Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
Inteligencia Artificial
(W0I9)
Sesión: 2 y 3
Ing. José C. Benítez P.
Introducción a las RNA
2
Sesión 2. Temas
Introducción a las RNA (Redes Neuronales Artificiales)
Introducción a la RNA
Características de las RNA
...
3
Introducción a las RNA
El cerebro humano es el
sistema de cálculo más
complejo que conoce el
hombre.
4
Introducción a las RNA
El computador y el hombre realizan
bien, diferentes clases de tareas; así
la operación de reconoc...
5
Introducción a las RNA
La capacidad del cerebro humano de pensar, recordar
y resolver problemas ha inspirado a muchos ci...
6
Características de las RNA
Las Redes Neuronales Artificiales ( ANN - Artificial Neural
Networks) están inspiradas en las...
7
Características propias del cerebro en las RNA
Por ejemplo las ANN
aprenden de la experiencia,
generalizan de ejemplos p...
8
Características propias del cerebro en las RNA
Aprender:
Adquirir el conocimiento de una cosa por medio
del estudio, eje...
9
Características propias del cerebro en las RNA
Generalizar:
Extender o ampliar una cosa.
Las RNA generalizan automáticam...
10
Características propias del cerebro en las RNA
Abstraer:
Aislar mentalmente o considerar por
separado las cualidades de...
11
La neurona biológica
La neurona es la unidad
fundamental del sistema
nervioso y en particular del
cerebro.
Cada neurona...
12
La neurona biológica
El cerebro consiste en 100,000 millones de
neuronas densamente interconectadas.
Las partes de la n...
13
La neurona biológica
La señal ingresa por las dendritas atraviesa
el cuerpo, el axón (salida), y sale por las
terminaci...
14
La neurona biológica
El axón de la neurona se ramifica en las terminaciones
nerviosas (salida) y estas están conectadas...
15
La neurona biológica
Existen varios tipos de neuronas.
16
Red neuronal biológica
17
Red neuronal biológica
18
C. Tradicional VS C. Neuronal
Programación/Entrenamiento
Arquitectura
Sistemas Expertos
19
C. Tradicional VS C. Neuronal
Las técnicas tradicionales de programación utilizadas para
la solución de un problema req...
20
C. Tradicional VS C. Neuronal
Por ejemplo imaginemos desarrollar un programa para
cualquiera de los problemas de recono...
21
C. Tradicional VS C. Neuronal
Las RNA presentan una arquitectura totalmente diferente de
los computadores tradicionales...
22
C. Tradicional VS C. Neuronal
Cualquier CPU realiza más de cien comandos básicos,
incluyendo sumas, restas, y desplazam...
23
C. Tradicional VS C. Neuronal
Sin embargo las máquinas de Von Neuman se miden por el
número de instrucciones que ejecut...
24
C. Tradicional VS C. Neuronal
Los sistemas expertos difieren de la programación tradicional
en que la base del conocimi...
25
C. Tradicional VS C. Neuronal
La red neuronal aprende las reglas del procesamiento del
conocimiento mediante el ajuste ...
26
C. Tradicional VS C. Neuronal
Esta característica de las ANN es lo que permite decir que
las redes neuronales aprenden ...
27
C. Tradicional VS C. Neuronal
La naturaleza de la memoria de las RNA permite que la red
responda adecuadamente cuando s...
28
Historia de la RNA
Base
En 1943, el neurobiólogo Warren McCulloch, y el
estadístico Walter Pitss, publicaron el artícul...
29
Historia de la RNA
Inicio de las RNA
En 1956, los pioneros de la Inteligencia Artificial,
Minsky, McCarthy, Rochester, ...
30
Historia de la RNA
Perceptron
Nathaural Rochester del equipo de investigación de
IBM presentó el modelo de una red neur...
31
Historia de la RNA
Descenso de las expectativas
A mediados de los años 60, Minsky y Papert pertenecientes
al Laboratori...
32
Historia de la RNA
Pero continuaron…
Uno de los pocos investigadores que continuaron con su trabajo
en la computación n...
33
Historia de la RNA
Hoy
Existen muchos grupos en diferentes universidades de todo
el mundo que están realizando investig...
34
Historia de la RNA
Hoy
Rumelhart de la Universidad de Stanford es uno de los
principales impulsores de la red más utili...
35
Historia de la RNA
Hoy
Existen grandes grupos de investigación como los de
California Institute of Technology, Massachu...
