SlideShare una empresa de Scribd logo
1 de 11
República bolivariana de Venezuela
            Ministerio del poder popular para la defensa
Universidad nacional experimental politécnica de las fuerzas armadas
                              UNEFA




                                                                       Integrantes :
                                                                       Jairo Abreu
                                                                       Jennifer luckert
                                                                       Dairimar Pérez
                                                                       Dennys Gómez

                                                                       Sección : 1T2IS

                     Barquisimeto, Julio201
                     2
Rectas en R3

Sea P0(x0,y0,z 0) un punto
que pertenece a la recta L, con
vector director d diferente del
vector cero dado por (a,b, c).
Se define a L como el conjunto
de puntos P(x ,y ,z ) tales que la
dirección del vector P0P es
paralela a d.
Ecuaciones


encontrar la ecuación de una recta dados
dos puntos de la recta o un punto y la
pendiente de la recta En el plano R2
podemos. En R3, las ideas básicas son las
mismas, así que podemos hallar la
ecuación de la recta si conocemos dos
puntos de ella o un vector paralelo a la
recta. Denotamos Po como un punto de la
recta (xo,yo,zo), v como el vector dirección
(a,b,c), y t como un numero real
cualquiera, podemos obtener las dos
ecuaciones de la recta.

 P    tv       P0
( x, y , z )    t (a, b, c) ( x0 , y0 , z0 )
                                           x   ta   x0
 Ecuaciones param etric
                      as                   y   tb   y0
                                           z   tc   z0



Con estas ecuaciones podemos obtener n puntos de la recta. Si despejamos la t en las tres
ecuaciones e igualamos, obtenemos:




                                                         x x0    y y0            z z0
Ecuacionessim etricas
                                                          a       b               c
Ejemplos:
Hallar las ecuaciones parametricas y simétricas de la recta que tiene por vector dirección
v=(1,-2,3) y pasa por el punto (1,1,1).




                                                                     y
   v ( 1, 2 ,3 )
   P0 ( 1,1,1 )
                                                                          L

                          x     ta x0      x    t 1
   Ec. param etric
                 as       y     tb y0     y     2t 1
                                                                                        x
                          z     tc z0      z   3t 1
                      x 1        y 1    z 1             z
   Ec. sim etricas
                       1           2     3                        v

   Si t 1 P ( 2 , 1,4 )       Si t   1 P ( 0 ,3 , 2 )
Angulo entre una recta y un plano




Se define el ángulo que forman dos rectas como el ángulo que
determinan sus vectores directores.

Sea N un vector en R 3 diferente de cero . Sea T un punto en R3 .

Se dice que el conjunto de puntos X generan un plano que contiene al
punto T, si cumplen que :
                                    __ __
                                   (0X - 0T) . N = 0

Si se denota por π el plano que contiene a
T y los puntos X En R3 que satisfacen (∗), entonces se dice que N es el
vector normal de π.
Números directores de la intersección de dos planos



     Para determinar un plano se necesitan un punto Po(xo ,yo ,zo) y un vector
     normal al plano. La ecuación del plano viene entonces dada por la
     relación: A(x - xo) + B(y - yo) + C(z - zo) = 0 ⇒ A.x + B.y + C.z + D = 0
     (1)Donde D = -A.xo - B.yo - C.zo

     Se pueden considerar varios casos particulares según que uno o dos de
     los coeficientes de la ecuación (1) sean nulos.

