Provingtrianglescongruentssssasasa

Jessica  Garcia
Jessica GarciaJessica Garcia
Proving Triangles
Congruent
Free powerpoints at http://www.worldofteaching.com
Two geometric figures with
exactly the same size and
shape.
The Idea of a CongruenceThe Idea of a Congruence
A C
B
DE
F
How much do youHow much do you
need to know. . .need to know. . .
. . . about two triangles
to prove that they
are congruent?
In Lesson 4.2, you learned that if all
six pairs of corresponding parts (sides
and angles) are congruent, then the
triangles are congruent.
Corresponding PartsCorresponding Parts
∆ABC ≅ ∆
DEF
B
A
C
E
D
F
1. AB ≅ DE
2. BC ≅ EF
3. AC ≅ DF
4. ∠ A ≅ ∠ D
5. ∠ B ≅ ∠ E
6. ∠ C ≅ ∠ F
Do you needDo you need all six ?all six ?
NO !
Side-Side-Side (SSS)Side-Side-Side (SSS)
1. AB ≅ DE
2. BC ≅ EF
3. AC ≅ DF
∆ABC ≅ ∆ DEF
B
A
C
E
D
F
Side-Angle-Side (SAS)Side-Angle-Side (SAS)
1. AB ≅ DE
2. ∠A ≅ ∠ D
3. AC ≅ DF
∆ABC ≅ ∆ DEF
B
A
C
E
D
F
included
angle
The angle between two sides
Included AngleIncluded Angle
∠ G ∠ I ∠ H
Name the included angle:
YE and ES
ES and YS
YS and YE
Included AngleIncluded Angle
SY
E
∠ E
∠ S
∠ Y
Angle-Side-Angle-Side-AngleAngle (ASA)(ASA)
1. ∠A ≅ ∠ D
2. AB ≅ DE
3. ∠ B ≅ ∠ E
∆ABC ≅ ∆ DEF
B
A
C
E
D
F
include
d
side
The side between two angles
Included SideIncluded Side
GI HI GH
Name the included side:
∠Y and ∠E
∠E and ∠S
∠S and ∠Y
Included SideIncluded Side
SY
E
YE
ES
SY
Angle-Angle-Side (AAS)Angle-Angle-Side (AAS)
1. ∠A ≅ ∠ D
2. ∠ B ≅ ∠ E
3. BC ≅ EF
∆ABC ≅ ∆ DEF
B
A
C
E
D
F
Non-included
side
Warning:Warning: No SSA PostulateNo SSA Postulate
A C
B
D
E
F
NOT CONGRUENT
There is no such
thing as an SSA
postulate!
Warning:Warning: No AAA PostulateNo AAA Postulate
A C
B
D
E
F
There is no such
thing as an AAA
postulate!
NOT CONGRUENT
The Congruence PostulatesThe Congruence Postulates
SSS correspondence
ASA correspondence
SAS correspondence
AAS correspondence
SSA correspondence
AAA correspondence
Name That PostulateName That Postulate
SASSAS
ASAASA
SSSSSSSSASSA
(when possible)
Name That PostulateName That Postulate(when possible)
ASAASA
SASSAS
AAAAAA
SSASSA
Name That PostulateName That Postulate(when possible)
SASSAS
SASSAS
SASSAS
Reflexive
Property
Vertical
Angles
Vertical
Angles
Reflexive
Property SSASSA
Name That PostulateName That Postulate(when possible)
(when possible)
Name That PostulateName That Postulate
Let’s PracticeLet’s Practice
Indicate the additional information needed
to enable us to apply the specified
congruence postulate.
For ASA:
For SAS:
∠B ≅ ∠D
For AAS: ∠A ≅ ∠F
AC ≅ FE
Indicate the additional information needed
to enable us to apply the specified
congruence postulate.
For ASA:
For SAS:
For AAS:
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
ΔGIH ≅ ΔJIK by AAS
G
I
H J
K
Ex 4
ΔABC ≅ ΔEDC by ASA
B A
C
ED
Ex 5
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
ΔACB ≅ ΔECD by SAS
B
A
C
E
D
Ex 6
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
ΔJMK ≅ ΔLKM by SAS or ASA
J K
LM
Ex 7
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
Not possible
K
J
L
T
U
Ex 8
Determine if whether each pair of triangles is congruent by
SSS, SAS, ASA, or AAS. If it is not possible to prove
that they are congruent, write not possible.
V
Hypotenuse-Leg Congruence Theorem: HL
• Hypotenuse-Leg Congruence Theorem (HL)
– If the hypotenuse and a leg of a right triangle
are congruent to the hypotenuse and the leg of a
second right triangle, then the two triangles are
congruent.
– If ABC and DEF are right triangles, and
AC = DF, and
BC = EF, then
ABC = DEF
~
~
~
A
B C
D
E F
Determine When to Use HL
• Is it possible to show that the two triangles
are congruent using the HL Congruence
Theorem? Explain your reasoning.
• The two triangles are right triangles. You know
that JH = JH (Hypotenuse). You know that JG =
HK (Leg). So, you can use the HL Congruence
theorem to prove that
JGH = HKJ.
G H
J K
~
~ ~
Triangle Congruence
Postulates and Theorems
1. SSS (Side-Side-Side)
2. SAS (Side-Angle-Side)
3. ASA (Angle-Side-Angle)
4. AAS (Angle-Angle-Side)
5. HL (Hypotenuse-Leg)
Provingtrianglescongruentssssasasa
1 de 32

