LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestras Condiciones de uso y nuestra Política de privacidad para más información.
LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestra Política de privacidad y nuestras Condiciones de uso para más información.
Publicado el
While it’s not always easy to turn raw data into smart data, there is one process that helps add vital bits of information to raw data – providing structure to data that is otherwise just noise to a supervised learning algorithm – data annotation.
Ultimately, artificial intelligence can’t succeed without access to the right data. Feeding it the right information with a learnable ‘signal’ consistently added at a massive scale is going to drive constant improvement over time. That’s the power of data annotation. However, before you begin with any data annotation project, it’s important to consider the following questions.
https://innodata.com/blog/5-questions-data-annotation/
Parece que ya has recortado esta diapositiva en .
Inicia sesión para ver los comentarios