Publicidad

Ejercicios de variables unidimensionales

4 de Nov de 2014
Publicidad

Más contenido relacionado

Publicidad
Publicidad

Ejercicios de variables unidimensionales

  1. EJERCICIOS VARIABLES UNIDIMENSIONALES © Inmaculada Leiva Tapia IES Alborán
  2. ÍNDICE: Ejercicio 1: Pesos de recién nacidos Ejercicio 3: Variable estadística discreta Ejercicio 4: Tiempo de retraso en una empresa Ejercicio 16: Temperaturas en el interior de la Tierra Ejercicio 19: Intervalos con distinta amplitud
  3. EJERCICIO 1: En una maternidad se han tomado los pesos de 50 recién nacidos: 2,8 3,2 3,8 2,5 2,7 3,7 1,9 2,6 3,5 2,3 3,0 2,6 1,8 3,3 2,9 2,1 3,4 2,8 3,1 3,9 2,9 3,5 3,0 3,1 2,2 3,4 2,5 1,9 3,0 2,9 2,4 3,4 2,0 2,6 3,1 2,3 3,5 2,9 3,0 2,7 2,9 2,8 2,7 3,1 3,0 3,1 2,8 2,6 2,9 3,3 a) Construye una tabla con los datos agrupados en 6 intervalos de amplitud 0,4 kg. b) Representa gráficamente esta distribución. c) Calcula los parámetros de centralización( media, moda y mediana ). d) Calcula la varianza y la desviación típica.
  4. Es una variable estadística continua. Hacemos el recuento de datos y obtenemos la siguiente tabla de frecuencias, que vamos completando con ayuda de la hoja de cálculo Calc. Intervalos Lím. Inf Lím.sup Marcas xi fi Fi fi*xi fi*xi^2 [1,8;2,2] 1,8 2,2 2 6 6 12 24 ]2,2;2,6] 2,2 2,6 2,4 9 15 21,6 51,84 ]2,6;3,0] 2,6 3 2,8 18 33 50,4 141,12 ]3,0;3,4] 3 3,4 3,2 11 44 35,2 112,64 ]3,4;3,8] 3,4 3,8 3,6 5 49 18 64,8 ]3,8;4,2] 3,8 4,2 4 1 50 4 16 TOTALES 4,2 50 141,2 410,4 Media x = 2,824 Varianza = 0,233 D.típica = 0,483 N/2 = 25 ≤ 33 = Fi → Int.mediano ]2,6;3,0] Interpolando, 3 3 − 1 5 3 − 2 , 6 = 2 5 − 1 5 M e − 2 , 6 → M e = 2 , 6 + 2 5 − 1 5 3 3 − 1 5 ⋅ (3 − 2 , 6 ) = 2 , 8 2 2 Moda: fi (máx.)= 18 → Int.modal ]2,6;3,0] Interpolando, M o − 2 , 6 1 8 − 9 = 3 − M o 1 8 − 1 1 → M o = 2 , 6 + 1 8 − 9 (1 8 − 9 ) + (1 8 − 1 1 ) ⋅( 3 − 2 , 6 ) = 2 , 8 2 5
  5. Con ayuda del programa GeoGebra y de su hoja de cálculo, obtenemos el histograma de la variable,así como la determinación gráfica de la moda y de la mediana.