Recomendados

Math 9 similar triangles intro por
Math 9   similar triangles introMath 9   similar triangles intro
Math 9 similar triangles introGilbert Joseph Abueg
17.3K vistas74 diapositivas
Proving Triangles Congruent Sss, Sas Asa por
Proving Triangles Congruent Sss, Sas AsaProving Triangles Congruent Sss, Sas Asa
Proving Triangles Congruent Sss, Sas Asaguestd1dc2e
56.4K vistas29 diapositivas
Triangle Congruence (Introduction) por
Triangle Congruence (Introduction)Triangle Congruence (Introduction)
Triangle Congruence (Introduction)Eduardo Gonzaga Jr.
10.6K vistas9 diapositivas
Congruent Triangles por
Congruent TrianglesCongruent Triangles
Congruent TrianglesVincent de Ocampo
21.7K vistas24 diapositivas
Triangle congruence (Group 1) Grade 8 por
Triangle congruence  (Group 1) Grade 8Triangle congruence  (Group 1) Grade 8
Triangle congruence (Group 1) Grade 8Kaye Abordo
5K vistas9 diapositivas
Ch 6 quadrilaterals por
Ch 6 quadrilateralsCh 6 quadrilaterals
Ch 6 quadrilateralsmanojselvan
1K vistas120 diapositivas

Más contenido relacionado

La actualidad más candente

Math 8 – congruent triangles por
Math 8 – congruent trianglesMath 8 – congruent triangles
Math 8 – congruent trianglesRebekah Andrea Fullido
4.4K vistas14 diapositivas
Inverse variation por
Inverse variationInverse variation
Inverse variationBrian Mary
29.5K vistas25 diapositivas
Module 4 Grade 9 Mathematics (RADICALS) por
Module 4 Grade 9 Mathematics (RADICALS)Module 4 Grade 9 Mathematics (RADICALS)
Module 4 Grade 9 Mathematics (RADICALS)jonald castillo
74.1K vistas22 diapositivas
2.7.5 Kites and Trapezoids por
2.7.5 Kites and Trapezoids2.7.5 Kites and Trapezoids
2.7.5 Kites and Trapezoidssmiller5
3.2K vistas9 diapositivas
Zero and Negative Exponents por
Zero and Negative ExponentsZero and Negative Exponents
Zero and Negative ExponentsPassy World
8K vistas12 diapositivas
Congruent triangles theorem por
Congruent triangles theoremCongruent triangles theorem
Congruent triangles theoremMadhavi Mahajan
20.5K vistas25 diapositivas

