫ ∫ ∫ + Φ x L y L z L I x L y L z L I I z y x x y z x y z u d v d w d w v u f u d v d w d w v u I T w v u k L L L z y x , , , , , , , , 2 , τ ( ) ( ) ∫ ∫ ∫ − × x L y L z L I z y x z y x x y z u d v d w d w v u I T w v u k L L L z y x L L L z y x τ , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ − = ∑ − = Φ = Φ N n t y L z L n n nV n V n z y x N n nV n n n V n y z w c v c t e x s a n L L L z y t e z s y s x s n a z y x 1 0 1 3 3 π π ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ N n t x L z L V n n z y x V x z d u d w d T w v u D w c u c n L L L z x d v d w d T w v x D 1 0 , , , , , , τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ Φ Φ N n t x L y L V n n V n n z y x V n n V n x y d u d v d T z v u D v c u c t e z s n L L L y x t e y s a 1 0 , , , τ π ( ) ( ) ( ) × ∫ ∫ ∫ + ∫ ∫ ∫ + × Φ Φ x L y L z L V x L y L z L V V z y x V n x y z x y z u d v d w d w v u f u d v d w d w v u V T w v u k L L L z y x a , , , , , , , , 2 , τ ( ) ( ) ∫ ∫ ∫ − × x L y L z L V z y x z y x x y z u d v d w d w v u V T w v u k L L L z y x L L L z y x τ , , , , , , . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( ) [ ] ( ) ( ) [ ] × ∑∫ ∫ ∫       − + + − − = ∑ − = = Φ Φ N n t L L n y n y n x N n I n I n z y x x y y c n L y s y L x c L t e n a L L L 1 0 0 0 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π
  • 14. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 14 ( ) ( ) ( ) [ ] ( ) ( ) { ∑∫ ∫ + − ∫       − + × = Φ Φ Φ N n t L n L I n n z n I I n x z x s x d e x d y d z d z c n L z s z T z y x D n a 1 0 0 0 2 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + −    − + + Φ y z L L n z n I n n x x x d y d z d z c n L z s z T z y x D y c x c n L L 0 0 1 2 , , , 2 1 1 2 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ∑ ∫ ∫ ∫    + − +       − + − × = Φ Φ Φ N n t L L n y n n x n I n x y I n I n x y y c n L y s y x c n L x s x n a L d L n e a 1 0 0 0 2 2 1 2 2 2 1 2 2 1 π π π τ τ } ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫ ∫    + − + ∫ − + = Φ Φ Φ Φ N n t L n x I n I n L I n I n y x z x c n L e n a d e x d y d z d T z y x D y c L 1 0 0 3 3 0 1 2 1 , , , 2 1 π τ π τ τ ( )} ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫    + − ∫       − + + z y L n z I I L n y n n z c n L T z y x k t z y x I y c n L y s y x s x 0 , 2 0 1 2 , , , , , , 1 2 π π ( )} ( ) ( ) ( ) [ ] ( ) [ ] ∑ ∫ ∫ ∫    + −       − + − + = Φ Φ N n t L L n y n x n I n I n n x y y c n L x c n L x s x e n a x d y d z d z s z 1 0 0 0 3 3 1 2 1 2 1 π π τ π ( )} ( ) ( ) [ ] ( ) ( ) × ∑ + ∫       − + + = Φ N n I n L I n z n n n a x d y d z d t z y x I T z y x k z c n L z s z y s y z 1 3 3 0 1 , , , , , , 1 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] ∫ ∫ ∫ ∫    + −       − +       − + × Φ t L L L n z n y n n x n I n x y z z c n L y c n L y s y x c n L x s x e 0 0 0 0 1 2 1 2 1 2 π π π τ ( )} ( ) x d y d z d z y x f z s z I n , , Φ + ( ) ( ) [ ] ( ) ( ) [ ] × ∑∫ ∫ ∫       − + + − − = ∑ − = = Φ Φ N n t L L n y n y n x N n V n V n z y x x y y c n L y s y L x c L t e n a L L L 1 0 0 0 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑∫ ∫ + − ∫       − + × = Φ Φ Φ N n t L n L V n n z n V V n x z x s x d e x d y d z d z c n L z s z T z y x D n a 1 0 0 0 2 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + −    − + + Φ y z L L n z n V n n x x x d y d z d z c n L z s z T z y x D y c x c n L L 0 0 1 2 , , , 2 1 1 2 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ∑ ∫ ∫ ∫    + − +       − + − × = Φ Φ Φ N n t L L n y n n x n V n x y V n V n x y y c n L y s y x c n L x s x n a L d L n e a 1 0 0 0 2 2 1 2 2 2 1 2 2 1 π π π τ τ } ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫ ∫    + − + ∫ − + = Φ Φ Φ Φ N n t L n x V n V n L V n V n y x z x c n L e n a d e x d y d z d T z y x D y c L 1 0 0 3 3 0 1 2 1 , , , 2 1 π τ π τ τ