  6. Mo − 2,6 18−9 = 3 − Mo 18−11 Mo = 2,6 + 9 9+ 7 · (3 − 2,6)= 2,825
  7. 33 − 15 3 − 2,6 = 25 − 15 Al índice Me 2,6 25 15 Me−2,6 = + − 33−15 ·(3 − 2,6)= 2,822
  8. EJERCICIO 3: Completa la siguiente tabla y después representa la distribución y halla: a) Medidas de centralización: media, moda y mediana. b) Medidas de posición: los tres cuartiles y el percentil 20. Interpreta su significado. c) Medidas de dispersión: varianza, desviación típica y coeficiente de variación de Pearson. Interpreta su significado. d) Representa el diagrama de Box-Whisker de esta variable. xi fi Fi hi 1 4 0,08 2 4 3 16 0,16 4 7 0,14 5 5 28 6 38 7 7 45 0,14 8 N=
  9. xi fi Fi hi Hi % acumul. fi·xi 1 4 4 0,08 0,08 8 4 1 4 2 4 8 0,08 0,16 16 8 4 16 3 8 16 0,16 0,32 32 24 9 72 4 7 23 0,14 0,46 46 28 16 112 5 5 28 0,1 0,56 56 25 25 125 6 10 38 0,2 0,76 76 60 36 360 7 7 45 0,14 0,9 90 49 49 343 8 5 50 0,1 1 100 40 64 320 TOTAL 50 1 238 1352 Media 4,76 Varianza = 4,382 D.típica = 2,093 C.V. (Pearson) = 0,44 → 44% (media poco representativa) para hallar cuartiles (con Fi): N/4 = 12,5 ≤ 16 = Fi → (= P25 = C25/100 ) N/2 = 25 ≤ 28 = Fi → 3N/4 = 37,5 ≤ 38 = Fi → (= P75 = C75/100 ) para hallar percentiles (con % acumulado): 20% ≤ 32 % → → xi2 fi·xi2 x = Q1 = 3 Me = 5 (=Q2 = P50 = C50/100) Q3 = 6 P20 = 3 ( = C20/100 )
  10. Diagrama de barras de f. absolutas Diagrama de barras acumulativo 1 2 3 4 5 6 7 8 12 10 8 6 4 2 0 38 28 1 2 3 4 5 6 7 8 60 50 40 30 20 10 0 Q1= 3 Me= 5 Q3= 6 16 Mo= 6
  11. 11 Para construir el diagrama Box-Whisker se determinan: ● Rango intercuartílico → RIQ = Q3 – Q1 = 6 – 3 = 3 ● Factor de escala → FE = 1,5 · RIQ = 1,5 · 3 = 4,5 ● Frontera interior inferior → f1 = Q1 – FE = 3 - 4,5 = -1,5 ● Frontera interior superior → f2 = Q3 + FE = 6 + 4,5 = 10,5 ● Valor adyacente inferior → VAI = 1 ( menor dato ≥ f1) ● Valor adyacente superior → VAS = 8 ( mayor dato ≤ f2) ● Valores anómalos → los datos que están fuera del intervalo ] f1 , f2 [ = ] -1,5 ; 10,5 [ No hay ninguno. 1 2 33 4 5 6 7 8 1 (min) Q1= 3 Me= 5 Q3= 6 8 (max) Al índice
  12. EJERCICIO 4: La siguiente tabla recoge los minutos de retraso en la incorporación al trabajo de los empleados de una empresa. Retraso en minutos Nº de empleados [0,4) 5 [4,8) 15 [8,12) 18 [12,16) 10 [16,20) 4 a) Representa los datos mediante un histograma. b) Calcula el retraso medio y la desviación típica.¿Cómo de homogénea es la distribución? c) Calcula la mediana y los cuartiles. Explica qué miden estos parámetros. d) Construye el diagrama de caja y bigotes de la distribución.
  13. Intervalos Lím. Inf Lím.sup Marcas xi fi Fi fi*xi fi*xi^2 [0,4) 0 4 2 5 5 10 20 [4,8) 4 8 6 15 20 90 540 [8,12) 8 12 10 18 38 180 1800 [12,16) 12 16 14 10 48 140 1960 [16,20) 16 20 18 4 52 72 1296 TOTALES 20 52 492 5616 Media x = 9,462 Varianza = 18,471 D.típica = 4,298 N/2 = 26 ≤ 38 Int.mediano [8,12) 38−20 12−8 = 26−20 Me−8 → Me= 8 + Moda fi(máxima)= 18 Interv.modal [8,12) 26−20 38−20 ⋅(12−8)= 9,333 Mo−8 18−15 = 12−M o 18−10 → M o = 8 + 1 8 − 1 5 ( 1 8 − 1 5 ) + ( 1 8 − 1 0 ) ⋅( 1 2 − 8 ) = 9 , 0 9 0 9
  14. El coeficiente de variación( de Pearson) es CV = σx = 4,30 9,46 = 0,45 La desviación típica es el 45% de la media, por lo que ésta es poco representativa. O sea, la distribución es poco homogénea. N/4 = 13 ≤ 20 3N/4 = 39 ≤ 48 RIQ = Q3 – Q1= 6,2667 → Q 1 = 4 + 1 3 − 5 2 0 − 5 ⋅ ( 8 − 4 ) = 6 , 1 3 3 3 → Q 3 = 1 2 + 3 9 − 3 8 4 8 − 3 8 ⋅ ( 1 6 − 1 2 ) = 1 2 , 4 Si ordenamos los 52 empleados por orden creciente del tiempo de retraso: El primer 25% de ellos se retrasa 6,13 minutos o menos El primer 50% se retrasa 9,33 minutos o menos El primer 75% de ellos se retrasa 12,4 minutos o menos.