La actualidad más candente(20)

Inverse variation por Brian Mary
Inverse variationInverse variation
Inverse variation
Brian Mary29.5K vistas
Module 4 Grade 9 Mathematics (RADICALS) por jonald castillo
Module 4 Grade 9 Mathematics (RADICALS)Module 4 Grade 9 Mathematics (RADICALS)
Module 4 Grade 9 Mathematics (RADICALS)
jonald castillo74.1K vistas
2.7.5 Kites and Trapezoids por smiller5
2.7.5 Kites and Trapezoids2.7.5 Kites and Trapezoids
2.7.5 Kites and Trapezoids
smiller53.2K vistas
Zero and Negative Exponents por Passy World
Zero and Negative ExponentsZero and Negative Exponents
Zero and Negative Exponents
Passy World8K vistas
Congruent triangles theorem por Madhavi Mahajan
Congruent triangles theoremCongruent triangles theorem
Congruent triangles theorem
Madhavi Mahajan20.5K vistas
Properties of a parallelogram por Ysni Ismaili
Properties of a parallelogramProperties of a parallelogram
Properties of a parallelogram
Ysni Ismaili11.7K vistas
Mathematics 9 Lesson 4-C: Joint and Combined Variation por Juan Miguel Palero
Mathematics 9 Lesson 4-C: Joint and Combined VariationMathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined Variation
Juan Miguel Palero11.7K vistas
Quadratic inequalities por mstf mstf
Quadratic inequalitiesQuadratic inequalities
Quadratic inequalities
mstf mstf4.6K vistas
Solving problems involving direct variation por Marzhie Cruz
Solving problems involving direct variationSolving problems involving direct variation
Solving problems involving direct variation
Marzhie Cruz1.7K vistas
Nature of the roots and sum and product of the roots of a quadratic equation por Cipriano De Leon
Nature of the roots and sum and product of the roots of a quadratic equationNature of the roots and sum and product of the roots of a quadratic equation
Nature of the roots and sum and product of the roots of a quadratic equation
Cipriano De Leon3.5K vistas
zero, negative and rational exponents por rina valencia
 zero, negative and rational exponents zero, negative and rational exponents
zero, negative and rational exponents
rina valencia5.2K vistas
Triangle congruence por jbianco9910
Triangle congruenceTriangle congruence
Triangle congruence
jbianco99104.1K vistas
Similar figures and_proportions por karen wagoner
Similar figures and_proportionsSimilar figures and_proportions
Similar figures and_proportions
karen wagoner2.3K vistas

Destacado

4.3-5 Triangle Congruence por
4.3-5 Triangle Congruence4.3-5 Triangle Congruence
4.3-5 Triangle Congruenceejfischer
9.7K vistas19 diapositivas
Geometry 5-6 ASA and AAS por
Geometry 5-6 ASA and AASGeometry 5-6 ASA and AAS
Geometry 5-6 ASA and AASgwilson8786
4.6K vistas23 diapositivas
Geometry unit 4.6 por
Geometry unit 4.6Geometry unit 4.6
Geometry unit 4.6Mark Ryder
2.7K vistas24 diapositivas
Using triangle congruence. por
Using triangle congruence.Using triangle congruence.
Using triangle congruence.Jabe Macalinao
4.2K vistas24 diapositivas
Geometry por
GeometryGeometry
GeometryAirah Torres
1.2K vistas34 diapositivas
Congruence of Triangle por
Congruence of TriangleCongruence of Triangle
Congruence of Triangleitutor
62.6K vistas17 diapositivas

Destacado(11)