36
RNA aplicaciones
Las características especiales de los sistemas de
computación neuronal permiten que sea utilizada
esta...
37
RNA aplicaciones
Algunas de las áreas de aplicación de las RNA:
Análisis y Procesado de señales
Reconocimiento de Imáge...
38
Representación de una RNA
Red neuronal artificial perceptrón simple con n neuronas
de entrada, m neuronas en su capa oc...
39
Funcionamiento de una RNA
• Las RNAs consisten en una simulación de las propiedades
observadas en los sistemas neuronal...
40
Funciones de las RNAs
Tres Funciones
La salida de una neurona viene dada por tres funciones:
1. Una función de propagac...
41
Funciones de las RNAs
Función de Propagación
También es conocida como función de excitación.
Consiste en la sumatoria d...
42
Funciones de las RNAs
Función de activación
La función de activación, modifica a la función de propagación.
Puede no ex...
43
Funciones de las RNAs
Función de transferencia
La función de transferencia, se aplica al valor devuelto por la
función ...
44
Ventajas de las RNAs
Las RNA tienen muchas
ventajas debido a que están
basadas en la estructura del
sistema nervioso,
p...
45
Ventajas de las RNAs
• Aprendizaje:
• Las RNA tienen la habilidad de aprender mediante una
etapa que se llama etapa de ...
46
Ventajas de las RNAs
• Flexibilidad:
• Una RNA puede manejar cambios no importantes en la
información de entrada, como ...
47
Modelos de RNAs
Perceptrón
Adaline
Perceptrón multicapa
Memorias asociativas
Máquina de Boltzmann
Máquina de Cauchy
Pro...
48
Clasificación de las RNAs
Las RNA se pueden clasificar según:
Topología
Tipo de Aprendizaje.
Tipo de información.
48
49
Clasificación de las RNAs
Las RNA en función de su topología (patrón de
conexiones) que presenta, se clasifican en dos
...
50
Clasificación de las RNAs
Patrón de conexiones:
Las redes de propagación hacia delante o acíclicas.
Todas las señales v...
51
Clasificación de las RNAs
Patrón de conexiones:
Las redes recurrentes
Son las que presentan al menos un ciclo cerrado d...
52
Clasificación de las RNAs
Aprendizaje supervisado
Aprendizaje no supervisado o
auto organizado
Redes híbridas
Aprendiza...
53
Clasificación de las RNAs
Aprendizaje supervisado:
Necesitan un conjunto de datos de entrada previamente
clasificado o ...
54
Clasificación de las RNAs
Aprendizaje no supervisado o auto organizado:
No necesitan de tal conjunto previo.
Ejemplos d...
55
Clasificación de las RNAs
Redes híbridas:
Son un enfoque mixto en el que se utiliza una función de
mejora para facilita...
56
Clasificación de las RNAs
También se pueden clasificar las RNAs según sean
capaces de procesar un tipo información en:
...
57
Clasificación de las RNAs
Redes analógicas:
Procesan datos de entrada con valores continuos y
habitualmente acotados.
E...
58
Clasificación de las RNAs
Redes discretas:
Procesan datos de entrada de naturaleza discreta;
habitualmente valores lógi...
59
Preguntas de práctica calificada
Con la ayuda de fuentes y mediante mapas conceptuales y/o semánticos
responda las sigu...
60
Sesión 2. Redes Neuronales Artificiales
Inteligencia Artificial
http://utpiayse.blogspot.com
Próxima SlideShare
Cargando en…5
×

Utp iase_s2_intro a las rna

  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Utp iase_s2_intro a las rna

  1. 1. Inteligencia Artificial (W0I9) Sesión: 2 y 3 Ing. José C. Benítez P. Introducción a las RNA
  2. 2. 2 Sesión 2. Temas Introducción a las RNA (Redes Neuronales Artificiales) Introducción a la RNA Características de las RNA La Neurona biológica Red neuronal biológica Computación tradicional VS computación neuronal Historia de la computación neuronal Aplicación de las RNA Representación una RNA Funcionamiento de una RNA Funciones de las RNAs Ventajas de las RNAs Modelos de RNAs Clasificación de las RNAs
  3. 3. 3 Introducción a las RNA El cerebro humano es el sistema de cálculo más complejo que conoce el hombre.
