SlideShare una empresa de Scribd logo
1 de 74
Electric Field – Continuous Charge
Distribution
• The distances between charges in a group of
charges may be much smaller than the distance
between the group and a point of interest
• In this situation, the system of charges can be
modeled as continuous
• The system of closely spaced charges is
equivalent to a total charge that is continuously
distributed along some line, over some surface,
or throughout some volume
Electric Field – Continuous
Charge Distribution, cont
• Procedure:
– Divide the charge
distribution into small
elements, each of which
contains Δq
– Calculate the electric
field due to one of these
elements at point P
– Evaluate the total field
by summing the
contributions of all the
charge elements
Electric Field – Continuous Charge
Distribution, equations
• For the individual charge elements
• Because the charge distribution is
continuous
2
ˆe
q
k
r
∆
∆ =E r
2 20
ˆ ˆlim
i
i
e i e
q
i i
q dq
k k
r r∆ →
∆
= =∑ ∫E r r
Charge Densities
• Volume charge density: when a charge is
distributed evenly throughout a volume
– ρ = Q / V
• Surface charge density: when a charge is
distributed evenly over a surface area
– σ = Q / A
• Linear charge density: when a charge is
distributed along a line
– λ = Q / ℓ
Amount of Charge in a Small
Volume
• For the volume: dq = ρ dV
• For the surface: dq = σ dA
• For the length element: dq = λ dℓ
Problem Solving Hints
• Units: when using the Coulomb constant, ke, the
charges must be in C and the distances in m
• Calculating the electric field of point charges:
use the superposition principle, find the fields
due to the individual charges at the point of
interest and then add them as vectors to find the
resultant field
Problem Solving Hints, cont.
• Continuous charge distributions: the vector
sums for evaluating the total electric field at
some point must be replaced with vector
integrals
– Divide the charge distribution into infinitesimal pieces,
calculate the vector sum by integrating over the entire
charge distribution
• Symmetry: take advantage of any symmetry to
simplify calculations
Campo eléctrico debido a una
distribución de carga continua
• Una barra de 14cm esta cargada uniformemente y tiene una
carga total de -22µc.Determina la magnitud y dirección del
campo eléctrico a lo largo del eje de la barra en un punto a 36
cm de su centro
Un anillo cargado uniformemente de 10cm de radio
tiene una carga total de 75µc Encuentre el campo
electrico sobre el eje del anillo de a)1cm b)5cm
c)30cm d)100cm
Un disco cargado de modo uniforme de 35cm de radio tiene una densidad
de carga de 7.9x10-3 C/m2.Calcule el campo electrico sobre el eje del
disco en a)5cm, b)10cm c)50cm y d)200cm del Centro del disco
Electric Field Lines
• Field lines give us a means of representing the
electric field pictorially
• The electric field vector E is tangent to the
electric field line at each point
– The line has a direction that is the same as that of the
electric field vector
• The number of lines per unit area through a
surface perpendicular to the lines is proportional
to the magnitude of the electric field in that
region
Electric Field Lines, General
• The density of lines
through surface A is
greater than through
surface B
• The magnitude of the
electric field is greater on
surface A than B
• The lines at different
locations point in different
directions
– This indicates the field is
non-uniform
Electric Field Lines, Positive
Point Charge
• The field lines radiate
outward in all directions
– In three dimensions, the
distribution is spherical
• The lines are directed
away from the source
charge
– A positive test charge would
be repelled away from the
positive source charge
Electric Field Lines, Negative
Point Charge
• The field lines radiate
inward in all directions
• The lines are directed
toward the source
charge
– A positive test charge
would be attracted
toward the negative
source charge
Electric Field Lines – Dipole
• The charges are
equal and opposite
• The number of field
lines leaving the
positive charge
equals the number
of lines terminating
on the negative
charge
Electric Field Lines – Like
Charges
• The charges are equal
and positive
• The same number of
lines leave each
charge since they are
equal in magnitude
• At a great distance,
the field is
approximately equal to
that of a single charge
of 2q
Electric Field Lines, Unequal
Charges
• The positive charge is
twice the magnitude of the
negative charge
• Two lines leave the
positive charge for each
line that terminates on the
negative charge
• At a great distance, the
field would be
approximately the same
as that due to a single
charge of +q
Electric Field Lines – Rules for
Drawing
• The lines must begin on a positive charge and
terminate on a negative charge
– In the case of an excess of one type of charge,
some lines will begin or end infinitely far away
• The number of lines drawn leaving a positive
charge or approaching a negative charge is
proportional to the magnitude of the charge
• No two field lines can cross
Motion of Charged Particles
• When a charged particle is placed in an
electric field, it experiences an electrical
force
• If this is the only force on the particle, it
must be the net force
• The net force will cause the particle to
accelerate according to Newton’s second
law
Motion of Particles, cont
• Fe = qE = ma
• If E is uniform, then a is constant
• If the particle has a positive charge, its
acceleration is in the direction of the field
• If the particle has a negative charge, its
acceleration is in the direction opposite the
electric field
• Since the acceleration is constant, the kinematic
equations can be used
Un electrón entra ala región de un campo eléctrico
uniforme E=200N/C como se muestra en la figura
con una velocidad inicial de 3x10 6 m/s la longitud
horizontal de las placas es 0.1m
Encontrar la aceleracion del electrron mientras se
encuentra en le campo electrico
The Cathode Ray Tube (CRT)
• A CRT is commonly used to obtain a
visual display of electronic information in
oscilloscopes, radar systems, televisions,
etc.
• The CRT is a vacuum tube in which a
beam of electrons is accelerated and
deflected under the influence of electric or
magnetic fields
CRT, cont
• The electrons are
deflected in various
directions by two sets
of plates
• The placing of charge
on the plates creates
the electric field
between the plates
and allows the beam
to be steered
Flux Through Closed Surface, final
• The net flux through the surface is
proportional to the net number of lines
leaving the surface
– This net number of lines is the number of lines
leaving the surface minus the number
entering the surface
• If En is the component of E perpendicular
to the surface, then
E nd E dAΦ = × =∫ ∫E AÑ Ñ
Gauss’s Law, Introduction
• Gauss’s law is an expression of the
general relationship between the net
electric flux through a closed surface and
the charge enclosed by the surface
– The closed surface is often called a gaussian
surface
• Gauss’s law is of fundamental importance
in the study of electric fields
Gauss’s Law – General
• A positive point
charge, q, is located
at the center of a
sphere of radius r
• The magnitude of
the electric field
everywhere on the
surface of the
sphere is
E = keq / r2
Gauss’s Law – General, cont.
• The field lines are directed radially
outward and are perpendicular to the
surface at every point
• This will be the net flux through the
gaussian surface, the sphere of radius r
• We know E = keq/r2
and Asphere = 4πr2
,
E d E dAΦ = × =∫ ∫E AÑ Ñ
4E e
o
q
πk q
ε
Φ = =
Gauss’s Law – General, notes
• The net flux through any closed surface surrounding
a point charge, q, is given by q/εo and is independent
of the shape of that surface
• The net electric flux through a closed surface that
surrounds no charge is zero
• Since the electric field due to many charges is the
vector sum of the electric fields produced by the
individual charges, the flux through any closed
surface can be expressed as
( )1 2d d× = + ×∫ ∫E A E E AKÑ Ñ
Gauss’s Law – Final
• Gauss’s law states
• qin is the net charge inside the surface
• E represents the electric field at any point on
the surface
– E is the total electric field and may have contributions
from charges both inside and outside of the surface
• Although Gauss’s law can, in theory, be solved
to find E for any charge configuration, in
practice it is limited to symmetric situations