4.3-5 Triangle Congruence por ejfischer
4.3-5 Triangle Congruence4.3-5 Triangle Congruence
4.3-5 Triangle Congruence
ejfischer9.7K vistas
Geometry 5-6 ASA and AAS por gwilson8786
Geometry 5-6 ASA and AASGeometry 5-6 ASA and AAS
Geometry 5-6 ASA and AAS
gwilson87864.6K vistas
Geometry unit 4.6 por Mark Ryder
Geometry unit 4.6Geometry unit 4.6
Geometry unit 4.6
Mark Ryder2.7K vistas
Using triangle congruence. por Jabe Macalinao
Using triangle congruence.Using triangle congruence.
Using triangle congruence.
Jabe Macalinao4.2K vistas
Congruence of Triangle por itutor
Congruence of TriangleCongruence of Triangle
Congruence of Triangle
itutor62.6K vistas
Pathogens por rhkelso
PathogensPathogens
Pathogens
rhkelso3.3K vistas
Geometry in Real Life por Eisa Adil
Geometry in Real LifeGeometry in Real Life
Geometry in Real Life
Eisa Adil100.1K vistas
Geometry presentation por Billy
Geometry presentationGeometry presentation
Geometry presentation
Billy108K vistas

Similar a Provingtrianglescongruentssssasasa

proving triangles are congruent.docx por
proving triangles are congruent.docxproving triangles are congruent.docx
proving triangles are congruent.docxJOHNFRITSGERARDMOMBA1
22 vistas45 diapositivas
proving triangles are congruent por
proving triangles are congruentproving triangles are congruent
proving triangles are congruentJOHNFRITSGERARDMOMBA1
8 vistas43 diapositivas
Provingtrianglescongruentssssasasa por
ProvingtrianglescongruentssssasasaProvingtrianglescongruentssssasasa
ProvingtrianglescongruentssssasasaJessica Garcia
425 vistas29 diapositivas
proving-triangles-are-congruent.ppt por
proving-triangles-are-congruent.pptproving-triangles-are-congruent.ppt
proving-triangles-are-congruent.pptJOHNFRITSGERARDMOMBA1
14 vistas46 diapositivas
Geometrycongruence por
GeometrycongruenceGeometrycongruence
GeometrycongruencePatricia Rossouw
618 vistas24 diapositivas
provingtrianglescongruentssssasasa-091123170916-phpapp01.ppt por
provingtrianglescongruentssssasasa-091123170916-phpapp01.pptprovingtrianglescongruentssssasasa-091123170916-phpapp01.ppt
provingtrianglescongruentssssasasa-091123170916-phpapp01.pptJOHNFRITSGERARDMOMBA1
5 vistas31 diapositivas

Similar a Provingtrianglescongruentssssasasa(20)

Provingtrianglescongruentssssasasa por Jessica Garcia
ProvingtrianglescongruentssssasasaProvingtrianglescongruentssssasasa
Provingtrianglescongruentssssasasa
Jessica Garcia425 vistas
TechMathI - 4.1 - Congruent Triangles por lmrhodes
TechMathI - 4.1 - Congruent TrianglesTechMathI - 4.1 - Congruent Triangles
TechMathI - 4.1 - Congruent Triangles
lmrhodes1.1K vistas
Geom 5.5 SSS and SAS por gwilson8786
Geom 5.5 SSS and SASGeom 5.5 SSS and SAS
Geom 5.5 SSS and SAS
gwilson87863.6K vistas
Geometry congruence por Deepak Kumar
Geometry congruenceGeometry congruence
Geometry congruence
Deepak Kumar1.3K vistas
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS... por AngelaCamillePaynant
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...
3-MATH 8-Q3-WEEK 2-ILLUSTRATING TRIANGLE CONGRUENCE AND Illustrating SSS, SAS...
TechMathI - 4.2 - Proving Triangles Congruent por lmrhodes
TechMathI - 4.2 - Proving Triangles CongruentTechMathI - 4.2 - Proving Triangles Congruent
TechMathI - 4.2 - Proving Triangles Congruent
lmrhodes619 vistas
Congruence Shortcuts Notes por acavis
Congruence Shortcuts NotesCongruence Shortcuts Notes
Congruence Shortcuts Notes
acavis7.1K vistas
TechMathI - 4.3 - Using Congruent Triangles por lmrhodes
TechMathI - 4.3 - Using Congruent TrianglesTechMathI - 4.3 - Using Congruent Triangles
TechMathI - 4.3 - Using Congruent Triangles
lmrhodes399 vistas
10.17 Triangle Congruence Proofs Day 2.ppt por Marjorie Malveda
10.17 Triangle Congruence Proofs Day 2.ppt10.17 Triangle Congruence Proofs Day 2.ppt
10.17 Triangle Congruence Proofs Day 2.ppt
Marjorie Malveda41 vistas
10.17 Triangle Congruence Proofs Day 2.ppt por mikeebio1
10.17 Triangle Congruence Proofs Day 2.ppt10.17 Triangle Congruence Proofs Day 2.ppt
10.17 Triangle Congruence Proofs Day 2.ppt
mikeebio171 vistas

