SlideShare una empresa de Scribd logo

AI for an intelligent cloud and intelligent edge: Discover, deploy, and manage with Azure ML services

Discover, manage, deploy, monitor – rinse and repeat.  In this session we show how Azure Machine Learning can be used to create the right AI model for your challenge and then easily customize it using your development tools while relying on Azure ML to optimize them to run in hardware accelerated environments for the cloud and the edge using FPGAs and Neural Network accelerators.  We then show you how to deploy the model to highly scalable web services and nimble edge applications that Azure can manage and monitor for you.  Finally, we illustrate how you can leverage the model telemetry to retrain and improve your content.

1 de 49
Descargar para leer sin conexión
AI for Intelligent Cloud and
Intelligent Edge:
Discover, deploy, and manage
with Azure ML Services
James Serra
Microsoft
Technical Architect, Data & AI
Blog: JamesSerra.com
About Me
 Microsoft, Big Data Evangelist
 In IT for 30 years, worked on many BI and DW projects
 Worked as desktop/web/database developer, DBA, BI and DW architect and developer, MDM
architect, PDW/APS developer
 Been perm employee, contractor, consultant, business owner
 Presenter at PASS Business Analytics Conference, PASS Summit, Enterprise Data World conference
 Certifications: MCSE: Data Platform, Business Intelligence; MS: Architecting Microsoft Azure
Solutions, Design and Implement Big Data Analytics Solutions, Design and Implement Cloud Data
Platform Solutions
 Blog at JamesSerra.com
 Former SQL Server MVP
 Author of book “Reporting with Microsoft SQL Server 2012”
I tried to understand AI products on my own…
And felt like I was body slammed by Randy
Savage:
Let’s prevent that from happening…
Intro to Azure Machine Learning
Model Management
Hardware Acceleration
Edge Integration
AICloud+Edge
Machine learning is a data science technique that allows computers to
use existing data to forecast future behaviors, outcomes, and trends.
Prepare Data Build & Train Deploy
Custom AI
Building your own AI models for Transforming Data into Intelligence

Recomendados

Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)James Serra
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Databricks
 
Azure Synapse Analytics Overview (r1)
Azure Synapse Analytics Overview (r1)Azure Synapse Analytics Overview (r1)
Azure Synapse Analytics Overview (r1)James Serra
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overviewJames Serra
 
Modernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureModernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureDatabricks
 
Time to Talk about Data Mesh
Time to Talk about Data MeshTime to Talk about Data Mesh
Time to Talk about Data MeshLibbySchulze
 
Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)James Serra
 
Azure Synapse Analytics Overview (r2)
Azure Synapse Analytics Overview (r2)Azure Synapse Analytics Overview (r2)
Azure Synapse Analytics Overview (r2)James Serra
 

Más contenido relacionado

La actualidad más candente

Azure Data Factory ETL Patterns in the Cloud
Azure Data Factory ETL Patterns in the CloudAzure Data Factory ETL Patterns in the Cloud
Azure Data Factory ETL Patterns in the CloudMark Kromer
 
Moving to Databricks & Delta
Moving to Databricks & DeltaMoving to Databricks & Delta
Moving to Databricks & DeltaDatabricks
 
Building a modern data warehouse
Building a modern data warehouseBuilding a modern data warehouse
Building a modern data warehouseJames Serra
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptxAlex Ivy
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake OverviewJames Serra
 
Intro to Delta Lake
Intro to Delta LakeIntro to Delta Lake
Intro to Delta LakeDatabricks
 
Introduction to Azure Databricks
Introduction to Azure DatabricksIntroduction to Azure Databricks
Introduction to Azure DatabricksJames Serra
 
Microsoft Data Platform - What's included
Microsoft Data Platform - What's includedMicrosoft Data Platform - What's included
Microsoft Data Platform - What's includedJames Serra
 
Data Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to MeshData Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to MeshJeffrey T. Pollock
 
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Cathrine Wilhelmsen
 
Collibra - Forrester Presentation : Data Governance 2.0
Collibra - Forrester Presentation : Data Governance 2.0Collibra - Forrester Presentation : Data Governance 2.0
Collibra - Forrester Presentation : Data Governance 2.0Guillaume LE GALIARD
 
Scaling and Modernizing Data Platform with Databricks
Scaling and Modernizing Data Platform with DatabricksScaling and Modernizing Data Platform with Databricks
Scaling and Modernizing Data Platform with DatabricksDatabricks
 
Learn to Use Databricks for the Full ML Lifecycle
Learn to Use Databricks for the Full ML LifecycleLearn to Use Databricks for the Full ML Lifecycle
Learn to Use Databricks for the Full ML LifecycleDatabricks
 
Data platform modernization with Databricks.pptx
Data platform modernization with Databricks.pptxData platform modernization with Databricks.pptx
Data platform modernization with Databricks.pptxCalvinSim10
 
Designing An Enterprise Data Fabric
Designing An Enterprise Data FabricDesigning An Enterprise Data Fabric
Designing An Enterprise Data FabricAlan McSweeney
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceDatabricks
 
Databricks on AWS.pptx
Databricks on AWS.pptxDatabricks on AWS.pptx
Databricks on AWS.pptxWasm1953
 

La actualidad más candente (20)

Snowflake Datawarehouse Architecturing
Snowflake Datawarehouse ArchitecturingSnowflake Datawarehouse Architecturing
Snowflake Datawarehouse Architecturing
 