     1) Plano paralelo al eje OX. Se tiene A = 0 y la ecuación toma la forma:



      B.y + C.z + D = 0

       Siendo el vector director normal al plano de la forma:
2) Plano paralelo al eje OY.
Se tiene B = 0 y la ecuación general toma la forma: A.x + C.z + D = 0
Siendo el vector director normal al plano de la forma:




3) Plano paralelo al eje OZ. Se tiene C = 0 y la ecuación general
toma la forma : A.x + B.y + D = 0
 Siendo el vector director normal al plano de la forma:




  4) Plano que pasa por el origen. Se tiene D = 0 y la
  ecuación general toma la forma:
             A.x + B.y + C.z = 0
5)Plano perpendicular al eje OZ. Se tiene en este caso A = 0, B =
0 y la ecuación general toma la forma: C.z + D = 0 ; z = Cte.
Esta ecuación puede considerarse también como la correspondiente a
un plano paralelo al plano XOY


 6)Plano perpendicular al eje OY o, lo que es igual, paralelo al plano
 XOZ. Se tiene en este caso A = 0, C = 0 y la ecuación general toma la
 forma: B.y + D = 0 ; y = Cte.



 7) Plano perpendicular al eje OX o, lo que es igual, paralelo al plano
 YOZ. Se tiene en este caso B = 0, C = 0 y la ecuación general toma la
 forma: A.x + D = 0 ; x = Cte.
Ecuaciones de rectas y planos en R3

Más contenido relacionado

La actualidad más candente

Electrolisis del cloruro de sodio
Electrolisis del cloruro de sodioElectrolisis del cloruro de sodio
Electrolisis del cloruro de sodioKaren Peralta Duran
 
Cap. 21 zemanski--carga electrica y campo electrico tarea usac
Cap. 21 zemanski--carga electrica y campo electrico  tarea usacCap. 21 zemanski--carga electrica y campo electrico  tarea usac
Cap. 21 zemanski--carga electrica y campo electrico tarea usacELMER ICH
 
Metodo de la secante
Metodo de la secanteMetodo de la secante
Metodo de la secanterocamaos
 
Ciencia materiales. Ejercicios introducción y enlaces.
Ciencia materiales. Ejercicios introducción y enlaces.Ciencia materiales. Ejercicios introducción y enlaces.
Ciencia materiales. Ejercicios introducción y enlaces.Ignacio Roldán Nogueras
 
Reacción de adición
Reacción de adiciónReacción de adición
Reacción de adiciónAhui Lugardo
 
265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)Manuel Miranda
 
Curvas y superficies de nivel, trazado de funciones de 2 variables
Curvas y superficies de nivel, trazado de funciones de 2 variablesCurvas y superficies de nivel, trazado de funciones de 2 variables
Curvas y superficies de nivel, trazado de funciones de 2 variablesDaniel Orozco
 
Tema 4. Defectos en estructuras cristalinas. Cristales reales.
Tema 4. Defectos en estructuras cristalinas. Cristales reales.Tema 4. Defectos en estructuras cristalinas. Cristales reales.
Tema 4. Defectos en estructuras cristalinas. Cristales reales.Ignacio Roldán Nogueras
 
Teorema de Pitágoras y Razones Trigonométricas
Teorema de Pitágoras y Razones TrigonométricasTeorema de Pitágoras y Razones Trigonométricas
Teorema de Pitágoras y Razones TrigonométricasNadis Fajardo Sierra
 
Aplicación de Ecuaciones Diferenciales de Primer Grado en la Ingeniería Indus...
Aplicación de Ecuaciones Diferenciales de Primer Grado en la Ingeniería Indus...Aplicación de Ecuaciones Diferenciales de Primer Grado en la Ingeniería Indus...
Aplicación de Ecuaciones Diferenciales de Primer Grado en la Ingeniería Indus...Emerson Perú
 

La actualidad más candente (20)

Problemas de estequiometria
Problemas de estequiometriaProblemas de estequiometria
Problemas de estequiometria
 
Electrolisis del cloruro de sodio
Electrolisis del cloruro de sodioElectrolisis del cloruro de sodio
Electrolisis del cloruro de sodio
 
1414 l práctica 2 estructuras cristalinas
1414 l práctica 2 estructuras cristalinas1414 l práctica 2 estructuras cristalinas
1414 l práctica 2 estructuras cristalinas
 
Guia a. v. cuerpos 8º
Guia a. v. cuerpos 8ºGuia a. v. cuerpos 8º
Guia a. v. cuerpos 8º
 