  4. 4. 4 Introducción a las RNA El computador y el hombre realizan bien, diferentes clases de tareas; así la operación de reconocer el rostro de una persona resulta una tarea relativamente sencilla para el hombre y difícil para el computador, mientras que la contabilidad de una empresa es tarea costosa para un experto contable y una sencilla rutina para un computador básico.
  5. 5. 5 Introducción a las RNA La capacidad del cerebro humano de pensar, recordar y resolver problemas ha inspirado a muchos científicos intentar o procurar modelar en el computador el funcionamiento del cerebro humano.
  6. 6. 6 Características de las RNA Las Redes Neuronales Artificiales ( ANN - Artificial Neural Networks) están inspiradas en las RNB del cerebro humano. Las RNA están constituidas por elementos (NA) que se comportan de forma similar a la NB en sus funciones más comunes. Estos elementos están organizados de una forma parecida a la que presenta el cerebro humano. Las RNA al margen de "parecerse" al cerebro presentan una serie de características propias del cerebro.
  7. 7. 7 Características propias del cerebro en las RNA Por ejemplo las ANN aprenden de la experiencia, generalizan de ejemplos previos a ejemplos nuevos y abstraen las características principales de una serie de datos.
  8. 8. 8 Características propias del cerebro en las RNA Aprender: Adquirir el conocimiento de una cosa por medio del estudio, ejercicio o experiencia. Las RNA pueden cambiar su comportamiento en función del entorno. Se les muestra un conjunto de entradas y ellas mismas se ajustan para producir unas salidas consistentes.
  9. 9. 9 Características propias del cerebro en las RNA Generalizar: Extender o ampliar una cosa. Las RNA generalizan automáticamente debido a su propia estructura y naturaleza. Estas redes pueden ofrecer, dentro de un margen, respuestas correctas a entradas que presentan pequeñas variaciones debido a los efectos de ruido o distorsión.
  10. 10. 10 Características propias del cerebro en las RNA Abstraer: Aislar mentalmente o considerar por separado las cualidades de un objeto. Algunas RNA son capaces de abstraer la esencia de un conjunto de entradas que aparentemente no presentan aspectos comunes o relativos.
  11. 11. 11 La neurona biológica La neurona es la unidad fundamental del sistema nervioso y en particular del cerebro. Cada neurona es una simple unidad procesadora que recibe y combina señales desde y hacia otras neuronas. Si la combinación de entradas es suficientemente fuerte la salida de la neurona se activa.
  12. 12. 12 La neurona biológica El cerebro consiste en 100,000 millones de neuronas densamente interconectadas. Las partes de la neurona son las: dendritas, el cuerpo (o soma), el núcleo, el axón y las terminaciones nerviosas. La eficacia de la sinapsis es modificable durante el proceso de aprendizaje de la red.
  13. 13. 13 La neurona biológica La señal ingresa por las dendritas atraviesa el cuerpo, el axón (salida), y sale por las terminaciones nerviosas.
  14. 14. 14 La neurona biológica El axón de la neurona se ramifica en las terminaciones nerviosas (salida) y estas están conectadas a las dendritas (entradas) de otras neuronas a través de uniones llamadas sinapsis.
  15. 15. 15 La neurona biológica Existen varios tipos de neuronas.