Más de Jessica Garcia

Test 1 a_ratios_and_proportional_reasoning por
Test 1 a_ratios_and_proportional_reasoningTest 1 a_ratios_and_proportional_reasoning
Test 1 a_ratios_and_proportional_reasoningJessica Garcia
6.7K vistas2 diapositivas
Unit 2 Proportions Reasoning Rubric por
Unit 2 Proportions Reasoning RubricUnit 2 Proportions Reasoning Rubric
Unit 2 Proportions Reasoning RubricJessica Garcia
1.5K vistas1 diapositiva
Throw a dinner party report por
Throw a dinner party reportThrow a dinner party report
Throw a dinner party reportJessica Garcia
830 vistas2 diapositivas
Slope por
SlopeSlope
SlopeJessica Garcia
13.8K vistas18 diapositivas
Reteach constant rate of change por
Reteach constant rate of changeReteach constant rate of change
Reteach constant rate of changeJessica Garcia
4.9K vistas1 diapositiva
Skills practice constant rate of change por
Skills practice constant rate of changeSkills practice constant rate of change
Skills practice constant rate of changeJessica Garcia
11.1K vistas1 diapositiva

Más de Jessica Garcia(20)

Test 1 a_ratios_and_proportional_reasoning por Jessica Garcia
Test 1 a_ratios_and_proportional_reasoningTest 1 a_ratios_and_proportional_reasoning
Test 1 a_ratios_and_proportional_reasoning
Jessica Garcia6.7K vistas
Unit 2 Proportions Reasoning Rubric por Jessica Garcia
Unit 2 Proportions Reasoning RubricUnit 2 Proportions Reasoning Rubric
Unit 2 Proportions Reasoning Rubric
Jessica Garcia1.5K vistas
Throw a dinner party report por Jessica Garcia
Throw a dinner party reportThrow a dinner party report
Throw a dinner party report
Jessica Garcia830 vistas
Reteach constant rate of change por Jessica Garcia
Reteach constant rate of changeReteach constant rate of change
Reteach constant rate of change
Jessica Garcia4.9K vistas
Skills practice constant rate of change por Jessica Garcia
Skills practice constant rate of changeSkills practice constant rate of change
Skills practice constant rate of change
Jessica Garcia11.1K vistas
Rate of change and slope por Jessica Garcia
Rate of change and slopeRate of change and slope
Rate of change and slope
Jessica Garcia4.1K vistas
How do fractions apply to unit rates?7th daily 10 14-14 complex fractions and... por Jessica Garcia
How do fractions apply to unit rates?7th daily 10 14-14 complex fractions and...How do fractions apply to unit rates?7th daily 10 14-14 complex fractions and...
How do fractions apply to unit rates?7th daily 10 14-14 complex fractions and...
Jessica Garcia975 vistas
7th daily 10 13-14 rates and unit rates por Jessica Garcia
7th daily 10 13-14 rates and unit rates7th daily 10 13-14 rates and unit rates
7th daily 10 13-14 rates and unit rates
Jessica Garcia512 vistas
7th daily 10 10-14 proportions vocabulary and long division por Jessica Garcia
7th daily 10 10-14 proportions vocabulary and long division7th daily 10 10-14 proportions vocabulary and long division
7th daily 10 10-14 proportions vocabulary and long division
Jessica Garcia539 vistas
7th daily 10 10-14 proportions vocabulary and long division por Jessica Garcia
7th daily 10 10-14 proportions vocabulary and long division7th daily 10 10-14 proportions vocabulary and long division
7th daily 10 10-14 proportions vocabulary and long division
Jessica Garcia458 vistas
Part 1: Vocabulary; How do you solve proportions? por Jessica Garcia
Part 1: Vocabulary; How do you solve proportions?  Part 1: Vocabulary; How do you solve proportions?
Part 1: Vocabulary; How do you solve proportions?
Jessica Garcia742 vistas
Systems of equaions graphing por Jessica Garcia
Systems of equaions graphingSystems of equaions graphing
Systems of equaions graphing
Jessica Garcia603 vistas
Compute with scientific notation por Jessica Garcia
Compute with scientific notationCompute with scientific notation
Compute with scientific notation
Jessica Garcia7.1K vistas