E A in
E
o
q
d
ε
Φ = × =∫Ñ
Applying Gauss’s Law
• To use Gauss’s law, you want to choose a
gaussian surface over which the surface
integral can be simplified and the electric
field determined
• Take advantage of symmetry
• Remember, the gaussian surface is a
surface you choose, it does not have to
coincide with a real surface
Conditions for a Gaussian Surface
• Try to choose a surface that satisfies one or
more of these conditions:
– The value of the electric field can be argued from
symmetry to be constant over the surface
– The dot product of E.
dA can be expressed as a
simple algebraic product EdA because E and dA
are parallel
– The dot product is 0 because E and dA are
perpendicular
– The field can be argued to be zero over the surface
Field Due to a Point Charge
• Choose a sphere as the
gaussian surface
– E is parallel to dA at each
point on the surface
2
2 2
(4 )
4
E
o
e
o
q
d EdA
ε
E dA Eπr
q q
E k
πε r r
Φ = × = =
= =
= =
∫ ∫
∫
E AÑ Ñ
Ñ
Field Due to a Spherically
Symmetric Charge Distribution
• Select a sphere as the
gaussian surface
• For r >a
in
2 2
4
E
o
e
o
q
d EdA
ε
Q Q
E k
πε r r
Φ = × = =
= =
∫ ∫E AÑ Ñ
Spherically Symmetric, cont.
• Select a sphere as
the gaussian
surface, r < a
• qin < Q
• qin = r (4/3πr3
)
in
in
2 3
4
E
o
e
o
q
d EdA
ε
q Q
E k r
πε r a
Φ = × = =
= =
∫ ∫E AÑ Ñ
Spherically Symmetric
Distribution, final
• Inside the sphere, E
varies linearly with r
– E → 0 as r → 0
• The field outside the
sphere is equivalent
to that of a point
charge located at
the center of the
sphere
Field Due to a Thin Spherical
Shell
• Use spheres as the gaussian surfaces
• When r > a, the charge inside the surface is Q and
E = keQ / r2
• When r < a, the charge inside the surface is 0 and E = 0
Field at a Distance from a Line of
Charge
• Select a cylindrical
charge distribution
– The cylinder has a
radius of r and a length
of ℓ
• E is constant in
magnitude and
perpendicular to the
surface at every point
on the curved part of
the surface
Field Due to a Line of Charge,
cont.
• The end view
confirms the field is
perpendicular to the
curved surface
• The field through the
ends of the cylinder
is 0 since the field is
parallel to these
surfaces
Field Due to a Line of Charge, final
• Use Gauss’s law to find the field
( )
in
2
2
2
E
o
o
e
o
q
d EdA
ε
λ
Eπr
ε
λ λ
E k
πε r r
Φ = × = =
=
= =
∫ ∫E A
l
l
Ñ Ñ
Field Due to a Plane of Charge
• E must be
perpendicular to the
plane and must have
the same magnitude at
all points equidistant
from the plane
• Choose a small
cylinder whose axis is
perpendicular to the
plane for the gaussian
surface
Field Due to a Plane of Charge,
cont
• E is parallel to the curved surface and
there is no contribution to the surface area
from this curved part of the cylinder
• The flux through each end of the cylinder
is EA and so the total flux is 2EA
Field Due to a Plane of Charge,
final
• The total charge in the surface is σA
• Applying Gauss’s law
• Note, this does not depend on r
• Therefore, the field is uniform everywhere
2
2
E
o o
σA σ
EA and E
ε ε
Φ = = =
Electrostatic Equilibrium
• When there is no net motion of charge
within a conductor, the conductor is said
to be in electrostatic equilibrium
Properties of a Conductor in
Electrostatic Equilibrium
• The electric field is zero everywhere inside the
conductor
• If an isolated conductor carries a charge, the
charge resides on its surface
• The electric field just outside a charged
conductor is perpendicular to the surface and
has a magnitude of σ/εo
• On an irregularly shaped conductor, the surface
charge density is greatest at locations where the
radius of curvature is the smallest
Property 1: Einside = 0
• Consider a conducting slab in
an external field E
• If the field inside the conductor
were not zero, free electrons in
the conductor would
experience an electrical force
• These electrons would
accelerate
• These electrons would not be
in equilibrium
• Therefore, there cannot be a
field inside the conductor
Property 1: Einside = 0, cont.
• Before the external field is applied, free
electrons are distributed throughout the
conductor
• When the external field is applied, the electrons
redistribute until the magnitude of the internal
field equals the magnitude of the external field
• There is a net field of zero inside the conductor
• This redistribution takes about 10-15
s and can be
considered instantaneous
Property 2: Charge Resides on
the Surface
• Choose a gaussian surface
inside but close to the actual
surface
• The electric field inside is
zero (prop. 1)
• There is no net flux through
the gaussian surface
• Because the gaussian
surface can be as close to
the actual surface as
desired, there can be no
charge inside the surface
Property 2: Charge Resides on the
Surface, cont
• Since no net charge can be inside the
surface, any net charge must reside on
the surface
• Gauss’s law does not indicate the
distribution of these charges, only that it
must be on the surface of the conductor
Property 3: Field’s Magnitude and
Direction
• Choose a cylinder as
the gaussian surface
• The field must be
perpendicular to the
surface
– If there were a parallel
component to E,
charges would
experience a force and
accelerate along the
surface and it would
not be in equilibrium
Property 3: Field’s Magnitude and
Direction, cont.
• The net flux through the gaussian surface
is through only the flat face outside the
conductor
– The field here is perpendicular to the surface
• Applying Gauss’s law
E
o o
σA σ
EA and E
ε ε
Φ = = =
Conductors in Equilibrium,
example
• The field lines are
perpendicular to
both conductors
• There are no field
lines inside the
cylinder
Derivation of Gauss’s Law
• We will use a solid
angle, Ω
• A spherical surface
of radius r contains
an area element ΔA
• The solid angle
subtended at the
center of the sphere
is defined to be 2
A
r
∆
Ω =
Some Notes About Solid Angles
• A and r2
have the same units, so Ω is a
dimensionless ratio
• We give the name steradian to this
dimensionless ratio
• The total solid angle subtended by a
sphere is 4π steradians
Derivation of Gauss’s Law, cont.
• Consider a point
charge, q, surrounded
by a closed surface of
arbitrary shape
• The total flux through
this surface can be
found by evaluating
E.
ΔA for each small
area element and
summing over all the
elements
Derivation of Gauss’s Law, final
• The flux through each element is
• Relating to the solid angle
– where this is the solid angle subtended by ΔA
• The total flux is
( ) 2
cos
cosE e
Aθ
Eθ A k q
r
∆
Φ = ×∆ = ∆ =E A
2
cosAθ
r
∆
∆Ω =
2
cos
E e e
o
dAθ q
k q k q d
rε
Φ = = Ω =∫ ∫Ñ Ñ
Densidad de las líneas de campo
∆NSuperficie gaussiana
N
A
σ
∆
=
∆
Densidad de
líneas σ
Ley de Gauss: El campo E en cualquier punto en
el espacio es proporcional a la densidad de
líneas σ en dicho punto.
Ley de Gauss: El campo E en cualquier punto en
el espacio es proporcional a la densidad de
líneas σ en dicho punto.
∆A
Radio r
rr
Densidad de líneas y constante de
espaciamiento
Considere el campo cerca de una carga positiva q:Considere el campo cerca de una carga positiva q:
Superficie gaussiana
Radio r
rr
Luego, imagine una superficie (radio r) que rodea a q.Luego, imagine una superficie (radio r) que rodea a q.
EE es proporcional aes proporcional a ∆∆N/N/∆∆AA y esy es
igual aigual a kq/rkq/r22
en cualquier punto.en cualquier punto.
2
;
N kq
E E
A r
∆
∝ =
∆
εεοο se define como constante dese define como constante de
espaciamiento. Entonces:espaciamiento. Entonces:
0
1
4 k
ε
π
=:esεDonde 00E
A
N
ε=
∆
∆
Permitividad del espacio libre
La constante de proporcionalidad para la densidad deLa constante de proporcionalidad para la densidad de
líneas se conoce comolíneas se conoce como permitividadpermitividad εεοο y se define como:y se define como:
2
-12
0 2
1 C
8.85 x 10
4 N mk
ε
π
= =
⋅
Al recordar la relación con la densidad de líneas se tiene:Al recordar la relación con la densidad de líneas se tiene:
0 0
N
E or N E A
A
ε ε
∆
= ∆ = ∆
∆
Sumar sobre toda el área ASumar sobre toda el área A
da las líneas totales como:da las líneas totales como: N = εoEAN = εoEA
Ejemplo 5. Escriba una ecuación para encontrar el
número total de líneas N que salen de una sola
carga positiva q.
Superficie gaussiana
Radio r
rr
Dibuje superficie gaussiana esférica:Dibuje superficie gaussiana esférica:
2
2 2
; A = 4 r
4
kq q
E
r r
π
π
= =
Sustituya E y A de:Sustituya E y A de:
2
0 0 2
(4 )
4
q
N EA r
r
ε ε π
π
 