  16. 16. 16 Red neuronal biológica
  17. 17. 17 Red neuronal biológica
  18. 18. 18 C. Tradicional VS C. Neuronal Programación/Entrenamiento Arquitectura Sistemas Expertos
  19. 19. 19 C. Tradicional VS C. Neuronal Las técnicas tradicionales de programación utilizadas para la solución de un problema requieren la creación de un algoritmo. Un algoritmo consiste en una secuencia de instrucciones que indica el modo en el que debe proceder el sistema basado en un computador para lograr el fin perseguido que es la resolución del problema. El diseño de una secuencia de instrucciones para resolver un problema de contabilidad es relativamente sencillo, mientras que existen muchos problemas del mundo real en los que resulta difícil realizar un algoritmo que resuelva dichos problemas. Programación/Entrenamiento
  20. 20. 20 C. Tradicional VS C. Neuronal Por ejemplo imaginemos desarrollar un programa para cualquiera de los problemas de reconocimiento de imágenes como el rostro de una persona. Hay muchas variaciones de la imagen de una persona, como que presente un rostro serio o un rostro alegre, variaciones en general que deben tenerse en cuenta a la hora de diseñar el algoritmo. Las RNA, a diferencia de los algoritmos que son instrucciones previamente programadas, deben ser previamente entrenadas. Esto significa que a la red se le muestra en su capa de entrada unos ejemplos y ella misma se ajusta en función de alguna regla de aprendizaje. Programación/Entrenamiento
  21. 21. 21 C. Tradicional VS C. Neuronal Las RNA presentan una arquitectura totalmente diferente de los computadores tradicionales de un único procesador. Las máquinas tradicionales basadas en el modelo de Von Neuman tienen un único elemento procesador, la CPU (Control Process Unit) que realiza todos los cálculos ejecutando todas las instrucciones de la secuencia programada en el algoritmo. Arquitectura
  22. 22. 22 C. Tradicional VS C. Neuronal Cualquier CPU realiza más de cien comandos básicos, incluyendo sumas, restas, y desplazamientos entre otros. Los comandos o instrucciones se ejecutan secuencialmente y sincronizadas con el reloj del sistema. Sin embargo en los sistemas de computación neuronal cada elemento PE sólo puede realizar uno, o como mucho, varios cálculos. La potencia del procesado de las ANN se mide principalmente por el número de interconexiones actualizadas por segundo durante el proceso de entrenamiento o aprendizaje. Arquitectura
  23. 23. 23 C. Tradicional VS C. Neuronal Sin embargo las máquinas de Von Neuman se miden por el número de instrucciones que ejecuta por segundo el procesador central CPU. La arquitectura de las ANN parte de la organización de los sistemas de procesado en paralelo, es decir, sistemas en los que distintos procesadores están interconectados. No obstante los procesadores son unidades procesadoras simples, diseñadas para la suma de muchas entradas y con un ajuste automático de las conexiones ponderadas. Arquitectura
  24. 24. 24 C. Tradicional VS C. Neuronal Los sistemas expertos difieren de la programación tradicional en que la base del conocimiento está separada del motor de inferencia (el método del procesado del conocimiento). Esta característica permite que todo el conocimiento adicional puede ser añadido al sistema sin necesidad de tener que ser reprogramado todo el sistema. Esta técnica requiere que exista una persona experta en un área y que se puedan crear reglas que codifiquen el conocimiento. En el desarrollo de una red neuronal no hay que programar ni el conocimiento ni las reglas del procesamiento del conocimiento. Sistemas expertos
  25. 25. 25 C. Tradicional VS C. Neuronal La red neuronal aprende las reglas del procesamiento del conocimiento mediante el ajuste de las conexiones ponderadas entre las neuronas de distintas capas de la red. Mientras que en los Sistemas Expertos el conocimiento se hace explícito en forma de reglas, en la computación neuronal las ANN generan sus propias reglas aprendiendo de los ejemplos que se les muestran en la fase de entrenamiento. El aprendizaje se consigue a través de una regla de aprendizaje que adapta o cambia los pesos de las conexiones en respuesta a los ejemplos de entrada, y opcionalmente también en respuesta a las salidas deseadas. Sistemas expertos
  26. 26. 26 C. Tradicional VS C. Neuronal Esta característica de las ANN es lo que permite decir que las redes neuronales aprenden de la experiencia. Una característica importante de las ANN es la forma o el modo en que se almacena la información. La memoria o el conocimiento de estas redes está distribuida a lo largo de todas las conexiones ponderadas de la red. Algunas ANN presentan la característica de ser "asociativas" que significa que para una entrada parcial la red elegirá la entrada más parecida en memoria y generará una salida que corresponda a la entrada completa. Sistemas expertos.-
  27. 27. 27 C. Tradicional VS C. Neuronal La naturaleza de la memoria de las RNA permite que la red responda adecuadamente cuando se le presenta una entrada incompleta o con ruido. Esta propiedad es la capacidad de "generalización". Las RNA son tolerantes a las fallas (Fault Tolerance). En muchas RNA si resultaran destruidos varios elementos procesadores (PE), o se alteraran las conexiones el comportamiento de la red sería mínimamente modificado. El comportamiento varía pero el sistema no se descompone o deja de funcionar. Esta característica se debe a que las RNA tienen la información distribuida a lo largo de toda la red y no está contenida en un único lugar. Sistemas expertos
  28. 28. 28 Historia de la RNA Base En 1943, el neurobiólogo Warren McCulloch, y el estadístico Walter Pitss, publicaron el artículo "A logical calculus of Ideas Imminent in Nervous Activity". Este artículo constituyó la base y el inicio del desarrollo en diferentes campos como son: los Computadores Digitales (John Von Neuman), la Inteligencia Artificial (Marvin Minsky con los Sistemas Expertos) y el funcionamiento del ojo (Frank Rosenblatt con la famosa red llamada Perceptron).
