SlideShare a Scribd company logo
1 of 112
Download to read offline
Jeffrey Ross-Ibarra
@jrossibarra • www.rilab.org
Plant Sciences • Center for Population Biology • Genome Center
University of California Davis
Embiggening DNA: the role of plant genome
size in intra- and interspecific adaptation
Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or
GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons
Genome Size (bp)
By Nr387241 - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?
curid=14945255
Mycoplasma (0.0006Gb)
Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or
GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons
Genome Size (bp)
By Gőtehal.jpg: Mathae derivative work: Bff (Gőtehal.jpg) [CC BY 2.5 (http://
creativecommons.org/licenses/by/2.5), CC-BY-SA-3.0 (http://
creativecommons.org/licenses/by-sa/3.0/) or GFDL (http://www.gnu.org/
copyleft/fdl.html)], via Wikimedia Commons
Protopterus (130Gb)
By Nr387241 - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?
curid=14945255
Mycoplasma (0.0006Gb)
Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or
GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons
Genome Size (bp)
Genlisea (0.065Gb)
By Michal Rubeš [CC BY 3.0 cz
(http://creativecommons.org/
licenses/by/3.0/cz/deed.en)], via
Wikimedia Commons
By Gőtehal.jpg: Mathae derivative work: Bff (Gőtehal.jpg) [CC BY 2.5 (http://
creativecommons.org/licenses/by/2.5), CC-BY-SA-3.0 (http://
creativecommons.org/licenses/by-sa/3.0/) or GFDL (http://www.gnu.org/
copyleft/fdl.html)], via Wikimedia Commons
Protopterus (130Gb)
By Nr387241 - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?
curid=14945255
Mycoplasma (0.0006Gb)
Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or
GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons
Genome Size (bp)
By alpsdake - Own work, CC0, https://commons.wikimedia.org/w/index.php?
curid=12228596
Paris (150Gb)
Genlisea (0.065Gb)
By Michal Rubeš [CC BY 3.0 cz
(http://creativecommons.org/
licenses/by/3.0/cz/deed.en)], via
Wikimedia Commons
By Gőtehal.jpg: Mathae derivative work: Bff (Gőtehal.jpg) [CC BY 2.5 (http://
creativecommons.org/licenses/by/2.5), CC-BY-SA-3.0 (http://
creativecommons.org/licenses/by-sa/3.0/) or GFDL (http://www.gnu.org/
copyleft/fdl.html)], via Wikimedia Commons
Protopterus (130Gb)
By Nr387241 - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?
curid=14945255
Mycoplasma (0.0006Gb)
Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or
GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons
Genome Size (bp)
Lynch and Connnery (2003) Science
Lynch and Connnery (2003) Science Lefébure et al. (2017) Genome Research
genome size (pg)dN/dS
surface
subterannean
Whitney et al. (2010) Evolution
Contrast in Ne
ContrastinGenomeSize
Seed Weight (+)
Leaf Size (-)
Knight (2005) Ann Bot
Genome Size (2C pg)
Seed Weight
GenomeSize(2Cpg)specificleafarea
Whitney et al. (2010) Evolution
Contrast in Ne
ContrastinGenomeSize
Kang et al. (2015) Sci Reports
GenomeSize
SoilNitrogen
Seed Weight (+)
Leaf Size (-)
Knight (2005) Ann Bot
Primulinaspp.
Genome Size (2C pg)
Seed Weight
GenomeSize(2Cpg)specificleafarea
Whitney et al. (2010) Evolution
Contrast in Ne
ContrastinGenomeSize
Larger genomes adapt differently:
the “functional space” hypothesis
Intraspecific adaptive evolution
of genome size in maize
Larger genomes adapt differently:
the “functional space” hypothesis
Intraspecific adaptive evolution
of genome size in maize
The small differences in genome size within
species seem generally to be of minor
importance compared to other components of
plant fitness. Šmarda & Petr Bureš (2010) Preslia
The ‘plastic genome’ seems to be an idea
rather than a defendable scientific
hypothesis; intraspecific variation is less
frequent than presently thought. Greilhuber (1998) Ann Bot
maizeteosinte
landrace
diploidgenomesize
Díez et al. (2013) New Phyt
Z. mays ssp.
parviglumis
Z. mays ssp.
mexicana
Pyhäjärvi et al. (2013) GBE
Domestication
10,000BP
Takuno et al. (2015) Genetics
Lowland
K=3K=4
Highland Lowland Highland
Mesoamerica South America
Lowland
A B
K=2K=3K=4
Highland Lowland Highland
Mesoamerica South America
Altitude
Domestication
10,000BP
Mexican Highlands
6,000BP
Takuno et al. (2015) Genetics
Lowland
K=3K=4
Highland Lowland Highland
Mesoamerica South America
Lowland
A B
K=2K=3K=4
Highland Lowland Highland
Mesoamerica South America
Altitude
Domestication
10,000BP
Mexican Highlands
6,000BP
S. American lowlands
6,000BP
Takuno et al. (2015) Genetics
Lowland
K=3K=4
Highland Lowland Highland
Mesoamerica South America
Lowland
A B
K=2K=3K=4
Highland Lowland Highland
Mesoamerica South America
Altitude
Domestication
10,000BP
Mexican Highlands
6,000BP
S. American lowlands
6,000BP
Andes
4,000BP
Takuno et al. (2015) Genetics
Lowland
K=3K=4
Highland Lowland Highland
Mesoamerica South America
Lowland
A B
K=2K=3K=4
Highland Lowland Highland
Mesoamerica South America
Altitude
altitude
GenomeSize(Mb) 77 landraces
S. America
Mexico
parviglumis mexicana
teosinte
altitude3250
3125
3000
2875
2750
altitude
GenomeSize(Mb) 77 landraces
S. America
Mexico
teosinte
95 mexicana
altitude
altitude
GenomeSize(Mb) 77 landraces
S. America
Mexico
teosinte
95 mexicana
altitude
genome size (bp)
#individuals
h2~0.9
altitude
GenomeSize(Mb) 77 landraces
S. America
Mexico
teosinte
95 mexicana
altitude
P = µ + alt ⇤ A + g + "
g ⇠ MV N (0, VAK)
" ⇠ N (0, V✏)
Genome Size Altitude
Additive
Component
Berg and Coop (2014) Plos Gen
altitude
GenomeSize(Mb) 77 landraces
S. America
Mexico
teosinte
95 mexicana
altitude
P = µ + alt ⇤ A + g + "
g ⇠ MV N (0, VAK)
" ⇠ N (0, V✏)
Genome Size Altitude
Additive
Component
Berg and Coop (2014) Plos Gen
landraces
landraces
Kinship
Additive
Genetic Var.
altitude
GenomeSize(Mb) 77 landraces
S. America
Mexico
teosinte
95 mexicana
altitude
P = µ + alt ⇤ A + g + "
g ⇠ MV N (0, VAK)
" ⇠ N (0, V✏)
Genome Size Altitude
Additive
Component
Berg and Coop (2014) Plos Gen
landraces
landraces
Kinship
Additive
Genetic Var.
-110Kb/m
-260Kb/m
Rosado et al. (2005) Maize
Genetics Newsletter (shh, secret)
Knob180
KnobTR1
Maize TEs
Sorghum TEs
Jiao et al. (2017) Nature
copy
number
Rosado et al. (2005) Maize
Genetics Newsletter (shh, secret)
Knob180
KnobTR1
Maize TEs
Sorghum TEs
Jiao et al. (2017) Nature
copy
number
Rosado et al. (2005) Maize
Genetics Newsletter (shh, secret)
Knob180
KnobTR1
Maize TEs
Sorghum TEs
Jiao et al. (2017) Nature
copy
number
r2=0.77 r2=0.74
P = µ + alt ⇤ A + GS ⇤ GS + g + "
g ⇠ MV N (0, VAK)
" ⇠ N (0, V✏)
AltitudeRepeat
Genome Size
as Covariate
Additive
Component
altitude
B-repeatreads
Masonbrink et al. (2013) Genetics
B chromosome
altitude
MbTE
maize
mexicana
S. America
Mexico
Region
altitude
MbTE
Tenaillon et al.(2011) GBE
maizeZ.luxurians
relative abundance of TE families
maize
mexicana
S. America
Mexico
Region
results: total, among TEs, B
Knobabundance(Mb)
altitude
knob180
maize
mexicana
maize
mexicana
S. Am.
Mexico
Region
knobTR1
results: total, among TEs, B
Knobabundance(Mb)
altitude
knob180
Photo by Kelly Dawe
maize
mexicana
maize
mexicana
S. Am.
Mexico
Region
knobTR1
results: total, among TEs, B
Knobabundance(Mb)
altitude
knob180 Kanizay et al. (2013) Heredity
altitude
maize
mexicana
parviglumis
subspecies
Ab10frequency
maize
mexicana
maize
mexicana
S. Am.
Mexico
Region
knobTR1
Nature Education 2013
https://www.nature.com/scitable/content/ne0000/ne0000/ne0000/ne0000/113371527/14707478.jpg
DNA Replication
Francis et al. (2008) Ann Bot
FIG. 2. DNA C-value (pg) and cell cycle time (h) in the root apic
istem of a range of (A) eudicots and monocots (n ¼ 110), and (B) e
(n ¼ 60). See Table 2 for regression analyses.
Bennett (1972) Proc Roy Soc B
#species
cellcycletime(h)
annual perennial
annual
perennial
genome size (pg of 3C)
0
10
20
30
40
60 80 100 120
days to pollen
count
subpsecies
parviglumis
mexicana
Rodriguez et al. (2006) Maydica
Highflowering time (days)
#plants
SAm Mex SAm Mex
Low
Flint-Garcia et al. (unpublished)
floweringtime(days)
mexicana
parviglumis
mother(n=202plants)
genome size
Šímová and Herben (2012) Proc Roy Soc B
Walker and Smith (2002) Development
Leaf
Elongation
(LER)
Cell
Size
(CS)
Cell
Production
(CP)
Genome
Size
(GS)
+
-
Šímová and Herben (2012) Proc Roy Soc B
Walker and Smith (2002) Development
Leaf
Elongation
(LER)
Cell
Size
(CS)
Cell
Production
(CP)
Genome
Size
(GS)