= =  
 
N = εoqA = qN = εoqA = q
El número total de líneas es igual a la carga encerrada q.El número total de líneas es igual a la carga encerrada q.
EANAEN 00 y εε =∆=∆
Ley de Gauss
Ley de Gauss:Ley de Gauss: El número neto de líneas de campoEl número neto de líneas de campo
eléctrico que cruzan cualquier superficie cerrada eneléctrico que cruzan cualquier superficie cerrada en
una dirección hacia afuera es numéricamente igual a launa dirección hacia afuera es numéricamente igual a la
carga neta total dentro de dicha superficie.carga neta total dentro de dicha superficie.
Ley de Gauss:Ley de Gauss: El número neto de líneas de campoEl número neto de líneas de campo
eléctrico que cruzan cualquier superficie cerrada eneléctrico que cruzan cualquier superficie cerrada en
una dirección hacia afuera es numéricamente igual a launa dirección hacia afuera es numéricamente igual a la
carga neta total dentro de dicha superficie.carga neta total dentro de dicha superficie.
0N EA qε= Σ = Σ
SiSi qq se representa como lase representa como la cargacarga
positiva neta encerradapositiva neta encerrada, la ley de, la ley de
Gauss se puede rescribir como:Gauss se puede rescribir como: 0
q
EA
ε
Σ =
Ejemplo 6. ¿Cuántas líneas de campo eléctrico
pasan a través de la superficie gaussiana
dibujada abajo?
+
-q1
q4
q3
-
+q2
-4 µC
+5 µC
+8 µC
-1 µC
Superficie gaussiana
Primero encuentre la cargaPrimero encuentre la carga
NETANETA ΣΣqq encerrada por laencerrada por la
superficiesuperficie::
ΣΣq = (+8 –4 – 1) = +3q = (+8 –4 – 1) = +3 µµCC
0N EA qε= Σ = Σ
N = +3 µC = +3 x 10-6
líneasN = +3 µC = +3 x 10-6
líneas
Ejemplo 6. Una esfera sólida (R = 6 cm) con una carga neta de
+8 µC está adentro de un cascarón hueco (R = 8 cm) que tiene
una carga neta de–6 µC. ¿Cuál es el campo eléctrico a una
distancia de 12 cm desde el centro de la esfera sólida?
ΣΣq = (+8 – 6) = +2q = (+8 – 6) = +2 µµCC
0N EA qε= Σ = Σ
-6 µC
+8 µC-
-
-
-
-
-
- -
Dibuje una esfera gaussiana a unDibuje una esfera gaussiana a un
radio de 12 cm para encontrar E.radio de 12 cm para encontrar E.
8cm
6 cm
12 cm
Superficie gaussiana
0
0
;net
q
AE q E
A
ε
ε
Σ
= =
2
2
-6
2 -12 2Nm
0 C
2 x 10 C
(4 ) (8.85 x 10 )(4 )(0.12 m)
q
E
rε π π
Σ +
= =
Ejemplo 6 (Cont.) ¿Cuál es el campo eléctrico a una
distancia de 12 cm desde el centro de la esfera sólida?
Dibuje una esfera gaussiana a unDibuje una esfera gaussiana a un
radio de 12 cm para encontrar E.radio de 12 cm para encontrar E.
ΣΣq = (+8 – 6) = +2q = (+8 – 6) = +2 µµCC
0N EA qε= Σ = Σ
0
0
;net
q
AE q E
A
ε
ε
Σ
= =
6 N
C2
0
2 C
1.25 x 10
(4 )
E
r
µ
ε π
+
= =
-6 µC
+8 µC-
-
-
-
-
-
- -
8cm
6 cm
12 cm
Superficie gaussiana
E = 1.25 MN/CE = 1.25 MN/C
Carga sobre la superficie de un conductor
Conductor cargado
Superficie gaussiana justo
adentro del conductor
Dado que cargas igualesDado que cargas iguales
se repelen, se esperaríase repelen, se esperaría
que toda la carga seque toda la carga se
movería hasta llegar almovería hasta llegar al
reposo. Entonces, de lareposo. Entonces, de la
ley de Gauss. . .ley de Gauss. . .
Como las cargas están en reposo, E = 0 dentro delComo las cargas están en reposo, E = 0 dentro del
conductor, por tanto:conductor, por tanto:
0 or 0 =N EA q qε= Σ = Σ Σ
Toda la carga está sobre la superficie; nada dentro del conductorToda la carga está sobre la superficie; nada dentro del conductor
Ejemplo 7. Use la ley de Gauss para encontrar el campo E just
afuera de la superficie de un conductor. Densidad de carga
superficial: σ = q/A.
ConsidereConsidere q adentro de la cajaq adentro de la caja..
Las líneas deLas líneas de EE a través dea través de
todas las áreas son haciatodas las áreas son hacia
afuera.afuera.
Densidad de carga superficial σ
++
+ +
+
+ +
+
+
+ +++
A
E2
E1
0 AE qεΣ =
Las líneas de E a través de losLas líneas de E a través de los
ladoslados se cancelan por simetría.se cancelan por simetría.
E3
E3 E3
E3
εεooEE11A +A + εεooEE22AA == qq
El campo es cero dentro del conductor, así que EEl campo es cero dentro del conductor, así que E22 = 0= 0
00
0 0
q
E
A
σ
ε ε
= =
Ejemplo 7 (Cont.) Encuentre el campo justo
afuera de la superficie si σ = q/A = +2 C/m2
.
Densidad de carga superficial σ
++
+ +
+
+ +
+
+
+ +++
A
E2
E1 E3
E3 E3
E3
1
0 0
q
E
A
σ
ε ε
= =
Recuerde que los camposRecuerde que los campos
laterales se cancelan y ellaterales se cancelan y el
campo interior es cero, decampo interior es cero, de
modo quemodo que
2
2
-6 2
-12 Nm
C
2 x 10 C/m
8.85 x 10
E
+
= E = 226,000 N/CE = 226,000 N/C
Campo entre placas paralelas
Cargas iguales y opuestas.Cargas iguales y opuestas.
Dibuje cajas gaussianas enDibuje cajas gaussianas en
cada superficie interior.cada superficie interior.
+
+
+
+
+
Q1 Q2
-
-
-
-
-
Campos ECampos E11 y Ey E22 a la derecha.a la derecha.
E1
E2
E1
E2
La ley de Gauss para cualquierLa ley de Gauss para cualquier
caja da el mismo campo (Ecaja da el mismo campo (E11 = E= E22).).
0 AE qεΣ = Σ
0 0
q
E
A
σ
ε ε
= =
Línea de carga
r
E
2πr
L
q
L
λ =
A1
A
A2
0
q
; =
2 L
q
E
rL
λ
πε
=
02
E
r
λ
πε
=
Los campos debidosLos campos debidos
a Aa A11 y Ay A22 se cancelanse cancelan
debido a simetría.debido a simetría.
0
; (2 )
q
EA A r Lπ
ε
= =
0 AE qεΣ =
Ejemplo 8: El campo eléctrico a una distancia de 1.5 m
de una línea de carga es 5 x 104
N/C. ¿Cuál es la
densidad lineal de la línea?
r
EL
q
L
λ =
02
E
r
λ
πε
=
02 rEλ πε=
2
2
-12 4C
Nm
2 (8.85 x 10 )(1.5 m)(5 x 10 N/C)λ π=
EE = 5 x 10= 5 x 1044
N/CN/C r = 1.5 mr = 1.5 m
λ = 4.17 µC/m
Cilindros concéntricos
+ + +
+ + + +
+ +
+ + + + +
+ + + +
+ +
+ +
a
b
λa
λb
r1
r2
-6 µC
ra
rb
12 cm
Superficie gaussiana
λa
λb
Afuera es como un largoAfuera es como un largo
alambre cargado:alambre cargado:
Para
r >
rb
02
a b
E
r
λ λ
πε
+
=
Para
rb > r > ra 02
a
E
r
λ
πε
=
Ejemplo 9. Dos cilindros concéntricos de radios 3 y 6 cm. La densidad
de carga lineal interior es de +3 µC/m y la exterior es de -5 µC/m.
Encuentre E a una distancia de 4 cm desde el centro.
+ + +
+ + + +
+ +
+ + + + +
+ + + +
+ +
+ +
a = 3
cm
b=6 cm
-7 µC/m
+5 µC/m
E = 1.38 x 106
N/C, radialmente hacia afueraE = 1.38 x 106
N/C, radialmente hacia afuera
rr
Dibuje una superficieDibuje una superficie
gaussiana entre los cilindros.gaussiana entre los cilindros.
02
b
E
r
λ
πε
=
0
3 C/m
2 (0.04 m)
E
µ
πε
+
=
E = 5.00 x 105
N/C, radialmente hacia adentroE = 5.00 x 105
N/C, radialmente hacia adentro
+ + +
+ + + +
+ +
+ + + + +
+ + + +
+ +
+ +
a = 3 cm
b=6 cm
-7 µC/m
+5 µC/m rr
Gaussiana afuera deGaussiana afuera de
ambos cilindros.ambos cilindros.
02
a b
E
r
λ λ
πε
+
=
0
( 3 5) C/m
2 (0.075 m)
E
µ
πε
+ −
=
Ejemplo 8 (Cont.) A continuación, encuentre E a una
distancia de 7.5 cm desde el centro (afuera de ambos
cilindros)
Resumen de fórmulas
Intensidad de
campo eléctrico E:
Intensidad de
campo eléctrico E:
Campo eléctrico cerca
de muchas cargas:
Campo eléctrico cerca
de muchas cargas:
Ley de Gauss para
distribuciones de carga.
Ley de Gauss para
distribuciones de carga. 0 ;
q
EA q
A
ε σΣ = Σ =
C
N
r
kQ
q
F
E esUnidad2
==
vectorialSuma2∑=
r
kQ
E
CONCLUSIÓN: Capítulo 24
El campo eléctrico

