Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

BCAM - Las matemáticas para entender mejor el comportamiento de grupos animales

3.214 visualizaciones

Publicado el

Formación sobre cómo las matemáticas sirven para entender mejor el comportamiento de grupos animales impartida por BCAM para ayudar a los equipos de la First Lego League Euskadi a resolver el desafío de 2017: Animal Allies

Publicado en: Educación
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

BCAM - Las matemáticas para entender mejor el comportamiento de grupos animales

  1. 1. FLL Euskadi BCAM 2016/11/10 Leire Citores
  2. 2. Matematika aplikatua Estatistika aplikatua Itsas Ikerketa Arrantza-kudeaketa jasangarria Arrain eta itsasoko beste animaliekin lotutako gertaerak hobe ulertu ditzakegu matematikak erabiliz eta sortzen diren arazoei erantzuna eman Zer aztertzen dugu zehazki? Talde lana Biologo Fisikari Matematikari Ekonomista …
  3. 3. Gaian sartzeko… Youtubetik Gainera… Ez dakigu zenbat arrain dauden!!
  4. 4. Arrain populazioa Datu bilketa Ebaluaketa Kudeaketa arauak/erabakiak Prozesu orokorra Espezie jakin baten Populazioaren dinamika Populazioa berria= Aurreko populazioa + Erreklutamendua - Berezko hilkortasuna - Harrapaketak Espezie jakin bateko, eta leku jakin batean, Zenbat arrain daude? Populazio estima metodoak
  5. 5. Populazio estima – Arrautzen bitartez  Itsasoan 400 arrautza daude. Eme bakoitzak 4 arrautza jartzen baditu, zenbat eme daude? 400 / 4 = 100  ORDUAN, itsasoan dauden arrautza kopurua eta eme bakoitzak jartzen dituen arrautza kopurua ezagutzen baditugu, itsasoan zenbat eme dauden jakingo dugu. Lotutako metodoa DEPM : Daily Egg Production Method Nantes 47° 46° 45° 44° 6° 5° 4° 3° 2° 1° 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 10987 252423222120191817161514131211 Bi SS Bordeaux Arcachon Santander La Rochelle BIOMAN 2001 14 MAY - 8 JUN R/V INVESTIGADOR Anchovy eggs/0.1m² 1 113 226 338 450
  6. 6. Populazio estima – Arrautzen bitartez Arrain eme 1 200 000 arrautza Bizi 4 2 1 Populazioa x 2 = / 2 Ingurumenaren arabera aldakorra izan daiteke! Bernal et al. 2007 Bestetik, leku bakoitzean bildutako datuetan ikusitako arrautza kopuru eta ingurumen ezaugarrien arabera Emeek arrautzak jartzeko probabilitatea estimatu daiteke
  7. 7. Populazio estima - Akustika Prestatutako itsasontziek soinu uhinak igortzen dituzte. Bueltatzen den energia arrain kopuruaren araberakoa da Espeziearen arabera bueltatutako uhinaren intentsitatea ezberdina izango da. Love zientzialariak erlazio orokor hau proposatu zuen 1978an TS: target strength L: arrainaren luzeera l: uhinaren luzeera TS = 19.1 logL + 0.9 logl - 23.9 Jasotzen den seinalea Espezie bereizketa
  8. 8.  Stock-erreklutamedua Beste estima batzuk  Hazkuntza
  9. 9.  Zer da? Jasotako datuak eta eredu estatikoak erabiliz espezie baten egungo egoera baloratzeko urtero egiten den lanketa da. Herrialde ezberdinetako zientzialariak biltzen dira horretarako. Ebaluaketa Arrantza kopurua Populazio estima Arrainen tamaina eta pisua Arrainen adina y urtean a adineko arrain kopurua
  10. 10. Ebaluaketa 1990 1995 2000 2005 2010 050000100000150000 Year SSB EMAITZAK: Espezie baten biomasa egoera 2012an ZIURGABET ASUNA: TARTEAK EMATEN DITUGU Zenbat arrain dagoela estimatu da? SSB2012 ~ 68,200 tona Zein da 21000 t tik behera egoteko probabilitea? P(SSB2012 < 21000) = 0 Zenbat arrain dago %95eko ziurtasunarekin? SSB2012 95% IC (46,300;99,800)
  11. 11. Kudeaketa arauak/erabakiak Arrantzakopurua Arrain kopurua Arrantza debekatua Arrantza arriskutsua Espeziea egoera onean (0,0)
  12. 12. Kudeaketa arauak/erabakiak  Zer gertatuko litzateke… • Biomasaren %30a arrantzatuko bagenu? • Harrapaketen %10a ez balitz erregistratuko? • Eredu estatistikoak %5eko errorea balu? • Arrainak uste baino 2 aldiz azkarrago haziko balira?  Arrainen eta arrantzaren dinamika SIMULATU dezakegu eta erabaki egokienak hartu.  Ordenagailu bidez egiten dira kalkulu guztiak. Aste oso bat eman dezake ordenagailuak martxan emaitzak lortzeko. Eskuz ezinezkoa izango litzateke!!
  13. 13. Saiatuko gara gu kudeatzen? ESPERIMENTUA! Jakintza + IntuizioaVS Eredu matematikoak + Jakintza Eredu matematikoek emaitza hobeak lortu dituzte kasu guztietan
  14. 14. Eskerrik asko!

×