Azure Data Factory ETL Patterns in the Cloud
Azure Data Factory ETL Patterns in the CloudAzure Data Factory ETL Patterns in the Cloud
Azure Data Factory ETL Patterns in the Cloud
 
Moving to Databricks & Delta
Moving to Databricks & DeltaMoving to Databricks & Delta
Moving to Databricks & Delta
 
Building a modern data warehouse
Building a modern data warehouseBuilding a modern data warehouse
Building a modern data warehouse
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake Overview
 
Introduction to Data Engineering
Introduction to Data EngineeringIntroduction to Data Engineering
Introduction to Data Engineering
 
Intro to Delta Lake
Intro to Delta LakeIntro to Delta Lake
Intro to Delta Lake
 
Introduction to Azure Databricks
Introduction to Azure DatabricksIntroduction to Azure Databricks
Introduction to Azure Databricks
 
Microsoft Data Platform - What's included
Microsoft Data Platform - What's includedMicrosoft Data Platform - What's included
Microsoft Data Platform - What's included
 
Data Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to MeshData Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to Mesh
 
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
 
Collibra - Forrester Presentation : Data Governance 2.0
Collibra - Forrester Presentation : Data Governance 2.0Collibra - Forrester Presentation : Data Governance 2.0
Collibra - Forrester Presentation : Data Governance 2.0
 
Scaling and Modernizing Data Platform with Databricks
Scaling and Modernizing Data Platform with DatabricksScaling and Modernizing Data Platform with Databricks
Scaling and Modernizing Data Platform with Databricks
 
Learn to Use Databricks for the Full ML Lifecycle
Learn to Use Databricks for the Full ML LifecycleLearn to Use Databricks for the Full ML Lifecycle
Learn to Use Databricks for the Full ML Lifecycle
 
Data platform modernization with Databricks.pptx
Data platform modernization with Databricks.pptxData platform modernization with Databricks.pptx
Data platform modernization with Databricks.pptx
 
Designing An Enterprise Data Fabric
Designing An Enterprise Data FabricDesigning An Enterprise Data Fabric
Designing An Enterprise Data Fabric
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
 
Snowflake Overview
Snowflake OverviewSnowflake Overview
Snowflake Overview
 
Databricks on AWS.pptx
Databricks on AWS.pptxDatabricks on AWS.pptx
Databricks on AWS.pptx
 

Similar a AI for an intelligent cloud and intelligent edge: Discover, deploy, and manage with Azure ML services

AI for Intelligent Cloud and Intelligent Edge: Discover, Deploy, and Manage w...
AI for Intelligent Cloud and Intelligent Edge:Discover, Deploy, and Manage w...AI for Intelligent Cloud and Intelligent Edge:Discover, Deploy, and Manage w...
AI for Intelligent Cloud and Intelligent Edge: Discover, Deploy, and Manage w...John Chang
 
Machine Learning and AI
Machine Learning and AIMachine Learning and AI
Machine Learning and AIJames Serra
 
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
[第35回 Machine Learning 15minutes!] Microsoft AI Updates[第35回 Machine Learning 15minutes!] Microsoft AI Updates
[第35回 Machine Learning 15minutes!] Microsoft AI UpdatesNaoki (Neo) SATO
 
Big Data Advanced Analytics on Microsoft Azure 201904
Big Data Advanced Analytics on Microsoft Azure 201904Big Data Advanced Analytics on Microsoft Azure 201904
Big Data Advanced Analytics on Microsoft Azure 201904Mark Tabladillo
 
Azure Global Bootcamp 2018 Paris Keynote
Azure Global Bootcamp 2018 Paris KeynoteAzure Global Bootcamp 2018 Paris Keynote
Azure Global Bootcamp 2018 Paris KeynoteAlex Danvy
 
Azure and Predix
Azure and PredixAzure and Predix
Azure and PredixAltoros
 
201908 Overview of Automated ML
201908 Overview of Automated ML201908 Overview of Automated ML
201908 Overview of Automated MLMark Tabladillo
 
Microsoft AI Platform Overview
Microsoft AI Platform OverviewMicrosoft AI Platform Overview
Microsoft AI Platform OverviewDavid Chou
 
DataPalooza - A Music Festival themed ML + IoT Workshop
DataPalooza - A Music Festival themed ML + IoT WorkshopDataPalooza - A Music Festival themed ML + IoT Workshop
DataPalooza - A Music Festival themed ML + IoT WorkshopAmazon Web Services
 
Big Data Adavnced Analytics on Microsoft Azure
Big Data Adavnced Analytics on Microsoft AzureBig Data Adavnced Analytics on Microsoft Azure
Big Data Adavnced Analytics on Microsoft AzureMark Tabladillo
 
Datapalooza: A Music Festival Themed ML & IoT Workshop
Datapalooza: A Music Festival Themed ML & IoT WorkshopDatapalooza: A Music Festival Themed ML & IoT Workshop
Datapalooza: A Music Festival Themed ML & IoT WorkshopAmazon Web Services
 
Microsoft & Machine Learning / Artificial Intelligence
Microsoft & Machine Learning / Artificial IntelligenceMicrosoft & Machine Learning / Artificial Intelligence
Microsoft & Machine Learning / Artificial Intelligenceİbrahim KIVANÇ
 