Último

Material del tarjetero LEES Travesías.docx por
Material del tarjetero LEES Travesías.docxMaterial del tarjetero LEES Travesías.docx
Material del tarjetero LEES Travesías.docxNorberto Millán Muñoz
68 vistas9 diapositivas
Psychology KS5 por
Psychology KS5Psychology KS5
Psychology KS5WestHatch
68 vistas5 diapositivas
JiscOAWeek_LAIR_slides_October2023.pptx por
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptxJisc
72 vistas8 diapositivas
Lecture: Open Innovation por
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open InnovationMichal Hron
95 vistas56 diapositivas
ACTIVITY BOOK key water sports.pptx por
ACTIVITY BOOK key water sports.pptxACTIVITY BOOK key water sports.pptx
ACTIVITY BOOK key water sports.pptxMar Caston Palacio
350 vistas4 diapositivas

Último(20)

Psychology KS5 por WestHatch
Psychology KS5Psychology KS5
Psychology KS5
WestHatch68 vistas
JiscOAWeek_LAIR_slides_October2023.pptx por Jisc
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptx
Jisc72 vistas
Lecture: Open Innovation por Michal Hron
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open Innovation
Michal Hron95 vistas
The basics - information, data, technology and systems.pdf por JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena177 vistas
Education and Diversity.pptx por DrHafizKosar
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar107 vistas
Scope of Biochemistry.pptx por shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba121 vistas
Class 10 English notes 23-24.pptx por TARIQ KHAN
Class 10 English notes 23-24.pptxClass 10 English notes 23-24.pptx
Class 10 English notes 23-24.pptx
TARIQ KHAN95 vistas
The Accursed House by Émile Gaboriau por DivyaSheta
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile Gaboriau
DivyaSheta139 vistas
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP256 vistas
Structure and Functions of Cell.pdf por Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan317 vistas
11.28.23 Social Capital and Social Exclusion.pptx por mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239112 vistas