+
-
log(CS) = 0 + GS ⇤ log(GS)
Posterior Density of γGS
Šímová and Herben (2012) Proc Roy Soc B
Walker and Smith (2002) Development
Leaf
Elongation
(LER)
Cell
Size
(CS)
Cell
Production
(CP)
Genome
Size
(GS)
+
-
log(LER) = ⌧0 + ⌧GS ⇤ log(GS)
log(CS) = 0 + GS ⇤ log(GS)
GS = ⌧GS GS
Posterior Density of γGS
Šímová and Herben (2012) Proc Roy Soc B
Walker and Smith (2002) Development
Leaf
Elongation
(LER)
Cell
Size
(CS)
Cell
Production
(CP)
Genome
Size
(GS)
+
-
log(CP) = 0 + GS ⇤ log(GS)
log(LER) = ⌧0 + ⌧GS ⇤ log(GS)
log(CS) = 0 + GS ⇤ log(GS)
GS = ⌧GS GS
Posterior Density of βGS
Posterior Density of γGS
Šímová and Herben (2012) Proc Roy Soc B
Walker and Smith (2002) Development
Leiboff et al. (2015) Nat Comm
cell number (cell division rate)floweringtime
growth stage
Tenaillon et al. (2016) PeerJ
leafelongationrate
genome size
early-flowering
flints
late-flowering
tropical
0
10
20
30
100 105 110
DNA
plants
cyc
relative genome size
late flowering
gen 0
early flowering
gen 6
#Plants
Rayburn et al. (1994) Plant Breeding
Tenaillon et al. (2016) PeerJ
leafelongationrate
genome size
early-flowering
flints
late-flowering
tropical
large
small
GENOME SIZE
large
small
GENOME SIZE
slow
fast
CELL DIVISION
Density of βGS
large
small
GENOME SIZE
late
early
FLOWERING TIME
slow
fast
CELL DIVISION
Density of βGS
1. Selection for earlier flowering leads to smaller genomes
across altitudinal gradients in maize and teosinte
2. Genome size is a quantitative trait that can affect fitness,
and observed intraspecific variation may be adaptive
3. Selection on genome size likely impacts the evolution of
individual repeat classes
Intraspecific adaptive evolution
of genome size in maize
Larger genomes adapt differently:
the “functional space” hypothesis
https://github.com/RILAB/AJB_MutationalTargetSize_GenomeSize
Brandon Gaut
log haploid genome size
Zea maysA. thaliana
#species
Brandon Gaut
log haploid genome size
Zea maysA. thaliana
#species
Springer et al. (2016) Plant Cell
1 Megabase DNA
maize
Arabidopsis
Lloyd et al. 2017 bioRxiv
functional prediction
Lloyd et al. 2017 bioRxiv
functional prediction
Lloyd et al. 2017 bioRxiv
functional prediction
Rodgers-Melnick et al. 2016 PNAS
b Ames Diversity Panel
Intergenic Open
Chromatin (33%)
Coding
(41%)
UTR, proximal
% VA explained in maize
(height, flowering, etc.)
● ●
●
●
0
5
10
15
20
25
200 400 600 800 1000
Genome Size (Mb)
OpenChromatinSize(Mb)
Genome_feature
●
Exon
Intergenic
Proximal
Total_open_chromatin
A
75%
80%
85%
90%
95%
%Non−exonicOpenChromatin
B
Maher et al. 2017 bioRxiv
Mei et al. 2017 bioRxiv
Rodgers-Melnick et al. 2016 PNAS
b Ames Diversity Panel
Intergenic Open
Chromatin (33%)
Coding
(41%)
UTR, proximal
% VA explained in maize
(height, flowering, etc.)
25%
75%
78%
22%
0%
25%
50%
75%
100%
Arabidopsis Maize
Species
Percentage
Genic Non−genic
a
0.0
0.2
0.4
0.6
0.8
100
101
102
103
104
105
106
Arabidopsis non−genic GWAS hits
distance to nearest gene (bp, log scale)
Density
b
0.0
0.2
0.4
0.6
0.8
100
101
102
103
104
105
106
Maize non−genic GWAS hits
distance to nearest gene (bp, log scale)
Density
c
Mei et al. 2017 bioRxiv
GWAS hits
25%
75%
78%
22%
0%
25%
50%
75%
100%
Arabidopsis Maize
Species
Percentage
Genic Non−genic
a
0.0
0.2
0.4
0.6
0.8
100
101
102
103
104
105
106
Arabidopsis non−genic GWAS hits
distance to nearest gene (bp, log scale)
Density
b
0.0
0.2
0.4
0.6
0.8
100
101
102
103
104
105
106
Maize non−genic GWAS hits
distance to nearest gene (bp, log scale)
Density
c
Mei et al. 2017 bioRxiv
GWAS hits
hard
sweep
Hermisson & Pennings 2017 Meth Ecol Evol
hard
sweep
Hermisson & Pennings 2017 Meth Ecol Evol
hard
sweep
Hermisson & Pennings 2017 Meth Ecol Evol
hard
sweep
multiple
mutations
“soft” sweeps
Hermisson & Pennings 2017 Meth Ecol Evol
hard
sweep
multiple
mutations
standing
variation
“soft” sweeps
Hermisson & Pennings 2017 Meth Ecol Evol
hard
sweep
multiple
mutations
standing
variation
“soft” sweeps
Θb=4ΝeμbL
beneficial
mutation rate
genome
size
effective
population
size
Hermisson & Pennings 2017 Meth Ecol Evol
hard
sweep
multiple
mutations
standing
variation
“soft” sweeps
Θb=4ΝeμbL
beneficial
mutation rate
genome
size
effective
population
size
Hermisson & Pennings 2017 Meth Ecol Evol
Θb<1 Θb>1
Beissinger et al. 2016 Nature Plants
nucleotidediversity
distance to nearest substitution (cM)
prediction: bigger genomes have few hard sweeps
Beissinger et al. 2016 Nature Plants
nucleotidediversity
distance to nearest substitution (cM)
prediction: bigger genomes have few hard sweeps
Sattah et al. 2011 PLoS Gen.
Williamson et al. 2014 PLoS Gen
Hernandez et al. 2011 Science
Beissinger et al. 2016 Nature Plants
L = 2,500 Mbp
Sattah et al. 2011 PLoS Gen.
Williamson et al. 2014 PLoS Gen
Hernandez et al. 2011 Science
Beissinger et al. 2016 Nature Plants
L = 2,500 Mbp
diversity
L = 220 Mbp
Sattah et al. 2011 PLoS Gen.
Williamson et al. 2014 PLoS Gen
Hernandez et al. 2011 Science
Beissinger et al. 2016 Nature Plants
L = 2,500 Mbp
distance from substitution
L = 3,100 Mbp
L = 130 Mbp
diversity
L = 220 Mbp
M T G P H R L
GGTCGAC ATG ACT GGT CCA CAT CGA CTG TAG
M T G P H R L
GGTCGAC ATG ACT GGT CCA CAT CGA CTG TAG
M T N P H R L
GGTCGAC ATG ACT GAT CCA CAT CGA CTG TAG
structural
change to protein
M T G P H R L
GGTAAAC ATG ACT GGT CCA CAT CGA CTG TAG
GG—-AC ATG ACT GGT CCA CAT CGA CTG TAG
regulatory change to
expression
Hufford et al. 2012 Nat. Gen.
Chia et al. 2012 Nat. Gen
maizeteosinte
prediction: bigger genomes have more intergenic adaptation
Hufford et al. 2012 Nat. Gen.
Chia et al. 2012 Nat. Gen
maizeteosinte
prediction: bigger genomes have more intergenic adaptation
Hufford et al. 2012 Nat. Gen.
Chia et al. 2012 Nat. Gen
maizeteosinte
prediction: bigger genomes have more intergenic adaptation
5-10% selected regions
do not include genes
Takuno et al. 2015 Genetics
Low High
common garden
Takuno et al. 2015 Genetics
39%
61%
Intergenic
Genic
19%
81%
Standing Variation
New mutation
Low High
common garden adaptive variants
Pyhäjärvi et al. GBE 2013
enrichment
intergenic<——>coding
Hancock et al 2011 Science
environmental
association
allele freq.
differentiation
Pyhäjärvi et al. GBE 2013
enrichment
intergenic<——>coding
Hancock et al 2011 Science
enrichment
no<———>yes
intergenic
synonymous
nonsynonymous
environmental
association
allele freq.
differentiation
Mei et al. 2017 bioRxiv
%adaptivenonsynonymous
substitutions
p=0.0075
Doebley 2004, Studer et al. 2011
tb1
Hopscotch
ZmCCT
CACTA
Yang et al. 2013
plant architecture flowering time
Fedoroff 2012, Wang and Dooner 2006
Fedoroff 2012, Wang and Dooner 2006
Homologous	(loop)	34%
No	pairing	20%Nonhomologous	46%
Maguire 1966 Genetics
Pyhäjärvi et al. 2013 GBEFigure S4 LD in chromosome 9 among mexicana populations based on SNPs with minor
allele frequency >0.1.
Inv9d
Inv9e
Inv4n
macrohairs,
anthocyanin
Hufford et al. 2013 PLoS Genetics
Pyhäjärvi et al. 2013 GBEFigure S4 LD in chromosome 9 among mexicana populations based on SNPs with minor
allele frequency >0.1.
Inv9d
Inv9e
Inv4n
macrohairs,
anthocyanin
Hufford et al. 2013 PLoS Genetics
Pyhäjärvi et al. 2013 GBEFigure S4 LD in chromosome 9 among mexicana populations based on SNPs with minor
allele frequency >0.1.
Inv9d
Inv9e
Pyhäjärvi et al. 2013 GBE
4% of B73 absent
~8% absent
%readsunmappedreads
Gore et al. 2009 Science
Chia et al 2012 Nat Gen
4% of B73 absent
~8% absent
30% of the low copy sequence
absent from reference genome
%readsunmappedreads
Gore et al. 2009 Science
Chia et al 2012 Nat Gen
✓⇡
n 1X
i=1
1
i
= S
θπ	~	8%	pairwise	diff	
1-S%	pan-genome	in	ref
4% of B73 absent
~8% absent
30% of the low copy sequence
absent from reference genome
%readsunmappedreads
Gore et al. 2009 Science
Chia et al 2012 Nat Gen
✓⇡
n 1X
i=1
1
i
= S
θπ	~	8%	pairwise	diff	
1-S%	pan-genome	in	ref
0%#
20%#
40%#
60%#
80%#
100%#
Angle# Length# NLB# SLB# Width#
10kb%RDV% Gene%RDV% HapMap2%genic%
HapMap2%Intergenic% HapMap1%genic% HapMap1%Intergenic%
0#
2#
4#
6#
8#
10#
12#
14#
16#
18#
20#
Angle# Length# NLB# SLB# Width# 0#
25#
30#
35#
Intergenic# Intronic#SNPs#
UTR# UP/Down#Stream#
Syn#SNP# Splice#Site#
NonSyn#SNP# 10Kb#RDV#
A.# B.# C.#
D.#
0%#
20%#
40%#
60%#
80%#
100%#
Angle# Length# NLB# SLB# Width#
10kb%RDV% Gene%RDV%
HapMap2%Intergenic% HapMap1%genic%
20#
25#
30#
35#
lue#(Hlog10)#
Intergenic# Intronic#SNPs#
UTR# UP/Down#Stream#
Syn#SNP# Splice#Site#
NonSyn#SNP# 10Kb#RDV#