  15. 15 CONSTRUCCIÓN DEL DIAGRAMA BOX-WHISKER Para construir el diagrama Box-Whisker se determinan: ● Rango intercuartílico → RIQ = Q3 – Q1 = 12,4 - 6,13 = 6,27 ● Factor de escala → FE = 1,5 · RIQ =1,5 · 6,27 = 9,41 ● Frontera interior inferior → f1 = Q1 – FE = 6,13 – 9,41 = -3,28 ● Frontera interior superior → f2 = Q3 + FE = 12,4 + 9,41 = 21,81 ● Valor adyacente inferior → VAI = 0 ( menor dato ≥ f1 ) ● Valor adyacente superior → VAS = 20 ( mayor dato ≤ f2 ) ● Valores anómalos → los datos que están fuera del intervalo ] f1 , f2 [ = ] -3,28 ; 21,81 [ .No hay ninguno 0 (min) Q1= 6,13 Me= 9,33 Q3= 12,4 20 (max)
  16. Mo − 8 18−15 = 12 − Mo 18−10 Mo = 8 + 3 3+ 8 · (12 − 8)= 9,0909
  17. 38 − 20 12 − 8 = 26 − 20 Al índice Me 8 26 20 Me−8 = + − 38−20 ·(12 − 8)= 9,333
  18. EJERCICIO 16: En una zona de interés geológico del interior de la tierra, se ha medido la temperatura máxima diaria durante 43 días, obteniendo la tabla Temperatura(ºC) Nº de días [70,75) 3 [75,80) 7 [80,85) 10 [85,90) 12 [90,95) 8 [95,100) 3 Calcula: a) La temperatura más habitual. b) La temperatura media. c) La temperatura mediana. d) La temperatura máxima del 30% de las temperaturas más bajas. e) La temperatura mínima del 40% de las temperaturas más elevadas f) Las temperaturas máxima y mínima del 50% central de las temperaturas g) El nº de días en que la temperatura es inferior a 92º h) El nº de días en que la temperatura es superior a 82º i) El nº de días en que la temperatura oscila entre 82º y 92º j) La varianza, la desviación típica y el coeficiente de variación.
  19. Horas Lím. Inf Lím.sup Marcas xi Fi fi*xi fi*xi^2 [70,75) 70 75 72,5 3 3 217,5 15768,75 [75,80) 75 80 77,5 7 10 542,5 42043,75 [80,85) 80 85 82,5 10 20 825 68062,5 [85,90) 85 90 87,5 12 32 1050 91875 [90,95) 90 95 92,5 8 40 740 68450 [95,100) 95 100 97,5 3 43 292,5 28518,75 100 43 3667,5 314718,75 Media 85,29 Varianza = 44,54 D.típica = 6,67 N/2 = 21,5 ≤ 32 Int.mediano [85,90) Me: Moda Max f= 12 Interv.mod [85,90) Mo: N/4 = 10,75 ≤ 20 3N/4 = 32,25 ≤ 40 nº pers. = fi x = Δ1 = 12 –10 Δ2 = 12 –8 32−20 90−85 = 21,5−20 Me−85 →Me= 85 + 21,5−20 32−20 ⋅(90−85)= 85,625 Mo−85 12−10 = 90−Mo 12−8 → M o = 8 5 + 1 2 − 1 0 ( 1 2 − 1 0 )+ ( 1 2 − 8 ) ⋅ ( 9 0 − 8 5 ) = 8 6 , 6 7 → Q 1 = 8 0 + 1 0 , 7 5 − 1 0 2 0 − 1 0 ⋅ ( 8 5 − 8 0 ) = 8 0 , 3 7 5 → Q 3 = 9 0 + 3 2 , 2 5 − 3 2 4 0 − 3 2 ⋅ ( 9 5 − 9 0 ) = 9 0 , 1 5 6