Medidas de incertidumbre, error relativo
Medidas de incertidumbre, error relativo Medidas de incertidumbre, error relativo
Medidas de incertidumbre, error relativo
 
Cap. 21 zemanski--carga electrica y campo electrico tarea usac
Cap. 21 zemanski--carga electrica y campo electrico  tarea usacCap. 21 zemanski--carga electrica y campo electrico  tarea usac
Cap. 21 zemanski--carga electrica y campo electrico tarea usac
 
Diagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemasDiagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemas
 
Metodo de la secante
Metodo de la secanteMetodo de la secante
Metodo de la secante
 
Vectores
VectoresVectores
Vectores
 
Formulario ctm
Formulario ctmFormulario ctm
Formulario ctm
 
Ciencia materiales. Ejercicios introducción y enlaces.
Ciencia materiales. Ejercicios introducción y enlaces.Ciencia materiales. Ejercicios introducción y enlaces.
Ciencia materiales. Ejercicios introducción y enlaces.
 
Reacción de adición
Reacción de adiciónReacción de adición
Reacción de adición
 
265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)
 
Curvas y superficies de nivel, trazado de funciones de 2 variables
Curvas y superficies de nivel, trazado de funciones de 2 variablesCurvas y superficies de nivel, trazado de funciones de 2 variables
Curvas y superficies de nivel, trazado de funciones de 2 variables
 
Tema 4. Defectos en estructuras cristalinas. Cristales reales.
Tema 4. Defectos en estructuras cristalinas. Cristales reales.Tema 4. Defectos en estructuras cristalinas. Cristales reales.
Tema 4. Defectos en estructuras cristalinas. Cristales reales.
 
Teorema de Pitágoras y Razones Trigonométricas
Teorema de Pitágoras y Razones TrigonométricasTeorema de Pitágoras y Razones Trigonométricas
Teorema de Pitágoras y Razones Trigonométricas
 
Ondas mecanicas2
Ondas mecanicas2Ondas mecanicas2
Ondas mecanicas2
 
1 cristalografia2014
1 cristalografia20141 cristalografia2014
1 cristalografia2014
 
ÍNDICES DE MILLER
ÍNDICES DE MILLERÍNDICES DE MILLER
ÍNDICES DE MILLER
 
Aplicación de Ecuaciones Diferenciales de Primer Grado en la Ingeniería Indus...
Aplicación de Ecuaciones Diferenciales de Primer Grado en la Ingeniería Indus...Aplicación de Ecuaciones Diferenciales de Primer Grado en la Ingeniería Indus...
Aplicación de Ecuaciones Diferenciales de Primer Grado en la Ingeniería Indus...
 

Destacado

Ángulos entre2 Rectas Paralelas
Ángulos entre2 Rectas ParalelasÁngulos entre2 Rectas Paralelas
Ángulos entre2 Rectas Paralelas20enmatematicas
 
Ejercicio de Ecuaciones Lineales
Ejercicio de Ecuaciones LinealesEjercicio de Ecuaciones Lineales
Ejercicio de Ecuaciones LinealesGladys Gahona C.
 
Ecuacion de la recta
Ecuacion de la rectaEcuacion de la recta
Ecuacion de la rectaJoharlenys
 
Angulos cortadas por una secante y 2 paralelas
Angulos cortadas por una secante y 2 paralelasAngulos cortadas por una secante y 2 paralelas
Angulos cortadas por una secante y 2 paralelasjeffersson2031
 
Ejercicios resueltos de ecuaciones lineales
Ejercicios resueltos de ecuaciones linealesEjercicios resueltos de ecuaciones lineales
Ejercicios resueltos de ecuaciones linealesGladys Gahona C.
 