Gene#RDV#
A.# B.
D.#
0%#
20%#
40%#
60%#
80%#
100%#
Angle# Length# NLB# SLB# Width#
10kb%RDV% Gene%RDV% HapMap2%genic%
HapMap2%Intergenic% HapMap1%genic% HapMap1%Interge
0#
2#
4#
6#
8#
10#
12#
14#
16#
18#
20#
Angle# Length# NLB#
25#
30#
35#
g10)#
Intergenic# Intronic#SNPs#
UTR# UP/Down#Stream#
Syn#SNP# Splice#Site#
NonSyn#SNP# 10Kb#RDV#
Gene#RDV#
A.# B.#
D.#
0%#
20%#
40%#
60%#
80%#
100%#
Angle# Length# NLB# SLB# Width#
10kb%RDV% Gene%RDV% HapMap2%genic%
HapMap2%Intergenic% HapMap1%genic% HapMap1%Intergenic%
0#
2#
4#
6#
8#
10#
12#
14#
16#
18#
20#
Angle# Length# NLB# SLB# Width#
Intergenic
0# 0.5#
10#
15#
20#
25#
30#
35#
pHvalue#(Hlog10)#
Intergenic# Intronic#SNPs#
UTR# UP/Down#Stream#
Syn#SNP# Splice#Site#
NonSyn#SNP# 10Kb#RDV#
Gene#RDV#
A.# B.# C.#
D.#
foldenrichment
● ●
●
●
0
5
10
15
20
25
200 400 600 800 1000
Genome Size (Mb)
OpenChromatinSize(Mb)
Genome_feature
●
Exon
Intergenic
Proximal
Total_open_chromatin
A
●
●
75%
80%
85%
90%
95%
500 1000 1500 2000 2500
Genome Size (Mb)
%Non−exonicOpenChromatin
Species
●
●
●
●
●
●
●
●
●
Arabidopsis
Brachypodium
Cotton
Maize
Medicago
Millet
Rice
Sorghum
Tomato
Tissue
●
●
Callus
Fiber
Fruit
Leaf
Root
Seedling
Shoot
B
Genome
Functional
Space
● ●
●
●
0
5
10
15
20
25
200 400 600 800 1000
Genome Size (Mb)
OpenChromatinSize(Mb)
Genome_feature
●
Exon
Intergenic
Proximal
Total_open_chromatin
A
●
●
75%
80%
85%
90%
95%
500 1000 1500 2000 2500
Genome Size (Mb)
%Non−exonicOpenChromatin
Species
●
●
●
●
●
●
●
●
●
Arabidopsis
Brachypodium
Cotton
Maize
Medicago
Millet
Rice
Sorghum
Tomato
Tissue
●
●
Callus
Fiber
Fruit
Leaf
Root
Seedling
Shoot
B
Genome
Functional
Space
Functional
Space
Hard sweeps
● ●
●
●
0
5
10
15
20
25
200 400 600 800 1000
Genome Size (Mb)
OpenChromatinSize(Mb)
Genome_feature
●
Exon
Intergenic
Proximal
Total_open_chromatin
A
●
●
75%
80%
85%
90%
95%
500 1000 1500 2000 2500
Genome Size (Mb)
%Non−exonicOpenChromatin
Species
●
●
●
●
●
●
●
●
●
Arabidopsis
Brachypodium
Cotton
Maize
Medicago
Millet
Rice
Sorghum
Tomato
Tissue
●
●
Callus
Fiber
Fruit
Leaf
Root
Seedling
Shoot
B
Genome
Functional
Space
Functional
Space
Soft Sweeps
Intergenic
Adaptation
Functional
Space
Hard sweeps
• Genome size is the best quantitative trait in the galaxy, and may itself be
an adaptive trait
• Selection on genome size may impact repeat evolution
• Large genomes may have a larger mutational target — more “functional
space” — and thus adapt via soft sweeps and noncoding variation
• Consider genome size when designing and interpreting studies of plant
adaptation
Concluding Thoughts on
Embiggening Plant DNA
Kew C-Value Database
Acknowledgements
USDA
Ed Buckler
Doreen Ware
U Missouri
Patrice Albert
Jim Birchler
U Georgia
Kelly Dawe
Cornell
Kelly Swarts
UC Davis
Jeremy Berg
Graham Coop
Mark Grote
Juvenal Quesada
Plant Genome
Research Program
HiLo
Lab Alumni
Tim Beissinger (USDA-ARS, Mizzou)
Paul Bilinski
Kate Crosby (Monsanto)
Matt Hufford (Iowa State)
Tanja Pyhäjärvi (Oulu)
Shohei Takuno (Sokendai)
Joost van Heerwaarden (Wageningen)
Jinliang Yang (U Nebraska-Lincoln)
● ●
●
●
0
5
10
15
20
25
200 400 600 800 1000
Genome Size (Mb)
OpenChromatinSize(Mb)
Genome_feature
●
Exon
Intergenic
Proximal
Total_open_chromatin
A
●
●
75%
80%
85%
90%
95%
500 1000 1500 2000 2500
Genome Size (Mb)
%Non−exonicOpenChromatin
Species
●
●
●
●
●
●
●
●
●
Arabidopsis
Brachypodium
Cotton
Maize
Medicago
Millet
Rice
Sorghum
Tomato
Tissue
●
●
Callus
Fiber
Fruit
Leaf
Root
Seedling
Shoot
B
Genom
Functional
Space
Functional
Space
Soft Sweeps
Intergenic
Adaptation
Functional
Space
Hard sweeps
END
standing
variation
©2011NatureAmeric
NATURE GENETICS ADVANCE ONLINE PUBLICATION 3
mutation rate21, strongly suggesting that the Hopscotch insertion (and
thus, the older Tourist as well) existed as standing genetic variation in
the teosinte ancestor of maize. Thus, we conclude that the Hopscotch
insertion likely predated domestication by more than 10,000 years and
the Tourist insertion by an even greater amount of time.
We identified four fixed differences in the portion of the proximal
and distal components of the control region that show evidence of
selection. We used transient assays in maize leaf protoplasts to test
all four differences for effects on gene expression. Maize and teosinte
chromosomal segments for the portions of the proximal and distal
components with these four differences were cloned into reporter
constructs upstream of the minimal promoter of the cauliflower
mosaic virus (mpCaMV), the firefly luciferase ORF and the nopaline
synthase (NOS) terminator (Fig. 4). Each construct was assayed for
luminescence after transformation by electroporation into maize pro-
toplast. The constructs for the distal component contrast the effects
of the Tourist insertion plus the single fixed nucleotide substitution
that distinguish maize and teosinte. Both the maize and teosinte
constructs for the distal component repressed luciferase expression
that acts as a repressor. The functional importance of this segment is
supported by its low level of nucleotide diversity (Fig. 3a), suggesting
a history of purifying selection.
The constructs for the proximal component of the control region
contrast the effects of the Hopscotch insertion plus a single fixed nucleo-
tide substitution that distinguish maize and teosinte. The construct
with the maize sequence including Hopscotch increased expression of
the luciferase reporter twofold relative to the teosinte construct for
the proximal control region and the minimal promoter alone (Fig. 4).
Luciferase expression was returned to the level of the teosinte con-
struct and the minimal promoter construct by deleting the Hopscotch
element from the full maize construct. These results indicate
that the Hopscotch element enhances luciferase expression and, by
Teosinte cluster
haplotype
Maize cluster
haplotype
Transient assay constructs
mpCaMV luc
luc
luc
luc
luc
luc
luc
luc
Hopscotch
Tourist
mpCaMV
T-dist
M-dist
T-prox
M-prox
0 0.5 1.0 1.5 2.0
∆M-dist
∆M-prox
ProximalcontrolregionDistalcontrolregion
Relative expression
Figure 4 Constructs and corresponding normalized luciferase expression
levels. Transient assays were performed in maize leaf protoplast. Each
construct is drawn to scale. The construct backbone consists of the
minimal promoter from the cauliflower mosaic virus (mpCaMV, gray box),
luciferase ORF (luc, white box) and the nopaline synthase terminator
(black box). Portions of the proximal and distal components of the
control region (hatched boxes) from maize and teosinte were cloned
into restriction sites upstream of the minimal promoter. “ ” denotes
the excision of either the Tourist or Hopscotch element from the maize
construct. Horizontal green bars show the normalized mean with s.e.m.
for each construct.
relative expressionconstruct
Studer et al. 2011 Nat. Gen.; Vann et al. 2015
enhances
expression
teosinte branched -
tb1
hard sweep
Figure 1.
Phenotypes. a. Maize ear showing the cob (cb) exposed at top. b. Teosinte ear with the rachis
internode (in) and glume (gl) labeled. c. Teosinte ear from a plant with a maize allele of tga1
Wang et al. Page 10
NIH-PAAuthorManuscriptNIH-PAAuthorManuscript
Wang et al. 2015 Genetics
protein
change
teosinte glume architecture -
tga1
Makarevitch et al. 2015 PLoS Genetics
Makarevitch et al. 2015 PLoS Genetics
single TE family
many genes
Makarevitch et al. 2015 PLoS Genetics
single TE family
many genes
new insertions activate expression
GRMZM2G071206
stress/control)
2
4
6
8
10
12
-2
0
2
4
6
8
10
12
14
Lines with the
TE insertion
Lines without the
TE insertion
GRMZM2G108149
A
B
Log2(stress/control)
on Septemhttp://biorxiv.org/Downloaded from
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Oh43
B73
Mo17
(stress/control)
0%
20%
40%
60%
80%
100%
alaw
dagaf
etug
flip
gyma
ipiki
jeli
joemon
naiba
nihep
odoj
pebi
raider
riiryl
ubel
uwum
Zm00346
Zm02117
Zm03238
Zm05382
Salt
UV
Heat
Cold
B
A
Percentofconserved
genes
on September 9, 2014http://biorxiv.org/Downloaded from
*
**
***
*
*
single gene,
many individuals
Doebley 2004, Studer et al., 2011
tb1
Hopscotch
Doebley 2004, Studer et al., 2011
tb1
Hopscotch
ZmCCT
CACTA
Yang et al., 2013
Mu
KNOTTED1
kn1
Greene, et al., 1994
http://pmb.berkeley.edu/sites/default/files/users/Knotted1%20mutant.jpgDoebley 2004, Studer et al., 2011
tb1
Hopscotch
ZmCCT
CACTA
Yang et al., 2013