  20. SOLUCIONES: a) La temperatura más habitual: Mo = 86,67º b) La temperatura media: x = 85,29º c) La temperatura mediana: Me = 85,63º d) La temperatura máxima del 30% de las temperaturas más bajas: P30 = 81,45º e) La temperatura mínima del 40% de las temperaturas más elevadas: P60 = 87,42º f) Las temperaturas máxima y mínima del 50% central de las temperaturas: Q1 = 80,38º y Q3 = 90,16º g) El nº de días en que la temperatura es inferior a 92º: aprox. 35 días h) El nº de días en que la temperatura es superior a 82º: aprox. 29 días i) El nº de días en que la temperatura oscila entre 82º y 92º: aprox. 21 días j) La varianza, la desviación típica y el coeficiente de variación: σ2 = 44,54 , σ = 6,67 y C.V. = 7,82% Al índice
  21. EJERCICIO 19: Se ha preguntado a un grupo de deportistas las horas que dedican a entrenamiento durante el fin de semana. Los resultados aparecen en la siguiente distribución de frecuencias: Horas Nº de personas [0, 0’5) 10 [0’5, 1’5) 10 [1’5, 2’5) 18 [2’5, 4) 12 [4, 8] 12 a) Representa gráficamente estos datos mediante el histograma de frecuencias absolutas. b) Calcula la mediana, e interpreta su significado. c) Indica razonadamente el intervalo modal.
  22. Es una variable estadística continua, pero con los intervalos de distinta amplitud, lo que hace diferente algunos cálculos como veremos. Horas Lím. Inf Lím.sup Marcas xi Fi fi*xi fi*xi^2 amplitud [0;0,5) 0 0,5 0,25 10 10 2,5 0,63 0,5 20 [0,5;1,5) 0,5 1,5 1 10 20 10 10 1 10 [1,5;2,5) 1,5 2,5 2 18 38 36 72 1 18 [2,5;4) 2,5 4 3,25 12 50 39 126,75 1,5 8 [4;8] 4 8 6 12 62 72 432 4 3 8 62 159,5 641,38 Media 2,57 Varianza = 3,73 D.típica = 1,93 N/2 = 31 ≤ 38 Int.mediano [1,5;2,5) Me: Moda Max alt. = 20 Interv.modal [0;0,5) Mo: nº pers. = fi alturasi x = Δ1 = 20 – 0 Δ2 = 20 –10 38−20 2,5−1,5 = 31−20 Me−1,5 → Me= 1,5 + 31−20 38−20 ⋅( 2,5−1,5)= 2,11 Mo−0 20−0 = 0,5−Mo 20−10 → Mo = 0 + 20−0 (20−0)+ (20−10) ⋅(0.5−0)= 0,33
  23. Hay que tener en cuenta que al ser intervalos de distinta amplitud, hay que hallar las alturas correspondientes a cada rectángulo dividiendo las frecuencias ( o áreas) entre las amplitudes ( bases ): Altura = Área / base = fi / ai Para la moda, hay que buscar en el histograma el intervalo de mayor densidad de frecuencia, o sea, el de mayor altura ( que no tiene por qué coincidir con el de mayor área ), y después hacer la interpolación correspondiente.
  24. La mediana sigue correspondiendo al primer valor de las frecuencias acumuladas que supera a la mitad del número total de datos. Para la localización de la mediana gráficamente, hay que representar el histograma con las alturas acumuladas, para realizar la interpolación: Altura acumulada = f.absoluta acumulada / amplitud = Fi /ai En el caso de intervalos de distinta amplitud,hay que observar que el histograma acumulativo no es necesariamente creciente. nº pers. = fi alturasi Alturas(acum)i Horas Fi amplitud [0;0,5) 10 10 0,5 20 20 [0,5;1,5) 10 20 1 10 20 [1,5;2,5) 18 38 1 18 38 [2,5;4) 12 50 1,5 8 33,33 [4;8] 12 62 4 3 15,5 62
  25. Al índice
  26. FIN © Inmaculada Leiva Tapia IES Alborán
Publicidad