  29. 29. 29 Historia de la RNA Inicio de las RNA En 1956, los pioneros de la Inteligencia Artificial, Minsky, McCarthy, Rochester, Shanon, organizaron la primera conferencia de Inteligencia Artificial que fue patrocinada por la Fundación Rochester. Esta conferencia se celebró en el verano de 1956 en la localidad inglesa de Darmouth y en muchos libros se hace referencia al verano de este año como la primera toma de contacto seria con las RNAs.
  30. 30. 30 Historia de la RNA Perceptron Nathaural Rochester del equipo de investigación de IBM presentó el modelo de una red neuronal que él mismo realizó y puede considerarse como el primer software de simulación de RNAs. En 1957, Frank Rosenblatt publicó el mayor trabajo de investigación en computación neuronal realizado hasta esas fechas. Su trabajo consistía en el desarrollo de un elemento llamado "Perceptron". En 1959, Bernard Widrow en Stanford desarrolló un elemento adaptativo lineal llamado "Adaline" (Adaptive Linear Neuron).
  31. 31. 31 Historia de la RNA Descenso de las expectativas A mediados de los años 60, Minsky y Papert pertenecientes al Laboratorio de Investigación de Electrónica del MIT (Massachussets Institute Technology) comenzaron un trabajo profundo de crítica al perceptron. El resultado de este trabajo, el libro Perceptrons, era un análisis matemático del concepto del perceptron. La conclusión de este trabajo, que se transmitió a la comunidad científica del mundo entero, es que el Perceptron y la Computación Neuronal no eran temas interesantes que estudiar y desarrollar. A partir de este momento descendieron drásticamente las inversiones en la investigación de la computación neuronal.
  32. 32. 32 Historia de la RNA Pero continuaron… Uno de los pocos investigadores que continuaron con su trabajo en la computación neuronal tras la publicación del libro Perceptrons fue James Anderson. Teuvo Kohonen, de la Universidad de Helsinki, es uno de los mayores impulsores de la computación neuronal de los 70. Otro investigador que continuó con su trabajo de investigación en la computación neuronal a pesar del mal presagio que indicaron Minsky y Papert fue Stephen Grossberg. En 1982 John Hopfield publicó el artículo Hopfield Model o Crossbar Associative Network, junto con la invención del algoritmo Backpropagation se consiguió devolver el interés y la confianza en el fascinante campo de la computación neuronal tras dos décadas de casi absoluta inactividad y desinterés.
  33. 33. 33 Historia de la RNA Hoy Existen muchos grupos en diferentes universidades de todo el mundo que están realizando investigación en el área de las RNA. Cada grupo tiene diferente énfasis y motivación, con los neurólogos, psicólogos del conocimiento, físicos, programadores y matemáticos. Grossberg continua trabajando en compañía de Carpenter en la Universidad de Boston, mientras Teuvo Kohonen está en la Universidad de Helsinki. Uno de los mayores grupos de investigación de los últimos años ha sido el grupo PDP (Parallel Distributed Processing) formado por Rumelhart, McClelland y Hinton.
  34. 34. 34 Historia de la RNA Hoy Rumelhart de la Universidad de Stanford es uno de los principales impulsores de la red más utilizada en la mayoría de las aplicaciones actuales, la famosa Backpropagation. En la Universidad de Carnegie-Mellon, el grupo de investigación de McClelland destaca por el estudio de las posibles aplicaciones de la Backpropagation. Y en la Universidad de Toronto, Hinton y Sejnowski han desarrollado una máquina llamada Boltzman que consiste en la red de Hopfield con dos modificaciones significativas. Bart Kosko ha diseñado una red llamada BAM (Bidirectional Associate Memory) basado en la red de Grossberg.
  35. 35. 35 Historia de la RNA Hoy Existen grandes grupos de investigación como los de California Institute of Technology, Massachussets Institute of Technology, University of California Berkeley y University of California San Diego. Conviene no olvidar el esfuerzo económico y técnico que están realizando las empresas privadas tanto en USA como en Japón y en la Comunidad Económica Europea. Las inversiones en estos países es muy significativa; sólo en USA se gasta más de 100 millones de dólares al año.