Más contenido relacionado

La actualidad más candente

Clase 13 PC
Clase 13 PCClase 13 PC
Clase 13 PCTensor
 
Laboratorio de Leyes de Kirchhoff
Laboratorio de Leyes de KirchhoffLaboratorio de Leyes de Kirchhoff
Laboratorio de Leyes de KirchhoffJesu Nuñez
 
Problemas corriente alterna
Problemas corriente alternaProblemas corriente alterna
Problemas corriente alternaCecilia Mont-Mur
 
Tippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aTippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aRobert
 
Tippens fisica 7e_diapositivas_29
Tippens fisica 7e_diapositivas_29Tippens fisica 7e_diapositivas_29
Tippens fisica 7e_diapositivas_29Robert
 
Electrotecnia 4 transformadores
Electrotecnia 4 transformadoresElectrotecnia 4 transformadores
Electrotecnia 4 transformadoresfrisco68
 
Densidad de flujo eléctrico, ley de Gauss y Divergencia.pdf
Densidad de flujo eléctrico, ley de Gauss y Divergencia.pdfDensidad de flujo eléctrico, ley de Gauss y Divergencia.pdf
Densidad de flujo eléctrico, ley de Gauss y Divergencia.pdfThaliaMorel1
 
Clase 7a capacitancia y dielectricos problemas
Clase 7a capacitancia y dielectricos problemasClase 7a capacitancia y dielectricos problemas
Clase 7a capacitancia y dielectricos problemasTensor
 
438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdfJerryMezaGutirrez
 
Principio de un motor eléctrico
Principio de un motor eléctricoPrincipio de un motor eléctrico
Principio de un motor eléctricojjnava350
 

La actualidad más candente (20)

Clase 13 PC
Clase 13 PCClase 13 PC
Clase 13 PC
 
Capacitancia
CapacitanciaCapacitancia
Capacitancia
 
Laboratorio de Leyes de Kirchhoff
Laboratorio de Leyes de KirchhoffLaboratorio de Leyes de Kirchhoff
Laboratorio de Leyes de Kirchhoff
 
Problemas corriente alterna
Problemas corriente alternaProblemas corriente alterna
Problemas corriente alterna
 
3.3. Configuración en Base Común
3.3. Configuración en Base Común3.3. Configuración en Base Común
3.3. Configuración en Base Común
 
Presentación_Unidad2_potencia.pdf
Presentación_Unidad2_potencia.pdfPresentación_Unidad2_potencia.pdf
Presentación_Unidad2_potencia.pdf
 
Flujo electrico
Flujo electricoFlujo electrico
Flujo electrico
 
Tippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aTippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32a
 
Tippens fisica 7e_diapositivas_29
Tippens fisica 7e_diapositivas_29Tippens fisica 7e_diapositivas_29
Tippens fisica 7e_diapositivas_29
 
Cap 3 ley de gauss
Cap 3 ley de gaussCap 3 ley de gauss
Cap 3 ley de gauss
 
Capacitancia
CapacitanciaCapacitancia
Capacitancia
 
Electrotecnia 4 transformadores
Electrotecnia 4 transformadoresElectrotecnia 4 transformadores
Electrotecnia 4 transformadores
 
Capacitores
CapacitoresCapacitores
Capacitores
 
Densidad de flujo eléctrico, ley de Gauss y Divergencia.pdf
Densidad de flujo eléctrico, ley de Gauss y Divergencia.pdfDensidad de flujo eléctrico, ley de Gauss y Divergencia.pdf
Densidad de flujo eléctrico, ley de Gauss y Divergencia.pdf
 
Electomagnetismo
ElectomagnetismoElectomagnetismo
Electomagnetismo
 
Voltaje de rizado
Voltaje de rizadoVoltaje de rizado
Voltaje de rizado
 
Clase 7a capacitancia y dielectricos problemas
Clase 7a capacitancia y dielectricos problemasClase 7a capacitancia y dielectricos problemas
Clase 7a capacitancia y dielectricos problemas
 
438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf
 
Principio de un motor eléctrico
Principio de un motor eléctricoPrincipio de un motor eléctrico
Principio de un motor eléctrico
 
Cálculo de circuitos: Thévenin
Cálculo de circuitos: ThéveninCálculo de circuitos: Thévenin
Cálculo de circuitos: Thévenin
 

Destacado

Campo+Electrico23
Campo+Electrico23Campo+Electrico23
Campo+Electrico23efren1985
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayjoaquings
 
Campo electrico distribuciones continuas de carga clase 4 TE
Campo electrico distribuciones continuas de carga clase 4 TECampo electrico distribuciones continuas de carga clase 4 TE
Campo electrico distribuciones continuas de carga clase 4 TETensor
 
Solucionário do Serway, 3 edição em espanhol-Física 3
Solucionário do Serway, 3 edição em espanhol-Física 3Solucionário do Serway, 3 edição em espanhol-Física 3
Solucionário do Serway, 3 edição em espanhol-Física 3taimaratr
 
Problemas de p f-e
Problemas de p f-eProblemas de p f-e
Problemas de p f-ejoaquings
 
Fisica serway vol.3 (solucionario)
Fisica   serway vol.3 (solucionario)Fisica   serway vol.3 (solucionario)
Fisica serway vol.3 (solucionario)mariasousagomes
 
Fisica serway vol.2 (solucionario)
Fisica   serway vol.2 (solucionario)Fisica   serway vol.2 (solucionario)
Fisica serway vol.2 (solucionario)luxeto
 
Ley De Coulomb Y Campo Elect Niv Cero B.
Ley De Coulomb Y Campo Elect Niv Cero B.Ley De Coulomb Y Campo Elect Niv Cero B.
Ley De Coulomb Y Campo Elect Niv Cero B.ESPOL
 
Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial ElectricoProblemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial ElectricoAmy Avalos Guillen
 
Campo electrico problemas resueltos-gonzalo revelo pabon
Campo electrico   problemas resueltos-gonzalo revelo pabonCampo electrico   problemas resueltos-gonzalo revelo pabon
Campo electrico problemas resueltos-gonzalo revelo pabonGONZALO REVELO PABON . GORETTI
 
Ley de coulomb problemas resueltos-gonzalo revelo pabon
Ley de coulomb  problemas resueltos-gonzalo revelo pabonLey de coulomb  problemas resueltos-gonzalo revelo pabon
Ley de coulomb problemas resueltos-gonzalo revelo pabonGONZALO REVELO PABON . GORETTI
 
Taller electricidad
Taller electricidad Taller electricidad
Taller electricidad mariaJose904
 
Lecture 02 campos electricos
Lecture 02   campos electricosLecture 02   campos electricos
Lecture 02 campos electricosRodolfo Bernal
 
Fuerza Magnetica Nivel Cero B
Fuerza Magnetica Nivel Cero BFuerza Magnetica Nivel Cero B
Fuerza Magnetica Nivel Cero BESPOL
 

Destacado (20)

Campo+Electrico23
Campo+Electrico23Campo+Electrico23
Campo+Electrico23
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serway
 
Campo electrico distribuciones continuas de carga clase 4 TE
Campo electrico distribuciones continuas de carga clase 4 TECampo electrico distribuciones continuas de carga clase 4 TE
Campo electrico distribuciones continuas de carga clase 4 TE
 
Solucionário do Serway, 3 edição em espanhol-Física 3
Solucionário do Serway, 3 edição em espanhol-Física 3Solucionário do Serway, 3 edição em espanhol-Física 3
Solucionário do Serway, 3 edição em espanhol-Física 3
 
CAMPO ELECTRICO
CAMPO ELECTRICOCAMPO ELECTRICO
CAMPO ELECTRICO
 
Problemas de p f-e
Problemas de p f-eProblemas de p f-e
Problemas de p f-e
 
Fisica serway vol.3 (solucionario)
Fisica   serway vol.3 (solucionario)Fisica   serway vol.3 (solucionario)
Fisica serway vol.3 (solucionario)
 
Fisica serway vol.2 (solucionario)
Fisica   serway vol.2 (solucionario)Fisica   serway vol.2 (solucionario)
Fisica serway vol.2 (solucionario)
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Topicos em con_problemas
Topicos em con_problemasTopicos em con_problemas
Topicos em con_problemas
 
Ley De Coulomb Y Campo Elect Niv Cero B.
Ley De Coulomb Y Campo Elect Niv Cero B.Ley De Coulomb Y Campo Elect Niv Cero B.
Ley De Coulomb Y Campo Elect Niv Cero B.
 
Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial ElectricoProblemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
 
Campo electrico problemas resueltos-gonzalo revelo pabon
Campo electrico   problemas resueltos-gonzalo revelo pabonCampo electrico   problemas resueltos-gonzalo revelo pabon
Campo electrico problemas resueltos-gonzalo revelo pabon
 
Ley de coulomb problemas resueltos-gonzalo revelo pabon
Ley de coulomb  problemas resueltos-gonzalo revelo pabonLey de coulomb  problemas resueltos-gonzalo revelo pabon
Ley de coulomb problemas resueltos-gonzalo revelo pabon
 
Campo electrico Fisica
Campo electrico FisicaCampo electrico Fisica
Campo electrico Fisica
 
Taller electricidad
Taller electricidad Taller electricidad
Taller electricidad
 
Lecture 02 campos electricos
Lecture 02   campos electricosLecture 02   campos electricos
Lecture 02 campos electricos
 
50824079 datasheet-pic18f4550-espanol
50824079 datasheet-pic18f4550-espanol50824079 datasheet-pic18f4550-espanol
50824079 datasheet-pic18f4550-espanol
 
Fisica ii
Fisica iiFisica ii
Fisica ii
 
Fuerza Magnetica Nivel Cero B
Fuerza Magnetica Nivel Cero BFuerza Magnetica Nivel Cero B
Fuerza Magnetica Nivel Cero B
 

Similar a Electric Field Lines Guide Continuous Charge Distributions

Campo eléctrico utp
Campo eléctrico   utpCampo eléctrico   utp
Campo eléctrico utpUtp arequipa
 
Campo eléctrico utp
Campo eléctrico   utpCampo eléctrico   utp
Campo eléctrico utpUtp arequipa
 
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxAliceRivera13
 
George Cross Electromagnetism Electric Field Lecture27 (2)
George Cross Electromagnetism Electric Field Lecture27 (2)George Cross Electromagnetism Electric Field Lecture27 (2)
George Cross Electromagnetism Electric Field Lecture27 (2)George Cross
 
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxxPHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxxAliceRivera13
 
Electrostatic potential and capacitance
Electrostatic potential and capacitanceElectrostatic potential and capacitance
Electrostatic potential and capacitanceEdigniteNGO
 
Stem Grade 12 - Physics 2 -Electric-Fields-and-Energy.pptx
Stem Grade 12 - Physics 2 -Electric-Fields-and-Energy.pptxStem Grade 12 - Physics 2 -Electric-Fields-and-Energy.pptx
Stem Grade 12 - Physics 2 -Electric-Fields-and-Energy.pptxjudithrowenadelacruz
 
Chapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
Chapter_18_sec_1__Electric_Potential_and_Capacitance.pptChapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
Chapter_18_sec_1__Electric_Potential_and_Capacitance.pptAmitKumarLal5
 
Work and electric potential lecture # physics 2
Work and electric potential lecture # physics 2Work and electric potential lecture # physics 2
Work and electric potential lecture # physics 2Denmar Marasigan
 
GAUSS LAW .pdf
GAUSS LAW .pdfGAUSS LAW .pdf
GAUSS LAW .pdfJhen Ivy
 
Fundamentals of Semiconductor Devices
Fundamentals of Semiconductor DevicesFundamentals of Semiconductor Devices
Fundamentals of Semiconductor DevicesSenthil Kumar
 
Current And Conductor
Current And ConductorCurrent And Conductor
Current And ConductorNadeem Rana
 

Similar a Electric Field Lines Guide Continuous Charge Distributions (20)

Campo eléctrico utp
Campo eléctrico   utpCampo eléctrico   utp
Campo eléctrico utp
 
Campo eléctrico utp
Campo eléctrico   utpCampo eléctrico   utp
Campo eléctrico utp
 
gauss vip.ppt
gauss vip.pptgauss vip.ppt
gauss vip.ppt
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Electric field
Electric fieldElectric field
Electric field
 
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 
George Cross Electromagnetism Electric Field Lecture27 (2)
George Cross Electromagnetism Electric Field Lecture27 (2)George Cross Electromagnetism Electric Field Lecture27 (2)
George Cross Electromagnetism Electric Field Lecture27 (2)
 
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxxPHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Electrostatic potential and capacitance
Electrostatic potential and capacitanceElectrostatic potential and capacitance
Electrostatic potential and capacitance
 
2180 phys lect 3
2180 phys lect 32180 phys lect 3
2180 phys lect 3
 
Stem Grade 12 - Physics 2 -Electric-Fields-and-Energy.pptx
Stem Grade 12 - Physics 2 -Electric-Fields-and-Energy.pptxStem Grade 12 - Physics 2 -Electric-Fields-and-Energy.pptx
Stem Grade 12 - Physics 2 -Electric-Fields-and-Energy.pptx
 
Chapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
Chapter_18_sec_1__Electric_Potential_and_Capacitance.pptChapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
Chapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
 
Work and electric potential lecture # physics 2
Work and electric potential lecture # physics 2Work and electric potential lecture # physics 2
Work and electric potential lecture # physics 2
 
GAUSS LAW .pdf
GAUSS LAW .pdfGAUSS LAW .pdf
GAUSS LAW .pdf
 
Lecture-4.ppt
Lecture-4.pptLecture-4.ppt
Lecture-4.ppt
 
EMF PPT_0.pdf
EMF PPT_0.pdfEMF PPT_0.pdf
EMF PPT_0.pdf
 
Fundamentals of Semiconductor Devices
Fundamentals of Semiconductor DevicesFundamentals of Semiconductor Devices
Fundamentals of Semiconductor Devices
 
Current And Conductor
Current And ConductorCurrent And Conductor
Current And Conductor
 
EQUIPOTENTIAL ENERGY
EQUIPOTENTIAL ENERGYEQUIPOTENTIAL ENERGY
EQUIPOTENTIAL ENERGY
 

Más de Utp arequipa

Formatoo verano2016 i
Formatoo verano2016 iFormatoo verano2016 i
Formatoo verano2016 iUtp arequipa
 
Cuestionario optic af
Cuestionario optic afCuestionario optic af
Cuestionario optic afUtp arequipa
 
Transformadas de laplace 1
Transformadas de laplace 1Transformadas de laplace 1
Transformadas de laplace 1Utp arequipa
 
Trabalhodeeletromagnetismo 130514145142-phpapp01 (1)
Trabalhodeeletromagnetismo 130514145142-phpapp01 (1)Trabalhodeeletromagnetismo 130514145142-phpapp01 (1)
Trabalhodeeletromagnetismo 130514145142-phpapp01 (1)Utp arequipa
 
Campo eléctrico sesion 2
Campo eléctrico sesion 2Campo eléctrico sesion 2
Campo eléctrico sesion 2Utp arequipa
 
Laboratorio grupo 1 25 de abril 2
Laboratorio grupo 1 25 de abril  2Laboratorio grupo 1 25 de abril  2
Laboratorio grupo 1 25 de abril 2Utp arequipa
 
Informe dilatacion
Informe dilatacionInforme dilatacion
Informe dilatacionUtp arequipa
 
Laboratorio grupo 1 25 de abril 2
Laboratorio grupo 1 25 de abril  2Laboratorio grupo 1 25 de abril  2
Laboratorio grupo 1 25 de abril 2Utp arequipa
 
Sumilla de una sesión de clase y asignación de trabajos
Sumilla de una sesión de clase y asignación de trabajosSumilla de una sesión de clase y asignación de trabajos
Sumilla de una sesión de clase y asignación de trabajosUtp arequipa
 
Arranque de Motores con PLC
Arranque de Motores con PLCArranque de Motores con PLC
Arranque de Motores con PLCUtp arequipa
 
Lab03 estrella triangulo v3
Lab03 estrella triangulo v3Lab03 estrella triangulo v3
Lab03 estrella triangulo v3Utp arequipa
 
01 introduccion a los pl cs
01   introduccion a los pl cs01   introduccion a los pl cs
01 introduccion a los pl csUtp arequipa
 

Más de Utp arequipa (20)

Sesion 1
Sesion 1Sesion 1
Sesion 1
 
Cinemática
CinemáticaCinemática
Cinemática
 
Formatoo verano2016 i
Formatoo verano2016 iFormatoo verano2016 i
Formatoo verano2016 i
 
Esfera de van
Esfera de vanEsfera de van
Esfera de van
 
Cuestionario optic af
Cuestionario optic afCuestionario optic af
Cuestionario optic af
 
Transformadas de laplace 1
Transformadas de laplace 1Transformadas de laplace 1
Transformadas de laplace 1
 
Trabalhodeeletromagnetismo 130514145142-phpapp01 (1)
Trabalhodeeletromagnetismo 130514145142-phpapp01 (1)Trabalhodeeletromagnetismo 130514145142-phpapp01 (1)
Trabalhodeeletromagnetismo 130514145142-phpapp01 (1)
 
Campo eléctrico sesion 2
Campo eléctrico sesion 2Campo eléctrico sesion 2
Campo eléctrico sesion 2
 
Laboratorio grupo 1 25 de abril 2
Laboratorio grupo 1 25 de abril  2Laboratorio grupo 1 25 de abril  2
Laboratorio grupo 1 25 de abril 2
 