More Related Content

What's hot

An overview of agricultural applications of genome editing: Farm animals
An overview of agricultural applications of genome editing: Farm animals An overview of agricultural applications of genome editing: Farm animals
An overview of agricultural applications of genome editing: Farm animals OECD Environment
 
Evolutionary genetics of hybrid maize
Evolutionary genetics of hybrid maizeEvolutionary genetics of hybrid maize
Evolutionary genetics of hybrid maizejrossibarra
 
Bottlenecks -- some ramblings and a bit of data from maize PAGXXII
Bottlenecks -- some ramblings and a bit of data from maize PAGXXIIBottlenecks -- some ramblings and a bit of data from maize PAGXXII
Bottlenecks -- some ramblings and a bit of data from maize PAGXXIIjrossibarra
 
Introgression and the origin of maize in Mexico and the Southwest US
Introgression and the origin of maize in Mexico and the Southwest USIntrogression and the origin of maize in Mexico and the Southwest US
Introgression and the origin of maize in Mexico and the Southwest USjrossibarra
 
Complex adaptation in Zea
Complex adaptation in ZeaComplex adaptation in Zea
Complex adaptation in Zeajrossibarra
 
Deleterious Alleles in maize, talk from PAGXXII
Deleterious Alleles in maize, talk from PAGXXIIDeleterious Alleles in maize, talk from PAGXXII
Deleterious Alleles in maize, talk from PAGXXIIjrossibarra
 
2014 whitney-research
2014 whitney-research2014 whitney-research
2014 whitney-researchc.titus.brown
 
Genomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingGenomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingCIMMYT
 
Genome Editing in Poultry - Mark Tizard
 Genome Editing in Poultry - Mark Tizard Genome Editing in Poultry - Mark Tizard
Genome Editing in Poultry - Mark TizardOECD Environment
 
Application of genome editing in farm animals: Cattle - Alison Van Eenennaam
Application of genome editing  in farm animals: Cattle - Alison Van EenennaamApplication of genome editing  in farm animals: Cattle - Alison Van Eenennaam
Application of genome editing in farm animals: Cattle - Alison Van EenennaamOECD Environment
 
New tools for genomic selection in dairy cattle
New tools for genomic selection in dairy cattleNew tools for genomic selection in dairy cattle
New tools for genomic selection in dairy cattleJohn B. Cole, Ph.D.
 
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...c.titus.brown
 
Population genetics of maize domestication, adaptation, and improvement
Population genetics of maize domestication, adaptation, and improvementPopulation genetics of maize domestication, adaptation, and improvement
Population genetics of maize domestication, adaptation, and improvementjrossibarra
 
Genotype imputation study in Gir dairy cattle of Gujarat
Genotype imputation study in Gir dairy cattle of GujaratGenotype imputation study in Gir dairy cattle of Gujarat
Genotype imputation study in Gir dairy cattle of GujaratSuperior Animal Genetics (SAG)
 
Genomic Selection in dairy cattle breeding -An overview
Genomic Selection in dairy cattle breeding -An overviewGenomic Selection in dairy cattle breeding -An overview
Genomic Selection in dairy cattle breeding -An overviewSuperior Animal Genetics (SAG)
 
2013 ucdavis-smbe-eukaryotes
2013 ucdavis-smbe-eukaryotes2013 ucdavis-smbe-eukaryotes
2013 ucdavis-smbe-eukaryotesc.titus.brown
 

What's hot (20)

An overview of agricultural applications of genome editing: Farm animals
An overview of agricultural applications of genome editing: Farm animals An overview of agricultural applications of genome editing: Farm animals
An overview of agricultural applications of genome editing: Farm animals
 
2013 alumni-webinar
2013 alumni-webinar2013 alumni-webinar
2013 alumni-webinar
 
Toronto 2015
Toronto 2015Toronto 2015
Toronto 2015
 
Evolutionary genetics of hybrid maize
Evolutionary genetics of hybrid maizeEvolutionary genetics of hybrid maize
Evolutionary genetics of hybrid maize
 
Bottlenecks -- some ramblings and a bit of data from maize PAGXXII
Bottlenecks -- some ramblings and a bit of data from maize PAGXXIIBottlenecks -- some ramblings and a bit of data from maize PAGXXII
Bottlenecks -- some ramblings and a bit of data from maize PAGXXII
 
Introgression and the origin of maize in Mexico and the Southwest US
Introgression and the origin of maize in Mexico and the Southwest USIntrogression and the origin of maize in Mexico and the Southwest US
Introgression and the origin of maize in Mexico and the Southwest US
 
Danforth 2015
Danforth 2015Danforth 2015
Danforth 2015
 
Complex adaptation in Zea
Complex adaptation in ZeaComplex adaptation in Zea
Complex adaptation in Zea
 
Deleterious Alleles in maize, talk from PAGXXII
Deleterious Alleles in maize, talk from PAGXXIIDeleterious Alleles in maize, talk from PAGXXII
Deleterious Alleles in maize, talk from PAGXXII
 
2014 whitney-research
2014 whitney-research2014 whitney-research
2014 whitney-research
 
Genomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingGenomic Selection & Precision Phenotyping
Genomic Selection & Precision Phenotyping
 
Genome Editing in Poultry - Mark Tizard
 Genome Editing in Poultry - Mark Tizard Genome Editing in Poultry - Mark Tizard
Genome Editing in Poultry - Mark Tizard
 
Application of genome editing in farm animals: Cattle - Alison Van Eenennaam
Application of genome editing  in farm animals: Cattle - Alison Van EenennaamApplication of genome editing  in farm animals: Cattle - Alison Van Eenennaam
Application of genome editing in farm animals: Cattle - Alison Van Eenennaam
 
New tools for genomic selection in dairy cattle
New tools for genomic selection in dairy cattleNew tools for genomic selection in dairy cattle
New tools for genomic selection in dairy cattle
 
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
 
Population genetics of maize domestication, adaptation, and improvement
Population genetics of maize domestication, adaptation, and improvementPopulation genetics of maize domestication, adaptation, and improvement
Population genetics of maize domestication, adaptation, and improvement
 
nbt.3364
nbt.3364nbt.3364
nbt.3364
 
Genotype imputation study in Gir dairy cattle of Gujarat
Genotype imputation study in Gir dairy cattle of GujaratGenotype imputation study in Gir dairy cattle of Gujarat
Genotype imputation study in Gir dairy cattle of Gujarat
 