  36. 36. 36 RNA aplicaciones Las características especiales de los sistemas de computación neuronal permiten que sea utilizada esta nueva técnica de cálculo en una extensa variedad de aplicaciones. La computación neuronal provee un acercamiento mayor al reconocimiento y percepción humana que los métodos tradicionales de cálculo. Las RNAs presentan resultados razonables en aplicaciones donde las entradas presentan ruido o las entradas están incompletas. 36
  37. 37. 37 RNA aplicaciones Algunas de las áreas de aplicación de las RNA: Análisis y Procesado de señales Reconocimiento de Imágenes Control de Procesos Filtrado de ruido Robótica Procesado del Lenguaje Diagnósticos médicos Otros 37
  38. 38. 38 Representación de una RNA Red neuronal artificial perceptrón simple con n neuronas de entrada, m neuronas en su capa oculta y una neurona en su capa de salida. 38
  39. 39. 39 Funcionamiento de una RNA • Las RNAs consisten en una simulación de las propiedades observadas en los sistemas neuronales biológicos a través de modelos matemáticos recreados mediante mecanismos artificiales (como un circuito integrado, un computador o un conjunto de válvulas). • El objetivo es conseguir que las máquinas den respuestas similares a las que es capaz de dar el cerebro que se caracterizan por su generalización y su robustez. • Una RNB se compone de unidades llamadas neuronas. • Cada neurona recibe una serie de entradas a través de interconexiones y emite una salida. 39
  40. 40. 40 Funciones de las RNAs Tres Funciones La salida de una neurona viene dada por tres funciones: 1. Una función de propagación 2. Una función de activación 3. Una función de transferencia 40
  41. 41. 41 Funciones de las RNAs Función de Propagación También es conocida como función de excitación. Consiste en la sumatoria de cada entrada multiplicada por el peso de su interconexión (valor neto). Si el peso es positivo, la conexión se denomina excitatoria; si es negativo, se denomina inhibitoria. 41
  42. 42. 42 Funciones de las RNAs Función de activación La función de activación, modifica a la función de propagación. Puede no existir, siendo en este caso la salida la misma función de propagación. 42
  43. 43. 43 Funciones de las RNAs Función de transferencia La función de transferencia, se aplica al valor devuelto por la función de activación. Se utiliza para acotar la salida de la neurona y generalmente viene dada por la interpretación que queramos darle a dichas salidas. Algunas de las más utilizadas son: la función sigmoidea (para obtener valores en el intervalo [0,1]) y la función tangente hiperbólica (para obtener valores en el intervalo [-1,1]). 43
  44. 44. 44 Ventajas de las RNAs Las RNA tienen muchas ventajas debido a que están basadas en la estructura del sistema nervioso, principalmente el cerebro. Aprendizaje Auto organización Tolerancia a fallos Flexibilidad Tiempo real 44
  45. 45. 45 Ventajas de las RNAs • Aprendizaje: • Las RNA tienen la habilidad de aprender mediante una etapa que se llama etapa de aprendizaje. • Esta consiste en proporcionar a la RNA datos como entrada a su vez que se le indica cuál es la salida (respuesta) esperada. • Auto organización: • Una RNA crea su propia representación de la información en su interior, descargando al usuario de esta tarea. • Tolerancia a fallos: • Debido a que una RNA almacena la información de forma redundante, ésta puede seguir respondiendo de manera aceptable aun si se daña parcialmente. 45
  46. 46. 46 Ventajas de las RNAs • Flexibilidad: • Una RNA puede manejar cambios no importantes en la información de entrada, como señales con ruido u otros cambios en la entrada • Ejemplo: Si la información de entrada es la imagen de un objeto, la respuesta correspondiente no sufre cambios si la imagen cambia un poco su brillo o el objeto cambia ligeramente. • Tiempo real: • La estructura de una RNA es paralela, por lo cuál si esto es implementado con computadoras o en dispositivos electrónicos especiales con procesamiento paralelo, se pueden obtener respuestas en tiempo real. 46