AMF304-Optimizing Design and Engineering Performance in the Cloud for Manufac...
AMF304-Optimizing Design and Engineering Performance in the Cloud for Manufac...AMF304-Optimizing Design and Engineering Performance in the Cloud for Manufac...
AMF304-Optimizing Design and Engineering Performance in the Cloud for Manufac...Amazon Web Services
 
Innovation with ai at scale on the edge vt sept 2019 v0
Innovation with ai at scale  on the edge vt sept 2019 v0Innovation with ai at scale  on the edge vt sept 2019 v0
Innovation with ai at scale on the edge vt sept 2019 v0Ganesan Narayanasamy
 
Amf304 optimizing-design-and-e-660cc73d-5c4c-4331-8f59-48cccdc1b7f4-135588426...
Amf304 optimizing-design-and-e-660cc73d-5c4c-4331-8f59-48cccdc1b7f4-135588426...Amf304 optimizing-design-and-e-660cc73d-5c4c-4331-8f59-48cccdc1b7f4-135588426...
Amf304 optimizing-design-and-e-660cc73d-5c4c-4331-8f59-48cccdc1b7f4-135588426...Ramprasad Nagaraja
 
Track 1 Session 3_建構安全高效的電子設計自動化環境
Track 1 Session 3_建構安全高效的電子設計自動化環境Track 1 Session 3_建構安全高效的電子設計自動化環境
Track 1 Session 3_建構安全高效的電子設計自動化環境Amazon Web Services
 
Meetup Toulouse Microsoft Azure : Bâtir une solution IoT
Meetup Toulouse Microsoft Azure : Bâtir une solution IoTMeetup Toulouse Microsoft Azure : Bâtir une solution IoT
Meetup Toulouse Microsoft Azure : Bâtir une solution IoTAlex Danvy
 
Machine Learning inference at the Edge
Machine Learning inference at the EdgeMachine Learning inference at the Edge
Machine Learning inference at the EdgeJulien SIMON
 

Similar a AI for an intelligent cloud and intelligent edge: Discover, deploy, and manage with Azure ML services (20)

AI for Intelligent Cloud and Intelligent Edge: Discover, Deploy, and Manage w...
AI for Intelligent Cloud and Intelligent Edge:Discover, Deploy, and Manage w...AI for Intelligent Cloud and Intelligent Edge:Discover, Deploy, and Manage w...
AI for Intelligent Cloud and Intelligent Edge: Discover, Deploy, and Manage w...
 
Machine Learning and AI
Machine Learning and AIMachine Learning and AI
Machine Learning and AI
 
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
[第35回 Machine Learning 15minutes!] Microsoft AI Updates[第35回 Machine Learning 15minutes!] Microsoft AI Updates
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
 
Big Data Advanced Analytics on Microsoft Azure 201904
Big Data Advanced Analytics on Microsoft Azure 201904Big Data Advanced Analytics on Microsoft Azure 201904
Big Data Advanced Analytics on Microsoft Azure 201904
 
Azure Global Bootcamp 2018 Paris Keynote
Azure Global Bootcamp 2018 Paris KeynoteAzure Global Bootcamp 2018 Paris Keynote
Azure Global Bootcamp 2018 Paris Keynote
 
Azure and Predix
Azure and PredixAzure and Predix
Azure and Predix
 
201908 Overview of Automated ML
201908 Overview of Automated ML201908 Overview of Automated ML
201908 Overview of Automated ML
 
Microsoft AI Platform Overview
Microsoft AI Platform OverviewMicrosoft AI Platform Overview
Microsoft AI Platform Overview
 
DataPalooza - A Music Festival themed ML + IoT Workshop
DataPalooza - A Music Festival themed ML + IoT WorkshopDataPalooza - A Music Festival themed ML + IoT Workshop
DataPalooza - A Music Festival themed ML + IoT Workshop
 
Big Data Adavnced Analytics on Microsoft Azure
Big Data Adavnced Analytics on Microsoft AzureBig Data Adavnced Analytics on Microsoft Azure
Big Data Adavnced Analytics on Microsoft Azure
 
DataPalooza: ML & IoT Workshop
DataPalooza: ML & IoT WorkshopDataPalooza: ML & IoT Workshop
DataPalooza: ML & IoT Workshop
 
Microsoft Azure Overview
Microsoft Azure OverviewMicrosoft Azure Overview
Microsoft Azure Overview
 
Datapalooza: A Music Festival Themed ML & IoT Workshop
Datapalooza: A Music Festival Themed ML & IoT WorkshopDatapalooza: A Music Festival Themed ML & IoT Workshop
Datapalooza: A Music Festival Themed ML & IoT Workshop
 
Microsoft & Machine Learning / Artificial Intelligence
Microsoft & Machine Learning / Artificial IntelligenceMicrosoft & Machine Learning / Artificial Intelligence
Microsoft & Machine Learning / Artificial Intelligence
 
AMF304-Optimizing Design and Engineering Performance in the Cloud for Manufac...
AMF304-Optimizing Design and Engineering Performance in the Cloud for Manufac...AMF304-Optimizing Design and Engineering Performance in the Cloud for Manufac...
AMF304-Optimizing Design and Engineering Performance in the Cloud for Manufac...
 