Informe dilatacion
Informe dilatacionInforme dilatacion
Informe dilatacion
 
Laboratorio grupo 1 25 de abril 2
Laboratorio grupo 1 25 de abril  2Laboratorio grupo 1 25 de abril  2
Laboratorio grupo 1 25 de abril 2
 
Tarea1
Tarea1Tarea1
Tarea1
 
Tarea 1
Tarea 1Tarea 1
Tarea 1
 
Presentaciã³n2
Presentaciã³n2Presentaciã³n2
Presentaciã³n2
 
Presentaciã³n1
Presentaciã³n1Presentaciã³n1
Presentaciã³n1
 
Sumilla de una sesión de clase y asignación de trabajos
Sumilla de una sesión de clase y asignación de trabajosSumilla de una sesión de clase y asignación de trabajos
Sumilla de una sesión de clase y asignación de trabajos
 
Arranque de Motores con PLC
Arranque de Motores con PLCArranque de Motores con PLC
Arranque de Motores con PLC
 
Lab03 estrella triangulo v3
Lab03 estrella triangulo v3Lab03 estrella triangulo v3
Lab03 estrella triangulo v3
 
01 introduccion a los pl cs
01   introduccion a los pl cs01   introduccion a los pl cs
01 introduccion a los pl cs
 
Diapositiva
DiapositivaDiapositiva
Diapositiva
 

Último

Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleCeline George
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Developmentchesterberbo7
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQuiz Club NITW
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 

Último (20)

Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP Module
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Development
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 