Ejercicios resueltos ecuacion de la recta
Ejercicios resueltos ecuacion de la rectaEjercicios resueltos ecuacion de la recta
Ejercicios resueltos ecuacion de la rectaMagiserio
 

Destacado (8)

C:\Curso 2007\La Geometria
C:\Curso 2007\La GeometriaC:\Curso 2007\La Geometria
C:\Curso 2007\La Geometria
 
Rectasyplanos r3
Rectasyplanos r3Rectasyplanos r3
Rectasyplanos r3
 
Ángulos entre2 Rectas Paralelas
Ángulos entre2 Rectas ParalelasÁngulos entre2 Rectas Paralelas
Ángulos entre2 Rectas Paralelas
 
Ejercicio de Ecuaciones Lineales
Ejercicio de Ecuaciones LinealesEjercicio de Ecuaciones Lineales
Ejercicio de Ecuaciones Lineales
 
Ecuacion de la recta
Ecuacion de la rectaEcuacion de la recta
Ecuacion de la recta
 
Angulos cortadas por una secante y 2 paralelas
Angulos cortadas por una secante y 2 paralelasAngulos cortadas por una secante y 2 paralelas
Angulos cortadas por una secante y 2 paralelas
 
Ejercicios resueltos de ecuaciones lineales
Ejercicios resueltos de ecuaciones linealesEjercicios resueltos de ecuaciones lineales
Ejercicios resueltos de ecuaciones lineales
 
Ejercicios resueltos ecuacion de la recta
Ejercicios resueltos ecuacion de la rectaEjercicios resueltos ecuacion de la recta
Ejercicios resueltos ecuacion de la recta
 

Similar a Ecuaciones de rectas y planos en R3 (20)

recta en r3
recta en r3recta en r3
recta en r3
 
Presentación2
Presentación2Presentación2
Presentación2
 
Geometria
GeometriaGeometria
Geometria
 
Geometria
GeometriaGeometria
Geometria
 
Geometria
GeometriaGeometria
Geometria
 
Republica bolivarianade venezuela
Republica  bolivarianade venezuelaRepublica  bolivarianade venezuela
Republica bolivarianade venezuela
 
Geometria analitica-
 Geometria analitica- Geometria analitica-
Geometria analitica-
 
Espacio afin rectas planos
Espacio afin  rectas planosEspacio afin  rectas planos
Espacio afin rectas planos
 
Rectas en el plan outp
Rectas en el plan outpRectas en el plan outp
Rectas en el plan outp
 
Rectas en el plano UTP
Rectas en el plano UTPRectas en el plano UTP
Rectas en el plano UTP
 
Rectas en el plano UTP
Rectas en el plano UTPRectas en el plano UTP
Rectas en el plano UTP
 
Rectas en el plano UTP
Rectas en el plano UTPRectas en el plano UTP
Rectas en el plano UTP
 
rectas y planos-21-B- 09-11-21.ppt
rectas y planos-21-B- 09-11-21.pptrectas y planos-21-B- 09-11-21.ppt
rectas y planos-21-B- 09-11-21.ppt
 
Vectores en el espacio
Vectores en el espacioVectores en el espacio
Vectores en el espacio
 
Gcmat3
Gcmat3Gcmat3
Gcmat3
 
Brenda matematica+
Brenda  matematica+Brenda  matematica+
Brenda matematica+
 
Algebra vectorial
Algebra vectorialAlgebra vectorial
Algebra vectorial
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
La recta2013
La recta2013La recta2013
La recta2013
 
Ecuaciones parametricas
Ecuaciones parametricasEcuaciones parametricas
Ecuaciones parametricas
 