Innovation with ai at scale on the edge vt sept 2019 v0
Innovation with ai at scale  on the edge vt sept 2019 v0Innovation with ai at scale  on the edge vt sept 2019 v0
Innovation with ai at scale on the edge vt sept 2019 v0
 
Amf304 optimizing-design-and-e-660cc73d-5c4c-4331-8f59-48cccdc1b7f4-135588426...
Amf304 optimizing-design-and-e-660cc73d-5c4c-4331-8f59-48cccdc1b7f4-135588426...Amf304 optimizing-design-and-e-660cc73d-5c4c-4331-8f59-48cccdc1b7f4-135588426...
Amf304 optimizing-design-and-e-660cc73d-5c4c-4331-8f59-48cccdc1b7f4-135588426...
 
Track 1 Session 3_建構安全高效的電子設計自動化環境
Track 1 Session 3_建構安全高效的電子設計自動化環境Track 1 Session 3_建構安全高效的電子設計自動化環境
Track 1 Session 3_建構安全高效的電子設計自動化環境
 
Meetup Toulouse Microsoft Azure : Bâtir une solution IoT
Meetup Toulouse Microsoft Azure : Bâtir une solution IoTMeetup Toulouse Microsoft Azure : Bâtir une solution IoT
Meetup Toulouse Microsoft Azure : Bâtir une solution IoT
 
Machine Learning inference at the Edge
Machine Learning inference at the EdgeMachine Learning inference at the Edge
Machine Learning inference at the Edge
 

Más de James Serra

Data Warehousing Trends, Best Practices, and Future Outlook
Data Warehousing Trends, Best Practices, and Future OutlookData Warehousing Trends, Best Practices, and Future Outlook
Data Warehousing Trends, Best Practices, and Future OutlookJames Serra
 
Power BI Overview, Deployment and Governance
Power BI Overview, Deployment and GovernancePower BI Overview, Deployment and Governance
Power BI Overview, Deployment and GovernanceJames Serra
 
Power BI Overview
Power BI OverviewPower BI Overview
Power BI OverviewJames Serra
 
Power BI for Big Data and the New Look of Big Data Solutions
Power BI for Big Data and the New Look of Big Data SolutionsPower BI for Big Data and the New Look of Big Data Solutions
Power BI for Big Data and the New Look of Big Data SolutionsJames Serra
 
How to build your career
How to build your careerHow to build your career
How to build your careerJames Serra
 
Is the traditional data warehouse dead?
Is the traditional data warehouse dead?Is the traditional data warehouse dead?
Is the traditional data warehouse dead?James Serra
 
Differentiate Big Data vs Data Warehouse use cases for a cloud solution
Differentiate Big Data vs Data Warehouse use cases for a cloud solutionDifferentiate Big Data vs Data Warehouse use cases for a cloud solution
Differentiate Big Data vs Data Warehouse use cases for a cloud solutionJames Serra
 
Azure SQL Database Managed Instance
Azure SQL Database Managed InstanceAzure SQL Database Managed Instance
Azure SQL Database Managed InstanceJames Serra
 
What’s new in SQL Server 2017
What’s new in SQL Server 2017What’s new in SQL Server 2017
What’s new in SQL Server 2017James Serra
 
Learning to present and becoming good at it
Learning to present and becoming good at itLearning to present and becoming good at it
Learning to present and becoming good at itJames Serra
 
Microsoft cloud big data strategy
Microsoft cloud big data strategyMicrosoft cloud big data strategy
Microsoft cloud big data strategyJames Serra
 
Choosing technologies for a big data solution in the cloud
Choosing technologies for a big data solution in the cloudChoosing technologies for a big data solution in the cloud
Choosing technologies for a big data solution in the cloudJames Serra
 
What's new in SQL Server 2016
What's new in SQL Server 2016What's new in SQL Server 2016
What's new in SQL Server 2016James Serra
 
Introducing DocumentDB
Introducing DocumentDB Introducing DocumentDB
Introducing DocumentDB James Serra
 
Introduction to PolyBase
Introduction to PolyBaseIntroduction to PolyBase
Introduction to PolyBaseJames Serra
 
Overview on Azure Machine Learning
Overview on Azure Machine LearningOverview on Azure Machine Learning
Overview on Azure Machine LearningJames Serra
 
Big data architectures and the data lake
Big data architectures and the data lakeBig data architectures and the data lake
Big data architectures and the data lakeJames Serra
 
Introduction to Microsoft’s Hadoop solution (HDInsight)
Introduction to Microsoft’s Hadoop solution (HDInsight)Introduction to Microsoft’s Hadoop solution (HDInsight)
Introduction to Microsoft’s Hadoop solution (HDInsight)James Serra
 
HA/DR options with SQL Server in Azure and hybrid
HA/DR options with SQL Server in Azure and hybridHA/DR options with SQL Server in Azure and hybrid
HA/DR options with SQL Server in Azure and hybridJames Serra
 
Benefits of the Azure cloud
Benefits of the Azure cloudBenefits of the Azure cloud
Benefits of the Azure cloudJames Serra
 

Más de James Serra (20)

Data Warehousing Trends, Best Practices, and Future Outlook
Data Warehousing Trends, Best Practices, and Future OutlookData Warehousing Trends, Best Practices, and Future Outlook
Data Warehousing Trends, Best Practices, and Future Outlook
 
Power BI Overview, Deployment and Governance
Power BI Overview, Deployment and GovernancePower BI Overview, Deployment and Governance
Power BI Overview, Deployment and Governance
 
Power BI Overview
Power BI OverviewPower BI Overview
Power BI Overview
 
Power BI for Big Data and the New Look of Big Data Solutions
Power BI for Big Data and the New Look of Big Data SolutionsPower BI for Big Data and the New Look of Big Data Solutions
Power BI for Big Data and the New Look of Big Data Solutions
 
How to build your career
How to build your careerHow to build your career
How to build your career
 
Is the traditional data warehouse dead?
Is the traditional data warehouse dead?Is the traditional data warehouse dead?
Is the traditional data warehouse dead?
 
