In this paper we consider the initial value problem for a plate type equation with variable coefficients and memory in 1 n R n ), which is of regularity-loss property. By using spectrally resolution, we study the pointwise estimates in the spectral space of the fundamental solution to the corresponding linear problem. Appealing to this pointwise estimates, we obtain the global existence and the decay estimates of solutions to the semilinear problem by employing the fixed point theorem
In this paper we consider the initial value problem for a plate type equation with variable coefficients and memory in 1 n R n ), which is of regularity-loss property. By using spectrally resolution, we study the pointwise estimates in the spectral space of the fundamental solution to the corresponding linear problem. Appealing to this pointwise estimates, we obtain the global existence and the decay estimates of solutions to the semilinear problem by employing the fixed point theorem