Genomic Selection in dairy cattle breeding -An overview
Genomic Selection in dairy cattle breeding -An overviewGenomic Selection in dairy cattle breeding -An overview
Genomic Selection in dairy cattle breeding -An overview
 
2013 ucdavis-smbe-eukaryotes
2013 ucdavis-smbe-eukaryotes2013 ucdavis-smbe-eukaryotes
2013 ucdavis-smbe-eukaryotes
 

Similar to Genome size and adaptation in plants

Job Talk Iowa State University Ag Bio Engineering
Job Talk Iowa State University Ag Bio EngineeringJob Talk Iowa State University Ag Bio Engineering
Job Talk Iowa State University Ag Bio EngineeringAdina Chuang Howe
 
Association mapping identifies loci for canopy coverage in diverse soybean ge...
Association mapping identifies loci for canopy coverage in diverse soybean ge...Association mapping identifies loci for canopy coverage in diverse soybean ge...
Association mapping identifies loci for canopy coverage in diverse soybean ge...Avjinder (Avi) Kaler
 
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...FOODCROPS
 
Utility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogeneticUtility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogeneticEdizonJambormias2
 
Iowa State Bioinformatics BCB Symposium 2018 - There and Back Again
Iowa State Bioinformatics BCB Symposium 2018 - There and Back AgainIowa State Bioinformatics BCB Symposium 2018 - There and Back Again
Iowa State Bioinformatics BCB Symposium 2018 - There and Back AgainAdina Chuang Howe
 
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...Larry Smarr
 
Trends In Genomics
Trends In GenomicsTrends In Genomics
Trends In GenomicsSaul Kravitz
 
Shrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickShrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickEverGreenAgriculture13
 
Genome-wide association mapping of canopy wilting in diverse soybean genotypes
Genome-wide association mapping of canopy wilting in diverse soybean genotypesGenome-wide association mapping of canopy wilting in diverse soybean genotypes
Genome-wide association mapping of canopy wilting in diverse soybean genotypesAvjinder (Avi) Kaler
 
Gene tree-species tree methods in RevBayes
Gene tree-species tree methods in RevBayesGene tree-species tree methods in RevBayes
Gene tree-species tree methods in RevBayesboussau
 
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...Larry Smarr
 
Graphs are Feeding the World
Graphs are Feeding the WorldGraphs are Feeding the World
Graphs are Feeding the WorldTim Williamson
 
PhD defense Julien Troudet (29/11/2017)
PhD defense Julien Troudet (29/11/2017)PhD defense Julien Troudet (29/11/2017)
PhD defense Julien Troudet (29/11/2017)Julien Troudet
 

Similar to Genome size and adaptation in plants (20)

Job Talk Iowa State University Ag Bio Engineering
Job Talk Iowa State University Ag Bio EngineeringJob Talk Iowa State University Ag Bio Engineering
Job Talk Iowa State University Ag Bio Engineering
 
2015 mcgill-talk
2015 mcgill-talk2015 mcgill-talk
2015 mcgill-talk
 
Association mapping identifies loci for canopy coverage in diverse soybean ge...
Association mapping identifies loci for canopy coverage in diverse soybean ge...Association mapping identifies loci for canopy coverage in diverse soybean ge...
Association mapping identifies loci for canopy coverage in diverse soybean ge...
 
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
 
Big data nebraska
Big data nebraskaBig data nebraska
Big data nebraska
 
Big data nebraska
Big data nebraskaBig data nebraska
Big data nebraska
 
Big Data Field Museum
Big Data Field MuseumBig Data Field Museum
Big Data Field Museum
 
Utility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogeneticUtility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogenetic
 
Iowa State Bioinformatics BCB Symposium 2018 - There and Back Again
Iowa State Bioinformatics BCB Symposium 2018 - There and Back AgainIowa State Bioinformatics BCB Symposium 2018 - There and Back Again
Iowa State Bioinformatics BCB Symposium 2018 - There and Back Again
 
2014 nyu-bio-talk
2014 nyu-bio-talk2014 nyu-bio-talk
2014 nyu-bio-talk
 
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
 
Research Poster
Research PosterResearch Poster
Research Poster
 
Trends In Genomics
Trends In GenomicsTrends In Genomics
Trends In Genomics
 
Shrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickShrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dick
 
Genome-wide association mapping of canopy wilting in diverse soybean genotypes
Genome-wide association mapping of canopy wilting in diverse soybean genotypesGenome-wide association mapping of canopy wilting in diverse soybean genotypes
Genome-wide association mapping of canopy wilting in diverse soybean genotypes
 
Gene tree-species tree methods in RevBayes
Gene tree-species tree methods in RevBayesGene tree-species tree methods in RevBayes
Gene tree-species tree methods in RevBayes
 
Sweden_eemis_big_data
Sweden_eemis_big_dataSweden_eemis_big_data
Sweden_eemis_big_data
 
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
Building a Community Cyberinfrastructure to Support Marine Microbial Ecology ...
 
Graphs are Feeding the World
Graphs are Feeding the WorldGraphs are Feeding the World
Graphs are Feeding the World
 
PhD defense Julien Troudet (29/11/2017)
PhD defense Julien Troudet (29/11/2017)PhD defense Julien Troudet (29/11/2017)
PhD defense Julien Troudet (29/11/2017)
 

More from jrossibarra

Gene flow and cross-incompatibility in maize and teosinte
Gene flow and cross-incompatibility in maize and teosinteGene flow and cross-incompatibility in maize and teosinte
Gene flow and cross-incompatibility in maize and teosintejrossibarra
 
Demography and deleterious alleles in maize
Demography and deleterious alleles in maizeDemography and deleterious alleles in maize
Demography and deleterious alleles in maizejrossibarra
 
2015 SF Exploratorium Lecture: "Corn: Diversity and Origins"
2015 SF Exploratorium Lecture: "Corn: Diversity and Origins"2015 SF Exploratorium Lecture: "Corn: Diversity and Origins"
2015 SF Exploratorium Lecture: "Corn: Diversity and Origins"jrossibarra
 
Presentation at SMBEBA
Presentation at SMBEBAPresentation at SMBEBA
Presentation at SMBEBAjrossibarra
 
Advice for getting into grad school (in the biological sciences)
Advice for getting into grad school (in the biological sciences)Advice for getting into grad school (in the biological sciences)
Advice for getting into grad school (in the biological sciences)jrossibarra
 

More from jrossibarra (8)

Gene flow and cross-incompatibility in maize and teosinte
Gene flow and cross-incompatibility in maize and teosinteGene flow and cross-incompatibility in maize and teosinte
Gene flow and cross-incompatibility in maize and teosinte
 
Demography and deleterious alleles in maize
Demography and deleterious alleles in maizeDemography and deleterious alleles in maize
Demography and deleterious alleles in maize
 
2015 SF Exploratorium Lecture: "Corn: Diversity and Origins"
2015 SF Exploratorium Lecture: "Corn: Diversity and Origins"2015 SF Exploratorium Lecture: "Corn: Diversity and Origins"
2015 SF Exploratorium Lecture: "Corn: Diversity and Origins"
 
Presentation at SMBEBA
Presentation at SMBEBAPresentation at SMBEBA
Presentation at SMBEBA
 
Ecogen2013
Ecogen2013Ecogen2013
Ecogen2013
 
FIsherOrr_maize
FIsherOrr_maizeFIsherOrr_maize
FIsherOrr_maize
 
Advice for getting into grad school (in the biological sciences)
Advice for getting into grad school (in the biological sciences)Advice for getting into grad school (in the biological sciences)
Advice for getting into grad school (in the biological sciences)
 
Drift
DriftDrift
Drift
 

Recently uploaded

6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2AuEnriquezLontok
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clonechaudhary charan shingh university
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and AnnovaMansi Rastogi
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxzeus70441
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxtuking87
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPirithiRaju
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPRPirithiRaju
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Christina Parmionova
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11GelineAvendao
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 

Recently uploaded (20)

6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clone
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annova
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptx
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPR
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
 