Provingtrianglescongruentssssasasa

  • 1. Proving Triangles Congruent Free powerpoints at http://www.worldofteaching.com
  • 2. Two geometric figures with exactly the same size and shape. The Idea of a CongruenceThe Idea of a Congruence A C B DE F
  • 3. How much do youHow much do you need to know. . .need to know. . . . . . about two triangles to prove that they are congruent?
  • 4. In Lesson 4.2, you learned that if all six pairs of corresponding parts (sides and angles) are congruent, then the triangles are congruent. Corresponding PartsCorresponding Parts ∆ABC ≅ ∆ DEF B A C E D F 1. AB ≅ DE 2. BC ≅ EF 3. AC ≅ DF 4. ∠ A ≅ ∠ D 5. ∠ B ≅ ∠ E 6. ∠ C ≅ ∠ F
  • 5. Do you needDo you need all six ?all six ? NO !
  • 6. Side-Side-Side (SSS)Side-Side-Side (SSS) 1. AB ≅ DE 2. BC ≅ EF 3. AC ≅ DF ∆ABC ≅ ∆ DEF B A C E D F
  • 7. Side-Angle-Side (SAS)Side-Angle-Side (SAS) 1. AB ≅ DE 2. ∠A ≅ ∠ D 3. AC ≅ DF ∆ABC ≅ ∆ DEF B A C E D F included angle
  • 8. The angle between two sides Included AngleIncluded Angle ∠ G ∠ I ∠ H
  • 9. Name the included angle: YE and ES ES and YS YS and YE Included AngleIncluded Angle SY E ∠ E ∠ S ∠ Y
  • 10. Angle-Side-Angle-Side-AngleAngle (ASA)(ASA) 1. ∠A ≅ ∠ D 2. AB ≅ DE 3. ∠ B ≅ ∠ E ∆ABC ≅ ∆ DEF B A C E D F include d side
  • 11. The side between two angles Included SideIncluded Side GI HI GH
  • 12. Name the included side: ∠Y and ∠E ∠E and ∠S ∠S and ∠Y Included SideIncluded Side SY E YE ES SY
  • 13. Angle-Angle-Side (AAS)Angle-Angle-Side (AAS) 1. ∠A ≅ ∠ D 2. ∠ B ≅ ∠ E 3. BC ≅ EF ∆ABC ≅ ∆ DEF B A C E D F Non-included side
  • 14. Warning:Warning: No SSA PostulateNo SSA Postulate A C B D E F NOT CONGRUENT There is no such thing as an SSA postulate!
  • 15. Warning:Warning: No AAA PostulateNo AAA Postulate A C B D E F There is no such thing as an AAA postulate! NOT CONGRUENT
  • 16. The Congruence PostulatesThe Congruence Postulates SSS correspondence ASA correspondence SAS correspondence AAS correspondence SSA correspondence AAA correspondence
  • 17. Name That PostulateName That Postulate SASSAS ASAASA SSSSSSSSASSA (when possible)
  • 18. Name That PostulateName That Postulate(when possible) ASAASA SASSAS AAAAAA SSASSA
  • 19. Name That PostulateName That Postulate(when possible) SASSAS SASSAS SASSAS Reflexive Property Vertical Angles Vertical Angles Reflexive Property SSASSA
  • 20. Name That PostulateName That Postulate(when possible)
  • 21. (when possible) Name That PostulateName That Postulate
  • 22. Let’s PracticeLet’s Practice Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: For SAS: ∠B ≅ ∠D For AAS: ∠A ≅ ∠F AC ≅ FE
  • 23. Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: For SAS: For AAS:
  • 24. Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. ΔGIH ≅ ΔJIK by AAS G I H J K Ex 4
  • 25. ΔABC ≅ ΔEDC by ASA B A C ED Ex 5 Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.
  • 26. ΔACB ≅ ΔECD by SAS B A C E D Ex 6 Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.
  • 27. ΔJMK ≅ ΔLKM by SAS or ASA J K LM Ex 7 Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.
  • 28. Not possible K J L T U Ex 8 Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. V
  • 29. Hypotenuse-Leg Congruence Theorem: HL • Hypotenuse-Leg Congruence Theorem (HL) – If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and the leg of a second right triangle, then the two triangles are congruent. – If ABC and DEF are right triangles, and AC = DF, and BC = EF, then ABC = DEF ~ ~ ~ A B C D E F
  • 30. Determine When to Use HL • Is it possible to show that the two triangles are congruent using the HL Congruence Theorem? Explain your reasoning. • The two triangles are right triangles. You know that JH = JH (Hypotenuse). You know that JG = HK (Leg). So, you can use the HL Congruence theorem to prove that JGH = HKJ. G H J K ~ ~ ~
  • 31. Triangle Congruence Postulates and Theorems 1. SSS (Side-Side-Side) 2. SAS (Side-Angle-Side) 3. ASA (Angle-Side-Angle) 4. AAS (Angle-Angle-Side) 5. HL (Hypotenuse-Leg)