Differentiate Big Data vs Data Warehouse use cases for a cloud solution
Differentiate Big Data vs Data Warehouse use cases for a cloud solutionDifferentiate Big Data vs Data Warehouse use cases for a cloud solution
Differentiate Big Data vs Data Warehouse use cases for a cloud solution
 
Azure SQL Database Managed Instance
Azure SQL Database Managed InstanceAzure SQL Database Managed Instance
Azure SQL Database Managed Instance
 
What’s new in SQL Server 2017
What’s new in SQL Server 2017What’s new in SQL Server 2017
What’s new in SQL Server 2017
 
Learning to present and becoming good at it
Learning to present and becoming good at itLearning to present and becoming good at it
Learning to present and becoming good at it
 
Microsoft cloud big data strategy
Microsoft cloud big data strategyMicrosoft cloud big data strategy
Microsoft cloud big data strategy
 
Choosing technologies for a big data solution in the cloud
Choosing technologies for a big data solution in the cloudChoosing technologies for a big data solution in the cloud
Choosing technologies for a big data solution in the cloud
 
What's new in SQL Server 2016
What's new in SQL Server 2016What's new in SQL Server 2016
What's new in SQL Server 2016
 
Introducing DocumentDB
Introducing DocumentDB Introducing DocumentDB
Introducing DocumentDB
 
Introduction to PolyBase
Introduction to PolyBaseIntroduction to PolyBase
Introduction to PolyBase
 
Overview on Azure Machine Learning
Overview on Azure Machine LearningOverview on Azure Machine Learning
Overview on Azure Machine Learning
 
Big data architectures and the data lake
Big data architectures and the data lakeBig data architectures and the data lake
Big data architectures and the data lake
 
Introduction to Microsoft’s Hadoop solution (HDInsight)
Introduction to Microsoft’s Hadoop solution (HDInsight)Introduction to Microsoft’s Hadoop solution (HDInsight)
Introduction to Microsoft’s Hadoop solution (HDInsight)
 
HA/DR options with SQL Server in Azure and hybrid
HA/DR options with SQL Server in Azure and hybridHA/DR options with SQL Server in Azure and hybrid
HA/DR options with SQL Server in Azure and hybrid
 
Benefits of the Azure cloud
Benefits of the Azure cloudBenefits of the Azure cloud
Benefits of the Azure cloud
 

Último

Achieving Excellence IESVE for HVAC Simulation.pdf
Achieving Excellence IESVE for HVAC Simulation.pdfAchieving Excellence IESVE for HVAC Simulation.pdf
Achieving Excellence IESVE for HVAC Simulation.pdfIES VE
 
Trending now: Book subjects on the move in the Canadian market - Tech Forum 2024
Trending now: Book subjects on the move in the Canadian market - Tech Forum 2024Trending now: Book subjects on the move in the Canadian market - Tech Forum 2024
Trending now: Book subjects on the move in the Canadian market - Tech Forum 2024BookNet Canada
 
VM Migration from VMware to CloudStack and KVM – Suresh Anaparti, ShapeBlue
VM Migration from VMware to CloudStack and KVM – Suresh Anaparti, ShapeBlueVM Migration from VMware to CloudStack and KVM – Suresh Anaparti, ShapeBlue
VM Migration from VMware to CloudStack and KVM – Suresh Anaparti, ShapeBlueShapeBlue
 
AI improves software testing to be more fault tolerant, focused and efficient
AI improves software testing to be more fault tolerant, focused and efficientAI improves software testing to be more fault tolerant, focused and efficient
AI improves software testing to be more fault tolerant, focused and efficientKari Kakkonen
 
AMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes WebinarAMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes WebinarThousandEyes
 
PrismCRM-RealEstate-SalesCRM_byCode5Company
PrismCRM-RealEstate-SalesCRM_byCode5CompanyPrismCRM-RealEstate-SalesCRM_byCode5Company
PrismCRM-RealEstate-SalesCRM_byCode5CompanyMustafa Kuğu
 
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...DianaGray10
 
software-quality-assurance question paper 2023
software-quality-assurance question paper 2023software-quality-assurance question paper 2023
software-quality-assurance question paper 2023RohanMistry15
 
Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerCentralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerSaiLinnThu2
 
Elevating Cloud Infrastructure with Object Storage, DRS, VM Scheduling, and D...
Elevating Cloud Infrastructure with Object Storage, DRS, VM Scheduling, and D...Elevating Cloud Infrastructure with Object Storage, DRS, VM Scheduling, and D...
Elevating Cloud Infrastructure with Object Storage, DRS, VM Scheduling, and D...ShapeBlue
 
Java Optional (Kitworks Team Study 김성호 발표)
Java Optional (Kitworks Team Study 김성호 발표)Java Optional (Kitworks Team Study 김성호 발표)
Java Optional (Kitworks Team Study 김성호 발표)Wonjun Hwang
 
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlueCloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlueShapeBlue
 