Electric Field Lines Guide Continuous Charge Distributions

  • 1. Electric Field – Continuous Charge Distribution • The distances between charges in a group of charges may be much smaller than the distance between the group and a point of interest • In this situation, the system of charges can be modeled as continuous • The system of closely spaced charges is equivalent to a total charge that is continuously distributed along some line, over some surface, or throughout some volume
  • 2. Electric Field – Continuous Charge Distribution, cont • Procedure: – Divide the charge distribution into small elements, each of which contains Δq – Calculate the electric field due to one of these elements at point P – Evaluate the total field by summing the contributions of all the charge elements
  • 3. Electric Field – Continuous Charge Distribution, equations • For the individual charge elements • Because the charge distribution is continuous 2 ˆe q k r ∆ ∆ =E r 2 20 ˆ ˆlim i i e i e q i i q dq k k r r∆ → ∆ = =∑ ∫E r r
  • 4. Charge Densities • Volume charge density: when a charge is distributed evenly throughout a volume – ρ = Q / V • Surface charge density: when a charge is distributed evenly over a surface area – σ = Q / A • Linear charge density: when a charge is distributed along a line – λ = Q / ℓ
  • 5. Amount of Charge in a Small Volume • For the volume: dq = ρ dV • For the surface: dq = σ dA • For the length element: dq = λ dℓ
  • 6. Problem Solving Hints • Units: when using the Coulomb constant, ke, the charges must be in C and the distances in m • Calculating the electric field of point charges: use the superposition principle, find the fields due to the individual charges at the point of interest and then add them as vectors to find the resultant field
  • 7. Problem Solving Hints, cont. • Continuous charge distributions: the vector sums for evaluating the total electric field at some point must be replaced with vector integrals – Divide the charge distribution into infinitesimal pieces, calculate the vector sum by integrating over the entire charge distribution • Symmetry: take advantage of any symmetry to simplify calculations
  • 8. Campo eléctrico debido a una distribución de carga continua • Una barra de 14cm esta cargada uniformemente y tiene una carga total de -22µc.Determina la magnitud y dirección del campo eléctrico a lo largo del eje de la barra en un punto a 36 cm de su centro
  • 9. Un anillo cargado uniformemente de 10cm de radio tiene una carga total de 75µc Encuentre el campo electrico sobre el eje del anillo de a)1cm b)5cm c)30cm d)100cm
  • 10. Un disco cargado de modo uniforme de 35cm de radio tiene una densidad de carga de 7.9x10-3 C/m2.Calcule el campo electrico sobre el eje del disco en a)5cm, b)10cm c)50cm y d)200cm del Centro del disco
  • 11. Electric Field Lines • Field lines give us a means of representing the electric field pictorially • The electric field vector E is tangent to the electric field line at each point – The line has a direction that is the same as that of the electric field vector • The number of lines per unit area through a surface perpendicular to the lines is proportional to the magnitude of the electric field in that region
  • 12. Electric Field Lines, General • The density of lines through surface A is greater than through surface B • The magnitude of the electric field is greater on surface A than B • The lines at different locations point in different directions – This indicates the field is non-uniform
  • 13. Electric Field Lines, Positive Point Charge • The field lines radiate outward in all directions – In three dimensions, the distribution is spherical • The lines are directed away from the source charge – A positive test charge would be repelled away from the positive source charge
  • 14. Electric Field Lines, Negative Point Charge • The field lines radiate inward in all directions • The lines are directed toward the source charge – A positive test charge would be attracted toward the negative source charge
  • 15. Electric Field Lines – Dipole • The charges are equal and opposite • The number of field lines leaving the positive charge equals the number of lines terminating on the negative charge
  • 16. Electric Field Lines – Like Charges • The charges are equal and positive • The same number of lines leave each charge since they are equal in magnitude • At a great distance, the field is approximately equal to that of a single charge of 2q
  • 17. Electric Field Lines, Unequal Charges • The positive charge is twice the magnitude of the negative charge • Two lines leave the positive charge for each line that terminates on the negative charge • At a great distance, the field would be approximately the same as that due to a single charge of +q
  • 18. Electric Field Lines – Rules for Drawing • The lines must begin on a positive charge and terminate on a negative charge – In the case of an excess of one type of charge, some lines will begin or end infinitely far away • The number of lines drawn leaving a positive charge or approaching a negative charge is proportional to the magnitude of the charge • No two field lines can cross
  • 19. Motion of Charged Particles • When a charged particle is placed in an electric field, it experiences an electrical force • If this is the only force on the particle, it must be the net force • The net force will cause the particle to accelerate according to Newton’s second law
  • 20. Motion of Particles, cont • Fe = qE = ma • If E is uniform, then a is constant • If the particle has a positive charge, its acceleration is in the direction of the field • If the particle has a negative charge, its acceleration is in the direction opposite the electric field • Since the acceleration is constant, the kinematic equations can be used
  • 21. Un electrón entra ala región de un campo eléctrico uniforme E=200N/C como se muestra en la figura con una velocidad inicial de 3x10 6 m/s la longitud horizontal de las placas es 0.1m Encontrar la aceleracion del electrron mientras se encuentra en le campo electrico
  • 22. The Cathode Ray Tube (CRT) • A CRT is commonly used to obtain a visual display of electronic information in oscilloscopes, radar systems, televisions, etc. • The CRT is a vacuum tube in which a beam of electrons is accelerated and deflected under the influence of electric or magnetic fields
  • 23. CRT, cont • The electrons are deflected in various directions by two sets of plates • The placing of charge on the plates creates the electric field between the plates and allows the beam to be steered
  • 24. Flux Through Closed Surface, final • The net flux through the surface is proportional to the net number of lines leaving the surface – This net number of lines is the number of lines leaving the surface minus the number entering the surface • If En is the component of E perpendicular to the surface, then E nd E dAΦ = × =∫ ∫E AÑ Ñ
  • 25. Gauss’s Law, Introduction • Gauss’s law is an expression of the general relationship between the net electric flux through a closed surface and the charge enclosed by the surface – The closed surface is often called a gaussian surface • Gauss’s law is of fundamental importance in the study of electric fields
  • 26. Gauss’s Law – General • A positive point charge, q, is located at the center of a sphere of radius r • The magnitude of the electric field everywhere on the surface of the sphere is E = keq / r2
  • 27. Gauss’s Law – General, cont. • The field lines are directed radially outward and are perpendicular to the surface at every point • This will be the net flux through the gaussian surface, the sphere of radius r • We know E = keq/r2 and Asphere = 4πr2 , E d E dAΦ = × =∫ ∫E AÑ Ñ 4E e o q πk q ε Φ = =
  • 28. Gauss’s Law – General, notes • The net flux through any closed surface surrounding a point charge, q, is given by q/εo and is independent of the shape of that surface • The net electric flux through a closed surface that surrounds no charge is zero • Since the electric field due to many charges is the vector sum of the electric fields produced by the individual charges, the flux through any closed surface can be expressed as ( )1 2d d× = + ×∫ ∫E A E E AKÑ Ñ
  • 29. Gauss’s Law – Final • Gauss’s law states • qin is the net charge inside the surface • E represents the electric field at any point on the surface – E is the total electric field and may have contributions from charges both inside and outside of the surface • Although Gauss’s law can, in theory, be solved to find E for any charge configuration, in practice it is limited to symmetric situations E A in E o q d ε Φ = × =∫Ñ
  • 30. Applying Gauss’s Law • To use Gauss’s law, you want to choose a gaussian surface over which the surface integral can be simplified and the electric field determined • Take advantage of symmetry • Remember, the gaussian surface is a surface you choose, it does not have to coincide with a real surface
  • 31. Conditions for a Gaussian Surface • Try to choose a surface that satisfies one or more of these conditions: – The value of the electric field can be argued from symmetry to be constant over the surface – The dot product of E. dA can be expressed as a simple algebraic product EdA because E and dA are parallel – The dot product is 0 because E and dA are perpendicular – The field can be argued to be zero over the surface
  • 32. Field Due to a Point Charge • Choose a sphere as the gaussian surface – E is parallel to dA at each point on the surface 2 2 2 (4 ) 4 E o e o q d EdA ε E dA Eπr q q E k πε r r Φ = × = = = = = = ∫ ∫ ∫ E AÑ Ñ Ñ
  • 33. Field Due to a Spherically Symmetric Charge Distribution • Select a sphere as the gaussian surface • For r >a in 2 2 4 E o e o q d EdA ε Q Q E k πε r r Φ = × = = = = ∫ ∫E AÑ Ñ
  • 34. Spherically Symmetric, cont. • Select a sphere as the gaussian surface, r < a • qin < Q • qin = r (4/3πr3 ) in in 2 3 4 E o e o q d EdA ε q Q E k r πε r a Φ = × = = = = ∫ ∫E AÑ Ñ
  • 35. Spherically Symmetric Distribution, final • Inside the sphere, E varies linearly with r – E → 0 as r → 0 • The field outside the sphere is equivalent to that of a point charge located at the center of the sphere
  • 36. Field Due to a Thin Spherical Shell • Use spheres as the gaussian surfaces • When r > a, the charge inside the surface is Q and E = keQ / r2 • When r < a, the charge inside the surface is 0 and E = 0
  • 37. Field at a Distance from a Line of Charge • Select a cylindrical charge distribution – The cylinder has a radius of r and a length of ℓ • E is constant in magnitude and perpendicular to the surface at every point on the curved part of the surface
  • 38. Field Due to a Line of Charge, cont. • The end view confirms the field is perpendicular to the curved surface • The field through the ends of the cylinder is 0 since the field is parallel to these surfaces
  • 39. Field Due to a Line of Charge, final • Use Gauss’s law to find the field ( ) in 2 2 2 E o o e o q d EdA ε λ Eπr ε λ λ E k πε r r Φ = × = = = = = ∫ ∫E A l l Ñ Ñ
  • 40. Field Due to a Plane of Charge • E must be perpendicular to the plane and must have the same magnitude at all points equidistant from the plane • Choose a small cylinder whose axis is perpendicular to the plane for the gaussian surface
  • 41. Field Due to a Plane of Charge, cont • E is parallel to the curved surface and there is no contribution to the surface area from this curved part of the cylinder • The flux through each end of the cylinder is EA and so the total flux is 2EA
  • 42. Field Due to a Plane of Charge, final • The total charge in the surface is σA • Applying Gauss’s law • Note, this does not depend on r • Therefore, the field is uniform everywhere 2 2 E o o σA σ EA and E ε ε Φ = = =
  • 43. Electrostatic Equilibrium • When there is no net motion of charge within a conductor, the conductor is said to be in electrostatic equilibrium
  • 44. Properties of a Conductor in Electrostatic Equilibrium • The electric field is zero everywhere inside the conductor • If an isolated conductor carries a charge, the charge resides on its surface • The electric field just outside a charged conductor is perpendicular to the surface and has a magnitude of σ/εo • On an irregularly shaped conductor, the surface charge density is greatest at locations where the radius of curvature is the smallest