  47. 47. 47 Modelos de RNAs Perceptrón Adaline Perceptrón multicapa Memorias asociativas Máquina de Boltzmann Máquina de Cauchy Propagación hacia atrás (backpropagation) Redes de Elman Redes de Hopfield Redes de neuronas de base radial Redes de neuronas de aprendizaje competitivo Mapas Auto organizados (Redes de Kohonen) Crecimiento dinámico de células Gas Neuronal Creciente Redes ART (Adaptative Resonance Theory) 47
  48. 48. 48 Clasificación de las RNAs Las RNA se pueden clasificar según: Topología Tipo de Aprendizaje. Tipo de información. 48
  49. 49. 49 Clasificación de las RNAs Las RNA en función de su topología (patrón de conexiones) que presenta, se clasifican en dos tipos básicos de redes: Las redes de propagación hacia delante Las redes recurrentes. 49
  50. 50. 50 Clasificación de las RNAs Patrón de conexiones: Las redes de propagación hacia delante o acíclicas. Todas las señales van desde la capa de entrada hacia la salida sin existir ciclos, ni conexiones entre neuronas de la misma capa. • Monocapa. Ejemplos: perceptrón, Adaline. • Multicapa. Ejemplos: perceptrón multicapa. 50
  51. 51. 51 Clasificación de las RNAs Patrón de conexiones: Las redes recurrentes Son las que presentan al menos un ciclo cerrado de activación neuronal. Ejemplos: Elman, Hopfield, máquina de Boltzmann. 51
  52. 52. 52 Clasificación de las RNAs Aprendizaje supervisado Aprendizaje no supervisado o auto organizado Redes híbridas Aprendizaje reforzado Las RNA en función del tipo de aprendizaje de que es capaz (si necesita o no un conjunto de entrenamiento supervisado) se clasifican en: 52
  53. 53. 53 Clasificación de las RNAs Aprendizaje supervisado: Necesitan un conjunto de datos de entrada previamente clasificado o cuya respuesta objetivo se conoce. Ejemplos de este tipo de redes son: el perceptrón simple, la red Adaline, el perceptrón multicapa y la memoria asociativa bidireccional. Tipo de aprendizaje: 53
  54. 54. 54 Clasificación de las RNAs Aprendizaje no supervisado o auto organizado: No necesitan de tal conjunto previo. Ejemplos de este tipo de redes son: las memorias asociativas, las redes de Hopfield, la máquina de Boltzmann y la máquina de Cauchy, las redes de aprendizaje competitivo, las redes de Kohonen o mapas autoorganizados y las redes de resonancia adaptativa (ART). Tipo de aprendizaje: 54
  55. 55. 55 Clasificación de las RNAs Redes híbridas: Son un enfoque mixto en el que se utiliza una función de mejora para facilitar la convergencia. Un ejemplo de este último tipo son: las redes de base radial. Aprendizaje reforzado: Se sitúa a medio camino entre el supervisado y el auto organizado. Tipo de aprendizaje: 55
  56. 56. 56 Clasificación de las RNAs También se pueden clasificar las RNAs según sean capaces de procesar un tipo información en: Redes analógicas Redes discretas 56
  57. 57. 57 Clasificación de las RNAs Redes analógicas: Procesan datos de entrada con valores continuos y habitualmente acotados. Ejemplos de este tipo de redes son: Hopfield, Kohonen y las redes de aprendizaje competitivo. Tipo información: 57
  58. 58. 58 Clasificación de las RNAs Redes discretas: Procesan datos de entrada de naturaleza discreta; habitualmente valores lógicos booleanos. Ejemplos de este segundo tipo de redes son: La máquina de Boltzmann, La maquina de Cauchy, y la red discreta de Hopfield. Tipo información: 58
  59. 59. 59 Preguntas de práctica calificada Con la ayuda de fuentes y mediante mapas conceptuales y/o semánticos responda las siguientes preguntas: 1. ¿Cuáles son los objetivos de las RNA? 2. Explique las características propias del cerebro en las RNA. 3. ¿Qué es y cuáles son las partes de una NB? 4. ¿Que son las sinapsis? 5. ¿Cuáles son lo tipos de NB que existen?. Hacer una maqueta. 6. Compare la computación tradicional con la computación neuronal. 7. Listar cinco hechos mas importantes para usted, de la historia de las RNA. 8. Listar cinco aplicaciones de las RNA. 9. Representar una perceptron simple de 5 neuronas de entrada, 3 neuronas en su capa oculta y e neuronas en su capa de salida. 10. Describa en detalle cada una de las funciones de las RNA. 11. ¿Cuales son las ventajas de las RNA?. Explique. 12. Grafique las clasificaciones de las RNA y dar ejemplos de cada una.
  60. 60. 60 Sesión 2. Redes Neuronales Artificiales Inteligencia Artificial http://utpiayse.blogspot.com

×