Transcript: Trending now: Book subjects on the move in the Canadian market - ...
Transcript: Trending now: Book subjects on the move in the Canadian market - ...Transcript: Trending now: Book subjects on the move in the Canadian market - ...
Transcript: Trending now: Book subjects on the move in the Canadian market - ...BookNet Canada
 
AI-Plugins-Planners-Persona-SemanticKernel.pptx
AI-Plugins-Planners-Persona-SemanticKernel.pptxAI-Plugins-Planners-Persona-SemanticKernel.pptx
AI-Plugins-Planners-Persona-SemanticKernel.pptxUdaiappa Ramachandran
 
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...2toLead Limited
 
Roundtable_-_API_Research__Testing_Tools.pdf
Roundtable_-_API_Research__Testing_Tools.pdfRoundtable_-_API_Research__Testing_Tools.pdf
Roundtable_-_API_Research__Testing_Tools.pdfMostafa Higazy
 
Large Language Models and Applications in Healthcare
Large Language Models and Applications in HealthcareLarge Language Models and Applications in Healthcare
Large Language Models and Applications in HealthcareAsma Ben Abacha
 
New ThousandEyes Product Features and Release Highlights: February 2024
New ThousandEyes Product Features and Release Highlights: February 2024New ThousandEyes Product Features and Release Highlights: February 2024
New ThousandEyes Product Features and Release Highlights: February 2024ThousandEyes
 
Microsoft x 2toLead Webinar Session 2 - How Employee Learning and Development...
Microsoft x 2toLead Webinar Session 2 - How Employee Learning and Development...Microsoft x 2toLead Webinar Session 2 - How Employee Learning and Development...
Microsoft x 2toLead Webinar Session 2 - How Employee Learning and Development...2toLead Limited
 
National Institute of Standards and Technology (NIST) Cybersecurity Framework...
National Institute of Standards and Technology (NIST) Cybersecurity Framework...National Institute of Standards and Technology (NIST) Cybersecurity Framework...
National Institute of Standards and Technology (NIST) Cybersecurity Framework...MichaelBenis1
 

Último (20)

Achieving Excellence IESVE for HVAC Simulation.pdf
Achieving Excellence IESVE for HVAC Simulation.pdfAchieving Excellence IESVE for HVAC Simulation.pdf
Achieving Excellence IESVE for HVAC Simulation.pdf
 
Trending now: Book subjects on the move in the Canadian market - Tech Forum 2024
Trending now: Book subjects on the move in the Canadian market - Tech Forum 2024Trending now: Book subjects on the move in the Canadian market - Tech Forum 2024
Trending now: Book subjects on the move in the Canadian market - Tech Forum 2024
 
VM Migration from VMware to CloudStack and KVM – Suresh Anaparti, ShapeBlue
VM Migration from VMware to CloudStack and KVM – Suresh Anaparti, ShapeBlueVM Migration from VMware to CloudStack and KVM – Suresh Anaparti, ShapeBlue
VM Migration from VMware to CloudStack and KVM – Suresh Anaparti, ShapeBlue
 
AI improves software testing to be more fault tolerant, focused and efficient
AI improves software testing to be more fault tolerant, focused and efficientAI improves software testing to be more fault tolerant, focused and efficient
AI improves software testing to be more fault tolerant, focused and efficient
 
AMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes WebinarAMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes Webinar
 
PrismCRM-RealEstate-SalesCRM_byCode5Company
PrismCRM-RealEstate-SalesCRM_byCode5CompanyPrismCRM-RealEstate-SalesCRM_byCode5Company
PrismCRM-RealEstate-SalesCRM_byCode5Company
 
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
 
software-quality-assurance question paper 2023
software-quality-assurance question paper 2023software-quality-assurance question paper 2023
software-quality-assurance question paper 2023
 
Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerCentralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
 
Elevating Cloud Infrastructure with Object Storage, DRS, VM Scheduling, and D...
Elevating Cloud Infrastructure with Object Storage, DRS, VM Scheduling, and D...Elevating Cloud Infrastructure with Object Storage, DRS, VM Scheduling, and D...
Elevating Cloud Infrastructure with Object Storage, DRS, VM Scheduling, and D...
 
Java Optional (Kitworks Team Study 김성호 발표)
Java Optional (Kitworks Team Study 김성호 발표)Java Optional (Kitworks Team Study 김성호 발표)
Java Optional (Kitworks Team Study 김성호 발표)
 
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlueCloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
 
Transcript: Trending now: Book subjects on the move in the Canadian market - ...
Transcript: Trending now: Book subjects on the move in the Canadian market - ...Transcript: Trending now: Book subjects on the move in the Canadian market - ...
Transcript: Trending now: Book subjects on the move in the Canadian market - ...
 
AI-Plugins-Planners-Persona-SemanticKernel.pptx
AI-Plugins-Planners-Persona-SemanticKernel.pptxAI-Plugins-Planners-Persona-SemanticKernel.pptx
AI-Plugins-Planners-Persona-SemanticKernel.pptx
 
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
 
Roundtable_-_API_Research__Testing_Tools.pdf
Roundtable_-_API_Research__Testing_Tools.pdfRoundtable_-_API_Research__Testing_Tools.pdf
Roundtable_-_API_Research__Testing_Tools.pdf
 
Large Language Models and Applications in Healthcare
Large Language Models and Applications in HealthcareLarge Language Models and Applications in Healthcare
Large Language Models and Applications in Healthcare
 
New ThousandEyes Product Features and Release Highlights: February 2024
New ThousandEyes Product Features and Release Highlights: February 2024New ThousandEyes Product Features and Release Highlights: February 2024
New ThousandEyes Product Features and Release Highlights: February 2024
 
Microsoft x 2toLead Webinar Session 2 - How Employee Learning and Development...
Microsoft x 2toLead Webinar Session 2 - How Employee Learning and Development...Microsoft x 2toLead Webinar Session 2 - How Employee Learning and Development...
Microsoft x 2toLead Webinar Session 2 - How Employee Learning and Development...
 