  • 15. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 15 ( )} ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫    + − ∫       − + + z y L n z V V L n y n n z c n L T z y x k t z y x V y c n L y s y x s x 0 , 2 0 1 2 , , , , , , 1 2 π π ( )} ( ) ( ) ( ) [ ] ( ) [ ] ∑ ∫ ∫ ∫    + −       − + − + = Φ Φ N n t L L n y n x n V n V n n x y y c n L x c n L x s x e n a x d y d z d z s z 1 0 0 0 3 3 1 2 1 2 1 π π τ π ( )} ( ) ( ) [ ] ( ) ( ) × ∑ + ∫       − + + = Φ N n V n L V n z n n n a x d y d z d t z y x V T z y x k z c n L z s z y s y z 1 3 3 0 1 , , , , , , 1 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] ∫ ∫ ∫ ∫    + −       − +       − + × Φ t L L L n z n y n n x n V n x y z z c n L y c n L y s y x c n L x s x e 0 0 0 0 1 2 1 2 1 2 π π π τ ( )} ( ) x d y d z d z y x f z s z V n , , Φ + . 3. DISCUSSION In this section we analyzed redistribution of dopant with account redistribution of radiation de- fects. The analysis shown, that presents of interface between materials of heterostructure gives a possibility to increase absolute value of gradient of concentration of dopant outside of enriched are by the dopant (see Figs. 2 and 3). At the same time homogeneity of concentration of dopant in enriched area increases (see Figs. 2 and 3). The effects could be find, when dopant diffusion coef- ficient in the doped area is larger, than in the nearest areas. Otherwise absolute value of gradient of concentration of dopant decreases outside enriched by the dopant area (see Fig. 4). However the decreasing could be partially or fully compensated by using high doping of materials. The high doping leads to significant nonlinearity of diffusion of dopant. To increase compactness of the considered circuits XOR it is attracted an interest the first relation between values of dopant diffusion coefficient. Fig.2a. Spatial distributions of infused dopant concentration in the considered heterostructure. The consi- dered direction perpendicular to the interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves
  • 16. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 16 x 0.0 0.5 1.0 1.5 2.0 C(x, Θ ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.2b. Spatial distributions of infused dopant concentration in the considered heterostructure. Curves 1 and 3 corresponds to annealing time Θ=0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 2 and 4 corresponds to annealing time Θ=0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corres- ponds to the considered heterostructure. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves x 0.00000 0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 C(x, Θ ) fC(x) L/4 0 L/2 3L/4 L x0 1 2 Substrate Epitaxial layer 1 Epitaxial layer 2 Fig.3. Implanted dopant distributions in heterostructure in heterostructure with two epitaxial layers (solid lines) and with one epitaxial layer (dushed lines) for different values of annealing time. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves Increasing of annealing time leads to acceleration of diffusion. In this situation one can find in- creasing quantity of dopant in materials near doped sections. If annealing time is small, the do- pant can not achieves nearest interface between layers of heterostructure. These effects are shown by Figs. 5 and 6. We used recently introduced criterion [16-23] to estimate compromise value of annealing time. Framework the criterion we approximate real distribution of concentration of do- pant by idealized step-wise distribution ψ (x,y,z), which would be better to use for minimization dimensions of elements of the considered circuit XOR [19-26]. Farther the required compromise annealing time has been calculated by minimization the following mean-squared error
  • 17. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 17 ( ) ( ) [ ] ∫ ∫ ∫ − Θ = x y z L L L z y x x d y d z d z y x z y x C L L L U 0 0 0 , , , , , 1 ψ . (8) C(x, Θ ) 0 Lx 2 1 3 4 Fig. 4. Distributions of concentrations of infused dopant in the considered heterostructure. Curve 1 is the idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ- ent values of annealing time for increasing of annealing time with increasing of number of curve x C(x, Θ ) 1 2 3 4 0 L Fig. 5. Distributions of concentrations of implanted dopant in the considered heterostructure. Curve 1 is the idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ- ent values of annealing time for increasing of annealing time with increasing of number of curve We analyzed optimal value of annealing time. The analysis shows, that optimal value of anneal- ing time for ion type of doping is smaller, than optimal value of annealing time for diffusion type of doping. It is known, that ion doping of materials leads to radiation damage of doped materials. In this situation radiation defects should be annealed. The annealing leads to the above difference between optimal values of annealing time of dopant. The annealing of implanted dopant is neces- sary in the case, when the dopant did not achieved nearest interface between layers of heterostruc- ture during annealing of radiation defects.