  • 45. Property 1: Einside = 0 • Consider a conducting slab in an external field E • If the field inside the conductor were not zero, free electrons in the conductor would experience an electrical force • These electrons would accelerate • These electrons would not be in equilibrium • Therefore, there cannot be a field inside the conductor
  • 46. Property 1: Einside = 0, cont. • Before the external field is applied, free electrons are distributed throughout the conductor • When the external field is applied, the electrons redistribute until the magnitude of the internal field equals the magnitude of the external field • There is a net field of zero inside the conductor • This redistribution takes about 10-15 s and can be considered instantaneous
  • 47. Property 2: Charge Resides on the Surface • Choose a gaussian surface inside but close to the actual surface • The electric field inside is zero (prop. 1) • There is no net flux through the gaussian surface • Because the gaussian surface can be as close to the actual surface as desired, there can be no charge inside the surface
  • 48. Property 2: Charge Resides on the Surface, cont • Since no net charge can be inside the surface, any net charge must reside on the surface • Gauss’s law does not indicate the distribution of these charges, only that it must be on the surface of the conductor
  • 49. Property 3: Field’s Magnitude and Direction • Choose a cylinder as the gaussian surface • The field must be perpendicular to the surface – If there were a parallel component to E, charges would experience a force and accelerate along the surface and it would not be in equilibrium
  • 50. Property 3: Field’s Magnitude and Direction, cont. • The net flux through the gaussian surface is through only the flat face outside the conductor – The field here is perpendicular to the surface • Applying Gauss’s law E o o σA σ EA and E ε ε Φ = = =
  • 51. Conductors in Equilibrium, example • The field lines are perpendicular to both conductors • There are no field lines inside the cylinder
  • 52. Derivation of Gauss’s Law • We will use a solid angle, Ω • A spherical surface of radius r contains an area element ΔA • The solid angle subtended at the center of the sphere is defined to be 2 A r ∆ Ω =
  • 53. Some Notes About Solid Angles • A and r2 have the same units, so Ω is a dimensionless ratio • We give the name steradian to this dimensionless ratio • The total solid angle subtended by a sphere is 4π steradians
  • 54. Derivation of Gauss’s Law, cont. • Consider a point charge, q, surrounded by a closed surface of arbitrary shape • The total flux through this surface can be found by evaluating E. ΔA for each small area element and summing over all the elements
  • 55. Derivation of Gauss’s Law, final • The flux through each element is • Relating to the solid angle – where this is the solid angle subtended by ΔA • The total flux is ( ) 2 cos cosE e Aθ Eθ A k q r ∆ Φ = ×∆ = ∆ =E A 2 cosAθ r ∆ ∆Ω = 2 cos E e e o dAθ q k q k q d rε Φ = = Ω =∫ ∫Ñ Ñ
  • 56. Densidad de las líneas de campo ∆NSuperficie gaussiana N A σ ∆ = ∆ Densidad de líneas σ Ley de Gauss: El campo E en cualquier punto en el espacio es proporcional a la densidad de líneas σ en dicho punto. Ley de Gauss: El campo E en cualquier punto en el espacio es proporcional a la densidad de líneas σ en dicho punto. ∆A Radio r rr
  • 57. Densidad de líneas y constante de espaciamiento Considere el campo cerca de una carga positiva q:Considere el campo cerca de una carga positiva q: Superficie gaussiana Radio r rr Luego, imagine una superficie (radio r) que rodea a q.Luego, imagine una superficie (radio r) que rodea a q. EE es proporcional aes proporcional a ∆∆N/N/∆∆AA y esy es igual aigual a kq/rkq/r22 en cualquier punto.en cualquier punto. 2 ; N kq E E A r ∆ ∝ = ∆ εεοο se define como constante dese define como constante de espaciamiento. Entonces:espaciamiento. Entonces: 0 1 4 k ε π =:esεDonde 00E A N ε= ∆ ∆
  • 58. Permitividad del espacio libre La constante de proporcionalidad para la densidad deLa constante de proporcionalidad para la densidad de líneas se conoce comolíneas se conoce como permitividadpermitividad εεοο y se define como:y se define como: 2 -12 0 2 1 C 8.85 x 10 4 N mk ε π = = ⋅ Al recordar la relación con la densidad de líneas se tiene:Al recordar la relación con la densidad de líneas se tiene: 0 0 N E or N E A A ε ε ∆ = ∆ = ∆ ∆ Sumar sobre toda el área ASumar sobre toda el área A da las líneas totales como:da las líneas totales como: N = εoEAN = εoEA
  • 59. Ejemplo 5. Escriba una ecuación para encontrar el número total de líneas N que salen de una sola carga positiva q. Superficie gaussiana Radio r rr Dibuje superficie gaussiana esférica:Dibuje superficie gaussiana esférica: 2 2 2 ; A = 4 r 4 kq q E r r π π = = Sustituya E y A de:Sustituya E y A de: 2 0 0 2 (4 ) 4 q N EA r r ε ε π π   = =     N = εoqA = qN = εoqA = q El número total de líneas es igual a la carga encerrada q.El número total de líneas es igual a la carga encerrada q. EANAEN 00 y εε =∆=∆
  • 60. Ley de Gauss Ley de Gauss:Ley de Gauss: El número neto de líneas de campoEl número neto de líneas de campo eléctrico que cruzan cualquier superficie cerrada eneléctrico que cruzan cualquier superficie cerrada en una dirección hacia afuera es numéricamente igual a launa dirección hacia afuera es numéricamente igual a la carga neta total dentro de dicha superficie.carga neta total dentro de dicha superficie. Ley de Gauss:Ley de Gauss: El número neto de líneas de campoEl número neto de líneas de campo eléctrico que cruzan cualquier superficie cerrada eneléctrico que cruzan cualquier superficie cerrada en una dirección hacia afuera es numéricamente igual a launa dirección hacia afuera es numéricamente igual a la carga neta total dentro de dicha superficie.carga neta total dentro de dicha superficie. 0N EA qε= Σ = Σ SiSi qq se representa como lase representa como la cargacarga positiva neta encerradapositiva neta encerrada, la ley de, la ley de Gauss se puede rescribir como:Gauss se puede rescribir como: 0 q EA ε Σ =
  • 61. Ejemplo 6. ¿Cuántas líneas de campo eléctrico pasan a través de la superficie gaussiana dibujada abajo? + -q1 q4 q3 - +q2 -4 µC +5 µC +8 µC -1 µC Superficie gaussiana Primero encuentre la cargaPrimero encuentre la carga NETANETA ΣΣqq encerrada por laencerrada por la superficiesuperficie:: ΣΣq = (+8 –4 – 1) = +3q = (+8 –4 – 1) = +3 µµCC 0N EA qε= Σ = Σ N = +3 µC = +3 x 10-6 líneasN = +3 µC = +3 x 10-6 líneas
  • 62. Ejemplo 6. Una esfera sólida (R = 6 cm) con una carga neta de +8 µC está adentro de un cascarón hueco (R = 8 cm) que tiene una carga neta de–6 µC. ¿Cuál es el campo eléctrico a una distancia de 12 cm desde el centro de la esfera sólida? ΣΣq = (+8 – 6) = +2q = (+8 – 6) = +2 µµCC 0N EA qε= Σ = Σ -6 µC +8 µC- - - - - - - - Dibuje una esfera gaussiana a unDibuje una esfera gaussiana a un radio de 12 cm para encontrar E.radio de 12 cm para encontrar E. 8cm 6 cm 12 cm Superficie gaussiana 0 0 ;net q AE q E A ε ε Σ = = 2 2 -6 2 -12 2Nm 0 C 2 x 10 C (4 ) (8.85 x 10 )(4 )(0.12 m) q E rε π π Σ + = =
  • 63. Ejemplo 6 (Cont.) ¿Cuál es el campo eléctrico a una distancia de 12 cm desde el centro de la esfera sólida? Dibuje una esfera gaussiana a unDibuje una esfera gaussiana a un radio de 12 cm para encontrar E.radio de 12 cm para encontrar E. ΣΣq = (+8 – 6) = +2q = (+8 – 6) = +2 µµCC 0N EA qε= Σ = Σ 0 0 ;net q AE q E A ε ε Σ = = 6 N C2 0 2 C 1.25 x 10 (4 ) E r µ ε π + = = -6 µC +8 µC- - - - - - - - 8cm 6 cm 12 cm Superficie gaussiana E = 1.25 MN/CE = 1.25 MN/C
  • 64. Carga sobre la superficie de un conductor Conductor cargado Superficie gaussiana justo adentro del conductor Dado que cargas igualesDado que cargas iguales se repelen, se esperaríase repelen, se esperaría que toda la carga seque toda la carga se movería hasta llegar almovería hasta llegar al reposo. Entonces, de lareposo. Entonces, de la ley de Gauss. . .ley de Gauss. . . Como las cargas están en reposo, E = 0 dentro delComo las cargas están en reposo, E = 0 dentro del conductor, por tanto:conductor, por tanto: 0 or 0 =N EA q qε= Σ = Σ Σ Toda la carga está sobre la superficie; nada dentro del conductorToda la carga está sobre la superficie; nada dentro del conductor
  • 65. Ejemplo 7. Use la ley de Gauss para encontrar el campo E just afuera de la superficie de un conductor. Densidad de carga superficial: σ = q/A. ConsidereConsidere q adentro de la cajaq adentro de la caja.. Las líneas deLas líneas de EE a través dea través de todas las áreas son haciatodas las áreas son hacia afuera.afuera. Densidad de carga superficial σ ++ + + + + + + + + +++ A E2 E1 0 AE qεΣ = Las líneas de E a través de losLas líneas de E a través de los ladoslados se cancelan por simetría.se cancelan por simetría. E3 E3 E3 E3 εεooEE11A +A + εεooEE22AA == qq El campo es cero dentro del conductor, así que EEl campo es cero dentro del conductor, así que E22 = 0= 0 00 0 0 q E A σ ε ε = =
  • 66. Ejemplo 7 (Cont.) Encuentre el campo justo afuera de la superficie si σ = q/A = +2 C/m2 . Densidad de carga superficial σ ++ + + + + + + + + +++ A E2 E1 E3 E3 E3 E3 1 0 0 q E A σ ε ε = = Recuerde que los camposRecuerde que los campos laterales se cancelan y ellaterales se cancelan y el campo interior es cero, decampo interior es cero, de modo quemodo que 2 2 -6 2 -12 Nm C 2 x 10 C/m 8.85 x 10 E + = E = 226,000 N/CE = 226,000 N/C
  • 67. Campo entre placas paralelas Cargas iguales y opuestas.Cargas iguales y opuestas. Dibuje cajas gaussianas enDibuje cajas gaussianas en cada superficie interior.cada superficie interior. + + + + + Q1 Q2 - - - - - Campos ECampos E11 y Ey E22 a la derecha.a la derecha. E1 E2 E1 E2 La ley de Gauss para cualquierLa ley de Gauss para cualquier caja da el mismo campo (Ecaja da el mismo campo (E11 = E= E22).). 0 AE qεΣ = Σ 0 0 q E A σ ε ε = =
  • 68. Línea de carga r E 2πr L q L λ = A1 A A2 0 q ; = 2 L q E rL λ πε = 02 E r λ πε = Los campos debidosLos campos debidos a Aa A11 y Ay A22 se cancelanse cancelan debido a simetría.debido a simetría. 0 ; (2 ) q EA A r Lπ ε = = 0 AE qεΣ =
  • 69. Ejemplo 8: El campo eléctrico a una distancia de 1.5 m de una línea de carga es 5 x 104 N/C. ¿Cuál es la densidad lineal de la línea? r EL q L λ = 02 E r λ πε = 02 rEλ πε= 2 2 -12 4C Nm 2 (8.85 x 10 )(1.5 m)(5 x 10 N/C)λ π= EE = 5 x 10= 5 x 1044 N/CN/C r = 1.5 mr = 1.5 m λ = 4.17 µC/m
  • 70. Cilindros concéntricos + + + + + + + + + + + + + + + + + + + + + + a b λa λb r1 r2 -6 µC ra rb 12 cm Superficie gaussiana λa λb Afuera es como un largoAfuera es como un largo alambre cargado:alambre cargado: Para r > rb 02 a b E r λ λ πε + = Para rb > r > ra 02 a E r λ πε =
  • 71. Ejemplo 9. Dos cilindros concéntricos de radios 3 y 6 cm. La densidad de carga lineal interior es de +3 µC/m y la exterior es de -5 µC/m. Encuentre E a una distancia de 4 cm desde el centro. + + + + + + + + + + + + + + + + + + + + + + a = 3 cm b=6 cm -7 µC/m +5 µC/m E = 1.38 x 106 N/C, radialmente hacia afueraE = 1.38 x 106 N/C, radialmente hacia afuera rr Dibuje una superficieDibuje una superficie gaussiana entre los cilindros.gaussiana entre los cilindros. 02 b E r λ πε = 0 3 C/m 2 (0.04 m) E µ πε + =
  • 72. E = 5.00 x 105 N/C, radialmente hacia adentroE = 5.00 x 105 N/C, radialmente hacia adentro + + + + + + + + + + + + + + + + + + + + + + a = 3 cm b=6 cm -7 µC/m +5 µC/m rr Gaussiana afuera deGaussiana afuera de ambos cilindros.ambos cilindros. 02 a b E r λ λ πε + = 0 ( 3 5) C/m 2 (0.075 m) E µ πε + − = Ejemplo 8 (Cont.) A continuación, encuentre E a una distancia de 7.5 cm desde el centro (afuera de ambos cilindros)
  • 73. Resumen de fórmulas Intensidad de campo eléctrico E: Intensidad de campo eléctrico E: Campo eléctrico cerca de muchas cargas: Campo eléctrico cerca de muchas cargas: Ley de Gauss para distribuciones de carga. Ley de Gauss para distribuciones de carga. 0 ; q EA q A ε σΣ = Σ = C N r kQ q F E esUnidad2 == vectorialSuma2∑= r kQ E
  • 74. CONCLUSIÓN: Capítulo 24 El campo eléctrico