PLASMODIUM. PPTX
PLASMODIUM. PPTXPLASMODIUM. PPTX
PLASMODIUM. PPTX
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 

Genome size and adaptation in plants

  • 1. Jeffrey Ross-Ibarra @jrossibarra • www.rilab.org Plant Sciences • Center for Population Biology • Genome Center University of California Davis Embiggening DNA: the role of plant genome size in intra- and interspecific adaptation
  • 2. Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons Genome Size (bp)
  • 3. By Nr387241 - Own work, CC BY-SA 3.0, https:// commons.wikimedia.org/w/index.php? curid=14945255 Mycoplasma (0.0006Gb) Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons Genome Size (bp)
  • 4. By Gőtehal.jpg: Mathae derivative work: Bff (Gőtehal.jpg) [CC BY 2.5 (http:// creativecommons.org/licenses/by/2.5), CC-BY-SA-3.0 (http:// creativecommons.org/licenses/by-sa/3.0/) or GFDL (http://www.gnu.org/ copyleft/fdl.html)], via Wikimedia Commons Protopterus (130Gb) By Nr387241 - Own work, CC BY-SA 3.0, https:// commons.wikimedia.org/w/index.php? curid=14945255 Mycoplasma (0.0006Gb) Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons Genome Size (bp)
  • 5. Genlisea (0.065Gb) By Michal Rubeš [CC BY 3.0 cz (http://creativecommons.org/ licenses/by/3.0/cz/deed.en)], via Wikimedia Commons By Gőtehal.jpg: Mathae derivative work: Bff (Gőtehal.jpg) [CC BY 2.5 (http:// creativecommons.org/licenses/by/2.5), CC-BY-SA-3.0 (http:// creativecommons.org/licenses/by-sa/3.0/) or GFDL (http://www.gnu.org/ copyleft/fdl.html)], via Wikimedia Commons Protopterus (130Gb) By Nr387241 - Own work, CC BY-SA 3.0, https:// commons.wikimedia.org/w/index.php? curid=14945255 Mycoplasma (0.0006Gb) Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons Genome Size (bp)
  • 6. By alpsdake - Own work, CC0, https://commons.wikimedia.org/w/index.php? curid=12228596 Paris (150Gb) Genlisea (0.065Gb) By Michal Rubeš [CC BY 3.0 cz (http://creativecommons.org/ licenses/by/3.0/cz/deed.en)], via Wikimedia Commons By Gőtehal.jpg: Mathae derivative work: Bff (Gőtehal.jpg) [CC BY 2.5 (http:// creativecommons.org/licenses/by/2.5), CC-BY-SA-3.0 (http:// creativecommons.org/licenses/by-sa/3.0/) or GFDL (http://www.gnu.org/ copyleft/fdl.html)], via Wikimedia Commons Protopterus (130Gb) By Nr387241 - Own work, CC BY-SA 3.0, https:// commons.wikimedia.org/w/index.php? curid=14945255 Mycoplasma (0.0006Gb) Abizar at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons Genome Size (bp)
  • 7. Lynch and Connnery (2003) Science
  • 8. Lynch and Connnery (2003) Science Lefébure et al. (2017) Genome Research genome size (pg)dN/dS surface subterannean
  • 9. Whitney et al. (2010) Evolution Contrast in Ne ContrastinGenomeSize
  • 10. Seed Weight (+) Leaf Size (-) Knight (2005) Ann Bot Genome Size (2C pg) Seed Weight GenomeSize(2Cpg)specificleafarea Whitney et al. (2010) Evolution Contrast in Ne ContrastinGenomeSize
  • 11. Kang et al. (2015) Sci Reports GenomeSize SoilNitrogen Seed Weight (+) Leaf Size (-) Knight (2005) Ann Bot Primulinaspp. Genome Size (2C pg) Seed Weight GenomeSize(2Cpg)specificleafarea Whitney et al. (2010) Evolution Contrast in Ne ContrastinGenomeSize
  • 12. Larger genomes adapt differently: the “functional space” hypothesis Intraspecific adaptive evolution of genome size in maize
  • 13. Larger genomes adapt differently: the “functional space” hypothesis Intraspecific adaptive evolution of genome size in maize
  • 14. The small differences in genome size within species seem generally to be of minor importance compared to other components of plant fitness. Šmarda & Petr Bureš (2010) Preslia The ‘plastic genome’ seems to be an idea rather than a defendable scientific hypothesis; intraspecific variation is less frequent than presently thought. Greilhuber (1998) Ann Bot
  • 17.
  • 18. Z. mays ssp. parviglumis Z. mays ssp. mexicana Pyhäjärvi et al. (2013) GBE
  • 19. Domestication 10,000BP Takuno et al. (2015) Genetics Lowland K=3K=4 Highland Lowland Highland Mesoamerica South America Lowland A B K=2K=3K=4 Highland Lowland Highland Mesoamerica South America Altitude
  • 20. Domestication 10,000BP Mexican Highlands 6,000BP Takuno et al. (2015) Genetics Lowland K=3K=4 Highland Lowland Highland Mesoamerica South America Lowland A B K=2K=3K=4 Highland Lowland Highland Mesoamerica South America Altitude
  • 21. Domestication 10,000BP Mexican Highlands 6,000BP S. American lowlands 6,000BP Takuno et al. (2015) Genetics Lowland K=3K=4 Highland Lowland Highland Mesoamerica South America Lowland A B K=2K=3K=4 Highland Lowland Highland Mesoamerica South America Altitude
  • 22. Domestication 10,000BP Mexican Highlands 6,000BP S. American lowlands 6,000BP Andes 4,000BP Takuno et al. (2015) Genetics Lowland K=3K=4 Highland Lowland Highland Mesoamerica South America Lowland A B K=2K=3K=4 Highland Lowland Highland Mesoamerica South America Altitude
  • 23. altitude GenomeSize(Mb) 77 landraces S. America Mexico parviglumis mexicana teosinte altitude3250 3125 3000 2875 2750
  • 24. altitude GenomeSize(Mb) 77 landraces S. America Mexico teosinte 95 mexicana altitude
  • 25. altitude GenomeSize(Mb) 77 landraces S. America Mexico teosinte 95 mexicana altitude genome size (bp) #individuals h2~0.9
  • 26. altitude GenomeSize(Mb) 77 landraces S. America Mexico teosinte 95 mexicana altitude P = µ + alt ⇤ A + g + " g ⇠ MV N (0, VAK) " ⇠ N (0, V✏) Genome Size Altitude Additive Component Berg and Coop (2014) Plos Gen
  • 27. altitude GenomeSize(Mb) 77 landraces S. America Mexico teosinte 95 mexicana altitude P = µ + alt ⇤ A + g + " g ⇠ MV N (0, VAK) " ⇠ N (0, V✏) Genome Size Altitude Additive Component Berg and Coop (2014) Plos Gen landraces landraces Kinship Additive Genetic Var.
  • 28. altitude GenomeSize(Mb) 77 landraces S. America Mexico teosinte 95 mexicana altitude P = µ + alt ⇤ A + g + " g ⇠ MV N (0, VAK) " ⇠ N (0, V✏) Genome Size Altitude Additive Component Berg and Coop (2014) Plos Gen landraces landraces Kinship Additive Genetic Var. -110Kb/m -260Kb/m
  • 29. Rosado et al. (2005) Maize Genetics Newsletter (shh, secret) Knob180 KnobTR1 Maize TEs Sorghum TEs Jiao et al. (2017) Nature copy number
  • 30. Rosado et al. (2005) Maize Genetics Newsletter (shh, secret) Knob180 KnobTR1 Maize TEs Sorghum TEs Jiao et al. (2017) Nature copy number
  • 31. Rosado et al. (2005) Maize Genetics Newsletter (shh, secret) Knob180 KnobTR1 Maize TEs Sorghum TEs Jiao et al. (2017) Nature copy number
  • 33. P = µ + alt ⇤ A + GS ⇤ GS + g + " g ⇠ MV N (0, VAK) " ⇠ N (0, V✏) AltitudeRepeat Genome Size as Covariate Additive Component
  • 34. altitude B-repeatreads Masonbrink et al. (2013) Genetics B chromosome
  • 36. altitude MbTE Tenaillon et al.(2011) GBE maizeZ.luxurians relative abundance of TE families maize mexicana S. America Mexico Region
  • 37. results: total, among TEs, B Knobabundance(Mb) altitude knob180 maize mexicana maize mexicana S. Am. Mexico Region knobTR1
  • 38. results: total, among TEs, B Knobabundance(Mb) altitude knob180 Photo by Kelly Dawe maize mexicana maize mexicana S. Am. Mexico Region knobTR1
  • 39. results: total, among TEs, B Knobabundance(Mb) altitude knob180 Kanizay et al. (2013) Heredity altitude maize mexicana parviglumis subspecies Ab10frequency maize mexicana maize mexicana S. Am. Mexico Region knobTR1
  • 40. Nature Education 2013 https://www.nature.com/scitable/content/ne0000/ne0000/ne0000/ne0000/113371527/14707478.jpg DNA Replication Francis et al. (2008) Ann Bot FIG. 2. DNA C-value (pg) and cell cycle time (h) in the root apic istem of a range of (A) eudicots and monocots (n ¼ 110), and (B) e (n ¼ 60). See Table 2 for regression analyses.
  • 41. Bennett (1972) Proc Roy Soc B #species cellcycletime(h) annual perennial annual perennial genome size (pg of 3C)
  • 42. 0 10 20 30 40 60 80 100 120 days to pollen count subpsecies parviglumis mexicana Rodriguez et al. (2006) Maydica Highflowering time (days) #plants SAm Mex SAm Mex Low Flint-Garcia et al. (unpublished) floweringtime(days) mexicana parviglumis
  • 44. Šímová and Herben (2012) Proc Roy Soc B Walker and Smith (2002) Development