Ecuaciones de rectas y planos en R3

  • 1. República bolivariana de Venezuela Ministerio del poder popular para la defensa Universidad nacional experimental politécnica de las fuerzas armadas UNEFA Integrantes : Jairo Abreu Jennifer luckert Dairimar Pérez Dennys Gómez Sección : 1T2IS Barquisimeto, Julio201 2
  • 2. Rectas en R3 Sea P0(x0,y0,z 0) un punto que pertenece a la recta L, con vector director d diferente del vector cero dado por (a,b, c). Se define a L como el conjunto de puntos P(x ,y ,z ) tales que la dirección del vector P0P es paralela a d.
  • 3. Ecuaciones encontrar la ecuación de una recta dados dos puntos de la recta o un punto y la pendiente de la recta En el plano R2 podemos. En R3, las ideas básicas son las mismas, así que podemos hallar la ecuación de la recta si conocemos dos puntos de ella o un vector paralelo a la recta. Denotamos Po como un punto de la recta (xo,yo,zo), v como el vector dirección (a,b,c), y t como un numero real cualquiera, podemos obtener las dos ecuaciones de la recta.
  • 4.  P tv P0 ( x, y , z ) t (a, b, c) ( x0 , y0 , z0 ) x ta x0 Ecuaciones param etric as y tb y0 z tc z0 Con estas ecuaciones podemos obtener n puntos de la recta. Si despejamos la t en las tres ecuaciones e igualamos, obtenemos: x x0 y y0 z z0 Ecuacionessim etricas a b c
  • 5. Ejemplos: Hallar las ecuaciones parametricas y simétricas de la recta que tiene por vector dirección v=(1,-2,3) y pasa por el punto (1,1,1).  y v ( 1, 2 ,3 ) P0 ( 1,1,1 ) L x ta x0 x t 1 Ec. param etric as y tb y0 y 2t 1 x z tc z0 z 3t 1 x 1 y 1 z 1 z Ec. sim etricas 1 2 3 v Si t 1 P ( 2 , 1,4 ) Si t 1 P ( 0 ,3 , 2 )
  • 6. Angulo entre una recta y un plano Se define el ángulo que forman dos rectas como el ángulo que determinan sus vectores directores. Sea N un vector en R 3 diferente de cero . Sea T un punto en R3 . Se dice que el conjunto de puntos X generan un plano que contiene al punto T, si cumplen que : __ __ (0X - 0T) . N = 0 Si se denota por π el plano que contiene a T y los puntos X En R3 que satisfacen (∗), entonces se dice que N es el vector normal de π.
  • 7.
  • 8. Números directores de la intersección de dos planos Para determinar un plano se necesitan un punto Po(xo ,yo ,zo) y un vector normal al plano. La ecuación del plano viene entonces dada por la relación: A(x - xo) + B(y - yo) + C(z - zo) = 0 ⇒ A.x + B.y + C.z + D = 0 (1)Donde D = -A.xo - B.yo - C.zo Se pueden considerar varios casos particulares según que uno o dos de los coeficientes de la ecuación (1) sean nulos. 1) Plano paralelo al eje OX. Se tiene A = 0 y la ecuación toma la forma: B.y + C.z + D = 0 Siendo el vector director normal al plano de la forma:
  • 9. 2) Plano paralelo al eje OY. Se tiene B = 0 y la ecuación general toma la forma: A.x + C.z + D = 0 Siendo el vector director normal al plano de la forma: 3) Plano paralelo al eje OZ. Se tiene C = 0 y la ecuación general toma la forma : A.x + B.y + D = 0 Siendo el vector director normal al plano de la forma: 4) Plano que pasa por el origen. Se tiene D = 0 y la ecuación general toma la forma: A.x + B.y + C.z = 0
  • 10. 5)Plano perpendicular al eje OZ. Se tiene en este caso A = 0, B = 0 y la ecuación general toma la forma: C.z + D = 0 ; z = Cte. Esta ecuación puede considerarse también como la correspondiente a un plano paralelo al plano XOY 6)Plano perpendicular al eje OY o, lo que es igual, paralelo al plano XOZ. Se tiene en este caso A = 0, C = 0 y la ecuación general toma la forma: B.y + D = 0 ; y = Cte. 7) Plano perpendicular al eje OX o, lo que es igual, paralelo al plano YOZ. Se tiene en este caso B = 0, C = 0 y la ecuación general toma la forma: A.x + D = 0 ; x = Cte.