  • 18. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 18 It should be noted, that using diffusion type of doping did not leads to radiation damage of mate- rials. However radiation damage of materials during ion doping gives a possibility to decrease mismatch-induced stress in heterostructure [34]. 4. CONCLUSIONS In this paper we introduced an approach to decrease dimensions of a circuit XOR. The approach based on optimization of manufacturing field-effect heterotransistors, which includes into itself the considered circuit. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu- cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia and of Nizhny Novgorod State University of Architecture and Civil Engineering. REFERENCES [1] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n-junctions in Si prepared by pulse photon annealing. Semiconductors. Vol. 36 (5). P. 611-617 (2002). [2] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int. J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008). [3] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4 (3). P. 171-176 (2009). [4] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale technologies. Nano. Vol. 4 (4). P. 233-238 (2009). [5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit- vin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of cur- rent flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009). [6] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). С. 971-974 (2009). [7] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy- sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). [8] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal- low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013). [9] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS 0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014). [10] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S. Yastrebov. Investigation of technological processes of manufacturing of the bipolar power high- voltage transistors with a grid of inclusions in the collector region. Semiconductors. Vol. 35 (8). P. 1013-1017 (2001). [11] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2. P. 10-17 (2006). [12] M.V. Dunga, L. Chung-Hsun, X. Xuemei, D.D. Lu, A.M. Niknejad, H. Chenming. Modeling ad- vanced FET technology in a compact model. IEEE Transactions on Electron Devices. Vol. 53 (9). P. 157-162 (2006). [13] A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Electron- ics. Issue 1. P. 34-38 (2008). [14] C. Senthilpari, K. Diwakar, A.K. Singh. Low Energy, Low Latency and High Speed Array Divider Circuit Using a Shannon Theorem Based Adder Cell. Recent Patents on Nanotechnology. Vol. 3 (1). P. 61-72 (2009).
  • 19. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 19 [15] M.M. Fouad, H.H. Amer, A.H. Madian, M.B. Abdelhalim. Current Mode Logic Testing of XOR/XNOR Circuit: A Case Study Original. Circuits and Systems. Vol. 4 (4). P. 364-368 (2013). [16] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39. [17] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc- ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008). [18] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [19] E.L.Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1-1250028-8 (2012). [20] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). [21] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [22] E.L. Pankratov, E.A. Bulaeva. Optimization of annealing of dopant to increase sharp-ness of p-n- junctions in a heterostructure with drain of dopant. Applied Nanoscience. Vol. 4 (5). P. 537-541 (2014). [23] E.L. Pankratov, E.A. Bulaeva. An approach to optimize regimes of manufacturing of complementary horizontal field-effect transistor. Int. J. Rec. Adv. Phys. Vol. 3 (2). P. 55-73 (2014). [24] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [25] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Moscow, 1991). [26] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [27] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [28] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 1989. Vol. 61. № 2. P. 289-388. [29] W.-X. Ni, G.V. Hansson, J.-E. Sundgren, L. Hultman, L.R. Wallenberg, J.-Y. Yao, L.C. Markert, J.E. Greene, -function-shaped Sb-doping profiles in Si(001) obtained using a low-energy accelerated-ion source during molecular-beam epitaxy. Phys. Rev. B. Vol. 46 (12). P. 7551-7558 (1992). [30] B.A. Zon, S.B. Ledovskii, A.N. Likholet. Lattice diffusion of impurity enhanced by a surface hetero- geneous reaction. Tech. Phys. Vol. 45 (4). P. 419-424 (2000). [31] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Ratzke, H. R. Schober, S.K. Sharma, H. Teichler. Diffusion in metallic glasses and supercooled melts. Reviews of modern physics. Vol. 75 (1). P. 237-280 (2003). [32] S.A. Bahrani, Y. Jannot, A. Degiovanni. A New Silicon p‐n Junction Photocell for Con-verting Solar Radiation into Electrical Power. J. Appl. Phys. Vol. 114 (14). P. 143509-143516 (2014). [33] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations (Science, Moscow, 1976). [34] E.L. Pankratov, E.A. Bulaeva. On the relations between porosity of heterostructured materials and mismatch-induced stress. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014). AUTHORS Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radi- ophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of Nizhny Novgorod State University. He has 135 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
  • 20. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 20 ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny Novgorod State University. She has 90 published papers in area of her researches.