  • 46. Leaf Elongation (LER) Cell Size (CS) Cell Production (CP) Genome Size (GS) + - log(CS) = 0 + GS ⇤ log(GS) Posterior Density of γGS Šímová and Herben (2012) Proc Roy Soc B Walker and Smith (2002) Development
  • 47. Leaf Elongation (LER) Cell Size (CS) Cell Production (CP) Genome Size (GS) + - log(LER) = ⌧0 + ⌧GS ⇤ log(GS) log(CS) = 0 + GS ⇤ log(GS) GS = ⌧GS GS Posterior Density of γGS Šímová and Herben (2012) Proc Roy Soc B Walker and Smith (2002) Development
  • 48. Leaf Elongation (LER) Cell Size (CS) Cell Production (CP) Genome Size (GS) + - log(CP) = 0 + GS ⇤ log(GS) log(LER) = ⌧0 + ⌧GS ⇤ log(GS) log(CS) = 0 + GS ⇤ log(GS) GS = ⌧GS GS Posterior Density of βGS Posterior Density of γGS Šímová and Herben (2012) Proc Roy Soc B Walker and Smith (2002) Development
  • 49. Leiboff et al. (2015) Nat Comm cell number (cell division rate)floweringtime growth stage
  • 50. Tenaillon et al. (2016) PeerJ leafelongationrate genome size early-flowering flints late-flowering tropical
  • 51. 0 10 20 30 100 105 110 DNA plants cyc relative genome size late flowering gen 0 early flowering gen 6 #Plants Rayburn et al. (1994) Plant Breeding Tenaillon et al. (2016) PeerJ leafelongationrate genome size early-flowering flints late-flowering tropical
  • 55. 1. Selection for earlier flowering leads to smaller genomes across altitudinal gradients in maize and teosinte 2. Genome size is a quantitative trait that can affect fitness, and observed intraspecific variation may be adaptive 3. Selection on genome size likely impacts the evolution of individual repeat classes
  • 56. Intraspecific adaptive evolution of genome size in maize Larger genomes adapt differently: the “functional space” hypothesis https://github.com/RILAB/AJB_MutationalTargetSize_GenomeSize
  • 57. Brandon Gaut log haploid genome size Zea maysA. thaliana #species
  • 58. Brandon Gaut log haploid genome size Zea maysA. thaliana #species Springer et al. (2016) Plant Cell 1 Megabase DNA maize Arabidopsis
  • 59. Lloyd et al. 2017 bioRxiv functional prediction
  • 60. Lloyd et al. 2017 bioRxiv functional prediction
  • 61. Lloyd et al. 2017 bioRxiv functional prediction Rodgers-Melnick et al. 2016 PNAS b Ames Diversity Panel Intergenic Open Chromatin (33%) Coding (41%) UTR, proximal % VA explained in maize (height, flowering, etc.)
  • 62. ● ● ● ● 0 5 10 15 20 25 200 400 600 800 1000 Genome Size (Mb) OpenChromatinSize(Mb) Genome_feature ● Exon Intergenic Proximal Total_open_chromatin A 75% 80% 85% 90% 95% %Non−exonicOpenChromatin B Maher et al. 2017 bioRxiv Mei et al. 2017 bioRxiv Rodgers-Melnick et al. 2016 PNAS b Ames Diversity Panel Intergenic Open Chromatin (33%) Coding (41%) UTR, proximal % VA explained in maize (height, flowering, etc.)
  • 63. 25% 75% 78% 22% 0% 25% 50% 75% 100% Arabidopsis Maize Species Percentage Genic Non−genic a 0.0 0.2 0.4 0.6 0.8 100 101 102 103 104 105 106 Arabidopsis non−genic GWAS hits distance to nearest gene (bp, log scale) Density b 0.0 0.2 0.4 0.6 0.8 100 101 102 103 104 105 106 Maize non−genic GWAS hits distance to nearest gene (bp, log scale) Density c Mei et al. 2017 bioRxiv GWAS hits
  • 64. 25% 75% 78% 22% 0% 25% 50% 75% 100% Arabidopsis Maize Species Percentage Genic Non−genic a 0.0 0.2 0.4 0.6 0.8 100 101 102 103 104 105 106 Arabidopsis non−genic GWAS hits distance to nearest gene (bp, log scale) Density b 0.0 0.2 0.4 0.6 0.8 100 101 102 103 104 105 106 Maize non−genic GWAS hits distance to nearest gene (bp, log scale) Density c Mei et al. 2017 bioRxiv GWAS hits
  • 65. hard sweep Hermisson & Pennings 2017 Meth Ecol Evol
  • 66. hard sweep Hermisson & Pennings 2017 Meth Ecol Evol
  • 67. hard sweep Hermisson & Pennings 2017 Meth Ecol Evol
  • 72. Beissinger et al. 2016 Nature Plants nucleotidediversity distance to nearest substitution (cM) prediction: bigger genomes have few hard sweeps
  • 73. Beissinger et al. 2016 Nature Plants nucleotidediversity distance to nearest substitution (cM) prediction: bigger genomes have few hard sweeps
  • 74. Sattah et al. 2011 PLoS Gen. Williamson et al. 2014 PLoS Gen Hernandez et al. 2011 Science Beissinger et al. 2016 Nature Plants L = 2,500 Mbp
  • 75. Sattah et al. 2011 PLoS Gen. Williamson et al. 2014 PLoS Gen Hernandez et al. 2011 Science Beissinger et al. 2016 Nature Plants L = 2,500 Mbp diversity L = 220 Mbp
  • 76. Sattah et al. 2011 PLoS Gen. Williamson et al. 2014 PLoS Gen Hernandez et al. 2011 Science Beissinger et al. 2016 Nature Plants L = 2,500 Mbp distance from substitution L = 3,100 Mbp L = 130 Mbp diversity L = 220 Mbp
  • 77. M T G P H R L GGTCGAC ATG ACT GGT CCA CAT CGA CTG TAG
  • 78. M T G P H R L GGTCGAC ATG ACT GGT CCA CAT CGA CTG TAG M T N P H R L GGTCGAC ATG ACT GAT CCA CAT CGA CTG TAG structural change to protein
  • 79. M T G P H R L GGTAAAC ATG ACT GGT CCA CAT CGA CTG TAG GG—-AC ATG ACT GGT CCA CAT CGA CTG TAG regulatory change to expression
  • 80. Hufford et al. 2012 Nat. Gen. Chia et al. 2012 Nat. Gen maizeteosinte prediction: bigger genomes have more intergenic adaptation
  • 81. Hufford et al. 2012 Nat. Gen. Chia et al. 2012 Nat. Gen maizeteosinte prediction: bigger genomes have more intergenic adaptation
  • 82. Hufford et al. 2012 Nat. Gen. Chia et al. 2012 Nat. Gen maizeteosinte prediction: bigger genomes have more intergenic adaptation 5-10% selected regions do not include genes
  • 83. Takuno et al. 2015 Genetics Low High common garden
  • 84. Takuno et al. 2015 Genetics 39% 61% Intergenic Genic 19% 81% Standing Variation New mutation Low High common garden adaptive variants
  • 85. Pyhäjärvi et al. GBE 2013 enrichment intergenic<——>coding Hancock et al 2011 Science environmental association allele freq. differentiation
  • 86. Pyhäjärvi et al. GBE 2013 enrichment intergenic<——>coding Hancock et al 2011 Science enrichment no<———>yes intergenic synonymous nonsynonymous environmental association allele freq. differentiation
  • 87. Mei et al. 2017 bioRxiv %adaptivenonsynonymous substitutions p=0.0075
  • 88. Doebley 2004, Studer et al. 2011 tb1 Hopscotch ZmCCT CACTA Yang et al. 2013 plant architecture flowering time
  • 89. Fedoroff 2012, Wang and Dooner 2006
  • 90. Fedoroff 2012, Wang and Dooner 2006 Homologous (loop) 34% No pairing 20%Nonhomologous 46% Maguire 1966 Genetics
  • 91. Pyhäjärvi et al. 2013 GBEFigure S4 LD in chromosome 9 among mexicana populations based on SNPs with minor allele frequency >0.1. Inv9d Inv9e
  • 92. Inv4n macrohairs, anthocyanin Hufford et al. 2013 PLoS Genetics Pyhäjärvi et al. 2013 GBEFigure S4 LD in chromosome 9 among mexicana populations based on SNPs with minor allele frequency >0.1. Inv9d Inv9e
  • 93. Inv4n macrohairs, anthocyanin Hufford et al. 2013 PLoS Genetics Pyhäjärvi et al. 2013 GBEFigure S4 LD in chromosome 9 among mexicana populations based on SNPs with minor allele frequency >0.1. Inv9d Inv9e Pyhäjärvi et al. 2013 GBE
  • 94. 4% of B73 absent ~8% absent %readsunmappedreads Gore et al. 2009 Science Chia et al 2012 Nat Gen
  • 95. 4% of B73 absent ~8% absent 30% of the low copy sequence absent from reference genome %readsunmappedreads Gore et al. 2009 Science Chia et al 2012 Nat Gen ✓⇡ n 1X i=1 1 i = S θπ ~ 8% pairwise diff 1-S% pan-genome in ref
  • 96. 4% of B73 absent ~8% absent 30% of the low copy sequence absent from reference genome %readsunmappedreads Gore et al. 2009 Science Chia et al 2012 Nat Gen ✓⇡ n 1X i=1 1 i = S θπ ~ 8% pairwise diff 1-S% pan-genome in ref 0%# 20%# 40%# 60%# 80%# 100%# Angle# Length# NLB# SLB# Width# 10kb%RDV% Gene%RDV% HapMap2%genic% HapMap2%Intergenic% HapMap1%genic% HapMap1%Intergenic% 0# 2# 4# 6# 8# 10# 12# 14# 16# 18# 20# Angle# Length# NLB# SLB# Width# 0# 25# 30# 35# Intergenic# Intronic#SNPs# UTR# UP/Down#Stream# Syn#SNP# Splice#Site# NonSyn#SNP# 10Kb#RDV# A.# B.# C.# D.# 0%# 20%# 40%# 60%# 80%# 100%# Angle# Length# NLB# SLB# Width# 10kb%RDV% Gene%RDV% HapMap2%Intergenic% HapMap1%genic% 20# 25# 30# 35# lue#(Hlog10)# Intergenic# Intronic#SNPs# UTR# UP/Down#Stream# Syn#SNP# Splice#Site# NonSyn#SNP# 10Kb#RDV# Gene#RDV# A.# B. D.# 0%# 20%# 40%# 60%# 80%# 100%# Angle# Length# NLB# SLB# Width# 10kb%RDV% Gene%RDV% HapMap2%genic% HapMap2%Intergenic% HapMap1%genic% HapMap1%Interge 0# 2# 4# 6# 8# 10# 12# 14# 16# 18# 20# Angle# Length# NLB# 25# 30# 35# g10)# Intergenic# Intronic#SNPs# UTR# UP/Down#Stream# Syn#SNP# Splice#Site# NonSyn#SNP# 10Kb#RDV# Gene#RDV# A.# B.# D.# 0%# 20%# 40%# 60%# 80%# 100%# Angle# Length# NLB# SLB# Width# 10kb%RDV% Gene%RDV% HapMap2%genic% HapMap2%Intergenic% HapMap1%genic% HapMap1%Intergenic% 0# 2# 4# 6# 8# 10# 12# 14# 16# 18# 20# Angle# Length# NLB# SLB# Width# Intergenic 0# 0.5# 10# 15# 20# 25# 30# 35# pHvalue#(Hlog10)# Intergenic# Intronic#SNPs# UTR# UP/Down#Stream# Syn#SNP# Splice#Site# NonSyn#SNP# 10Kb#RDV# Gene#RDV# A.# B.# C.# D.# foldenrichment