National Institute of Standards and Technology (NIST) Cybersecurity Framework...
National Institute of Standards and Technology (NIST) Cybersecurity Framework...National Institute of Standards and Technology (NIST) Cybersecurity Framework...
National Institute of Standards and Technology (NIST) Cybersecurity Framework...
 

AI for an intelligent cloud and intelligent edge: Discover, deploy, and manage with Azure ML services

  • 1. AI for Intelligent Cloud and Intelligent Edge: Discover, deploy, and manage with Azure ML Services James Serra Microsoft Technical Architect, Data & AI Blog: JamesSerra.com
  • 2. About Me  Microsoft, Big Data Evangelist  In IT for 30 years, worked on many BI and DW projects  Worked as desktop/web/database developer, DBA, BI and DW architect and developer, MDM architect, PDW/APS developer  Been perm employee, contractor, consultant, business owner  Presenter at PASS Business Analytics Conference, PASS Summit, Enterprise Data World conference  Certifications: MCSE: Data Platform, Business Intelligence; MS: Architecting Microsoft Azure Solutions, Design and Implement Big Data Analytics Solutions, Design and Implement Cloud Data Platform Solutions  Blog at JamesSerra.com  Former SQL Server MVP  Author of book “Reporting with Microsoft SQL Server 2012”
  • 3. I tried to understand AI products on my own… And felt like I was body slammed by Randy Savage: Let’s prevent that from happening…
  • 4. Intro to Azure Machine Learning Model Management Hardware Acceleration Edge Integration AICloud+Edge
  • 5. Machine learning is a data science technique that allows computers to use existing data to forecast future behaviors, outcomes, and trends.
  • 6. Prepare Data Build & Train Deploy Custom AI Building your own AI models for Transforming Data into Intelligence
  • 7. © Microsoft Corporation Advanced analytics pattern in Azure Azure Data Lake store Azure Storage HDInsightAzure Databricks Azure ML Services ML server Model training Long-term storage Data processing Azure Data Lake Analytics Azure ML Studio SQL Server (in-database ML) Azure Databricks (Spark ML) Data Science VM Cosmos DB Serving storage SQL DB SQL DW Azure Analysis Services Cosmos DB Batch AI SQL DB Azure Data Factory Orchestration Azure Container Service Trained model hosting SQL Server (in-database ML) Data collection and understanding, modeling, and deployment Sensors and IoT (unstructured) Logs, files, and media (unstructured) Business/custom apps (structured) Applications Dashboards Power BI
  • 8. © Microsoft Corporation Power BI – build your own ML models
  • 9. Azure AI Services Azure Infrastructure Tools
  • 11. © Microsoft Corporation Machine learning and AI portfolio What engines do you want to use? Deployment target Which experience do you want? Build your own or consume pre-trained models? Microsoft ML & AI products Build your own Azure Machine Learning Code first (On-prem) ML Server On-prem Hadoop SQL Server (cloud) BYOT SQL Server Hadoop Azure Batch DSVM Spark Visual tooling (cloud) AML Studio Consume Cognitive services, bots Spark ML, SparkR, SparklyR Notebooks Jobs Azure Databricks Spark When to use what AI Decision tree: https://biz-excellence.com/2019/02/15/ai-dt/
  • 12. Cognitive Services capabilities Infuse your apps, websites, and bots with human-like intelligence https://azure.microsoft.com/en-us/services/cognitive-services
  • 14. Data Science Lifecycle TEAM DATA SCIENCE PROCESS (TDSP) IS MICROSOFT’S AGILE, ITERATIVE METHODOLOGY TO DELIVER PREDICTIVE ANALYTICS SOLUTIONS AND INTELLIGENT APPLICATIONS EFFICIENTLY https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview
  • 15. WHAT IS AZURE MACHINE LEARNING SERVICE? Set of Azure Cloud Services Python SDK  Prepare Data  Build Models  Train Models  Manage Models  Track Experiments  Deploy Models That enables you to:
  • 16. What is Azure Machine Learning service? Start training on your local machine and then scale out to the cloud
  • 17. Azure Machine Learning Services • Deprecate Azure Machine Learning Workbench • Unified SDK, CLI and UX for training and deploying models • Full Integration with Visual Studio Code and Azure DevOps • Improved support for multiple compute targets • Four new models for FPGA • Vision AI Dev Kit available to order on Oct 1
  • 18. Azure Machine Learning Workspace layout
  • 20. The Azure ML Deployment Pipeline
  • 21. Understanding the Edge: Heavy Edge vs Light Edge Cloud: Azure Heavy Edge Light Edge Descriptio n An Azure host that spans from CPU to GPU and FPGA VMs A server with slots to insert CPUs, GPUs, and FPGAs or a X64 or ARM system that needs to be plugged in to work A Sensor with a SOC (ARM CPU, NNA, MCU) and memory that can operate on batteries Example DSVM / ACI / AKS / Batch AI - DataBox Edge - HPE - Azure Stack - DataBox Edge - Industrial PC -Video Gateway -DVR -Mobile Phones -VAIDK -Mobile Phones -IP Cameras -Azure Sphere - Appliances What runs model CPU,GPU or FPGA CPU,GPU or FPGA CPU, GPU x64 CPU Multi-ARM CPU Hw accelerated NNA CPU/GPU MCU Why Edge? latency, less data sent, filter, aggregate, work offline