  • 97. ● ● ● ● 0 5 10 15 20 25 200 400 600 800 1000 Genome Size (Mb) OpenChromatinSize(Mb) Genome_feature ● Exon Intergenic Proximal Total_open_chromatin A ● ● 75% 80% 85% 90% 95% 500 1000 1500 2000 2500 Genome Size (Mb) %Non−exonicOpenChromatin Species ● ● ● ● ● ● ● ● ● Arabidopsis Brachypodium Cotton Maize Medicago Millet Rice Sorghum Tomato Tissue ● ● Callus Fiber Fruit Leaf Root Seedling Shoot B Genome Functional Space
  • 98. ● ● ● ● 0 5 10 15 20 25 200 400 600 800 1000 Genome Size (Mb) OpenChromatinSize(Mb) Genome_feature ● Exon Intergenic Proximal Total_open_chromatin A ● ● 75% 80% 85% 90% 95% 500 1000 1500 2000 2500 Genome Size (Mb) %Non−exonicOpenChromatin Species ● ● ● ● ● ● ● ● ● Arabidopsis Brachypodium Cotton Maize Medicago Millet Rice Sorghum Tomato Tissue ● ● Callus Fiber Fruit Leaf Root Seedling Shoot B Genome Functional Space Functional Space Hard sweeps
  • 99. ● ● ● ● 0 5 10 15 20 25 200 400 600 800 1000 Genome Size (Mb) OpenChromatinSize(Mb) Genome_feature ● Exon Intergenic Proximal Total_open_chromatin A ● ● 75% 80% 85% 90% 95% 500 1000 1500 2000 2500 Genome Size (Mb) %Non−exonicOpenChromatin Species ● ● ● ● ● ● ● ● ● Arabidopsis Brachypodium Cotton Maize Medicago Millet Rice Sorghum Tomato Tissue ● ● Callus Fiber Fruit Leaf Root Seedling Shoot B Genome Functional Space Functional Space Soft Sweeps Intergenic Adaptation Functional Space Hard sweeps
  • 100. • Genome size is the best quantitative trait in the galaxy, and may itself be an adaptive trait • Selection on genome size may impact repeat evolution • Large genomes may have a larger mutational target — more “functional space” — and thus adapt via soft sweeps and noncoding variation • Consider genome size when designing and interpreting studies of plant adaptation Concluding Thoughts on Embiggening Plant DNA Kew C-Value Database
  • 101. Acknowledgements USDA Ed Buckler Doreen Ware U Missouri Patrice Albert Jim Birchler U Georgia Kelly Dawe Cornell Kelly Swarts UC Davis Jeremy Berg Graham Coop Mark Grote Juvenal Quesada Plant Genome Research Program HiLo Lab Alumni Tim Beissinger (USDA-ARS, Mizzou) Paul Bilinski Kate Crosby (Monsanto) Matt Hufford (Iowa State) Tanja Pyhäjärvi (Oulu) Shohei Takuno (Sokendai) Joost van Heerwaarden (Wageningen) Jinliang Yang (U Nebraska-Lincoln)
  • 102.
  • 103. ● ● ● ● 0 5 10 15 20 25 200 400 600 800 1000 Genome Size (Mb) OpenChromatinSize(Mb) Genome_feature ● Exon Intergenic Proximal Total_open_chromatin A ● ● 75% 80% 85% 90% 95% 500 1000 1500 2000 2500 Genome Size (Mb) %Non−exonicOpenChromatin Species ● ● ● ● ● ● ● ● ● Arabidopsis Brachypodium Cotton Maize Medicago Millet Rice Sorghum Tomato Tissue ● ● Callus Fiber Fruit Leaf Root Seedling Shoot B Genom Functional Space Functional Space Soft Sweeps Intergenic Adaptation Functional Space Hard sweeps
  • 104. END
  • 105. standing variation ©2011NatureAmeric NATURE GENETICS ADVANCE ONLINE PUBLICATION 3 mutation rate21, strongly suggesting that the Hopscotch insertion (and thus, the older Tourist as well) existed as standing genetic variation in the teosinte ancestor of maize. Thus, we conclude that the Hopscotch insertion likely predated domestication by more than 10,000 years and the Tourist insertion by an even greater amount of time. We identified four fixed differences in the portion of the proximal and distal components of the control region that show evidence of selection. We used transient assays in maize leaf protoplasts to test all four differences for effects on gene expression. Maize and teosinte chromosomal segments for the portions of the proximal and distal components with these four differences were cloned into reporter constructs upstream of the minimal promoter of the cauliflower mosaic virus (mpCaMV), the firefly luciferase ORF and the nopaline synthase (NOS) terminator (Fig. 4). Each construct was assayed for luminescence after transformation by electroporation into maize pro- toplast. The constructs for the distal component contrast the effects of the Tourist insertion plus the single fixed nucleotide substitution that distinguish maize and teosinte. Both the maize and teosinte constructs for the distal component repressed luciferase expression that acts as a repressor. The functional importance of this segment is supported by its low level of nucleotide diversity (Fig. 3a), suggesting a history of purifying selection. The constructs for the proximal component of the control region contrast the effects of the Hopscotch insertion plus a single fixed nucleo- tide substitution that distinguish maize and teosinte. The construct with the maize sequence including Hopscotch increased expression of the luciferase reporter twofold relative to the teosinte construct for the proximal control region and the minimal promoter alone (Fig. 4). Luciferase expression was returned to the level of the teosinte con- struct and the minimal promoter construct by deleting the Hopscotch element from the full maize construct. These results indicate that the Hopscotch element enhances luciferase expression and, by Teosinte cluster haplotype Maize cluster haplotype Transient assay constructs mpCaMV luc luc luc luc luc luc luc luc Hopscotch Tourist mpCaMV T-dist M-dist T-prox M-prox 0 0.5 1.0 1.5 2.0 ∆M-dist ∆M-prox ProximalcontrolregionDistalcontrolregion Relative expression Figure 4 Constructs and corresponding normalized luciferase expression levels. Transient assays were performed in maize leaf protoplast. Each construct is drawn to scale. The construct backbone consists of the minimal promoter from the cauliflower mosaic virus (mpCaMV, gray box), luciferase ORF (luc, white box) and the nopaline synthase terminator (black box). Portions of the proximal and distal components of the control region (hatched boxes) from maize and teosinte were cloned into restriction sites upstream of the minimal promoter. “ ” denotes the excision of either the Tourist or Hopscotch element from the maize construct. Horizontal green bars show the normalized mean with s.e.m. for each construct. relative expressionconstruct Studer et al. 2011 Nat. Gen.; Vann et al. 2015 enhances expression teosinte branched - tb1
  • 106. hard sweep Figure 1. Phenotypes. a. Maize ear showing the cob (cb) exposed at top. b. Teosinte ear with the rachis internode (in) and glume (gl) labeled. c. Teosinte ear from a plant with a maize allele of tga1 Wang et al. Page 10 NIH-PAAuthorManuscriptNIH-PAAuthorManuscript Wang et al. 2015 Genetics protein change teosinte glume architecture - tga1
  • 107. Makarevitch et al. 2015 PLoS Genetics
  • 108. Makarevitch et al. 2015 PLoS Genetics single TE family many genes
  • 109. Makarevitch et al. 2015 PLoS Genetics single TE family many genes new insertions activate expression GRMZM2G071206 stress/control) 2 4 6 8 10 12 -2 0 2 4 6 8 10 12 14 Lines with the TE insertion Lines without the TE insertion GRMZM2G108149 A B Log2(stress/control) on Septemhttp://biorxiv.org/Downloaded from 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Oh43 B73 Mo17 (stress/control) 0% 20% 40% 60% 80% 100% alaw dagaf etug flip gyma ipiki jeli joemon naiba nihep odoj pebi raider riiryl ubel uwum Zm00346 Zm02117 Zm03238 Zm05382 Salt UV Heat Cold B A Percentofconserved genes on September 9, 2014http://biorxiv.org/Downloaded from * ** *** * * single gene, many individuals
  • 110. Doebley 2004, Studer et al., 2011 tb1 Hopscotch
  • 111. Doebley 2004, Studer et al., 2011 tb1 Hopscotch ZmCCT CACTA Yang et al., 2013
  • 112. Mu KNOTTED1 kn1 Greene, et al., 1994 http://pmb.berkeley.edu/sites/default/files/users/Knotted1%20mutant.jpgDoebley 2004, Studer et al., 2011 tb1 Hopscotch ZmCCT CACTA Yang et al., 2013