  • 25. AZURE MACHINE LEARNING STUDIO Platform for emerging data scientists to graphically build and deploy experiments • Rapid experiment composition • > 100 easily configured modules for data prep, training, evaluation • Extensibility through R & Python • Serverless training and deployment Some numbers: • 100’s of thousands of deployed models serving billions of requests
  • 26. Comparable Table Azure Machine Learning Studio Machine Learning Services Pros • Rapid development (Drag and Drop) • Works well with relatively simple datasets • Pre-built ML algorithms • Cheap • Fast (VMs with GPUs) • Different optimization methods, CI/CD pipeline • Full control during training • Manage computing resources (choose VM size) • Use open source ML libraries Cons • Can be slow • Limited optimization methods, operationalized architecture • Less control during training • Fixed computing resources • More elaborate to build, require deeper knowledge of machine learning • Deeper models need much more data with much more memory • Higher costs for VM with GPU
  • 28. Model Management and Deployment Demo UX, Azure Dev Ops and CLI
  • 31. Breakthroughs in deep learning demand real-time AI Convolutional Neural Networks (CNN) ht-1 ht ht+1 xt-1 xt xt+1 ht-1 ht ht+1 yt-1 yt yt+1 Recurrent Neural Networks (RNN) Deep neural networks (DNN) have enabled major advances in machine learning and AI Computer vision Language translation Speech recognition Question answering And more… Problem DNNs are challenging to serve and deploy in large-scale online services Heavily constrained by latency, cost, and power Size and complexity outpacing growth of commodity CPUs
  • 32. Microsoft Hardware Acceleration FPGAs EFFICIENCYFLEXIBILITY CPUs GPUs ASICs INFERENCING CPUs, GPUS, FPGAs TRAINING CPUs and GPUs Cloud Edge INFERENCING CPUs, GPUS, FPGAs, ASICs TRAINING (HEAVY EDGE) CPUs and GPUs
  • 33. hardware architecture designed to accelerate real-time AI calculations Project Brainwave unique advantage (DNN models and FPGA) No batching required Brainwave delivers the ideal combination: High hardware utilization Low latency Low batch sizes In short, it is a hardware architecture and learning platform designed to accelerate real-time AI calculations Batch Size Performance Brainwave NPU 1256
  • 34. Credit: Henk Monster. Licensed under the Creative Commons Attribution 3.0 Unported license.
  • 35. Licensed under the Creative Commons Attribution 2.0 Generic license
  • 36. Project Brainwave use cases For accelerated real-time image processing: - Identify manufacturing defects - Detect spills or open freezer doors in a retail store - Conduct real-time medical image analysis - Tract endangered species - Detect cars parked in a fire lane
  • 38. The power of deep learning on FPGA Performance Flexibility Scale Rapidly adapt to evolving ML Inference-optimized numerical precision Exploit sparsity, deep compression Excellent inference at low batch sizes Ultra-low latency | 10x < CPU/GPU World’s largest cloud investment in FPGAs Multiple Exa-Ops of aggregate AI capacity Runs on Microsoft’s scale infrastructure Low cost $0.21/million images on Azure FPGA (inferencing)
  • 39. Project BrainWave A Scalable FPGA-Powered DNN Serving Platform Fast: Flexible Friendly: F F F L0 L1 F F F L0 Pretrained DNN Model in TensorFlow, CNTK, etc. Scalable DNN Hardware Microservice BrainWave Soft DPU Instr Decoder & Control Neural FU Network switches FPGAs
  • 40. Azure ML and Project Brainwave • New DNN models • ResNet 152, DenseNet-121, VGG-16, SSD-VGG • Customizable weights http://aka.ms/aml-real-time-ai Easily deploy models to FPGAs for ultra-low latency with Azure Machine Learning powered by Project Brainwave
  • 43. Why Intelligent Edge? High-speed data processing, analytics and shorter response times are more essential than ever. Intelligent Cloud • Business agility and scalability: unlimited computing power available on demand. Intelligent Edge • Can handle priority-one tasks locally even without cloud connection. • Can handle generated data that is too large to pull rapidly from the cloud. • Enables real-time processing through intelligence in or near to local devices. • Flexibility to accommodate data privacy related requirements.
  • 44. The components of a ML application Vision AI dev kit Vision AI dev kit
  • 46. Vision AI Developer Kit Hardware Specification Tutorial: Develop a C# IoT Edge module and deploy to your simulated device https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-csharp-module
  • 48. Vision AI Developer Kit A connected camera reference solution Altek version available to order soon at https://visionaidevkit.com
  • 49. Q & A ? James Serra, Big Data Evangelist Email me at: JamesSerra3@gmail.com Follow me at: @JamesSerra Link to me at: www.linkedin.com/in/JamesSerra Visit my blog at: JamesSerra.com (where this slide deck is posted via the “Presentations” link on the top menu)