SlideShare una empresa de Scribd logo
1 de 81
Funciones
Cuadráticas
Índice
 Propiedades de las funciones cuadráticas
 Solución de una función cuadrática
 Formas para hallar una solución
Propiedades de una ecuación
cuadrática
 Forma estándar cuadrática:
ax2 + bx + c = 0 ; a ≠ 0
donde x es una variable y a , b y c son
constantes.
Propiedades de una ecuación
cuadrática
 Forma Vértice:
y = a(x – h)2 + k
Vértice es el punto más bajo o más alto de la parábola.
El vértice siempre es: (h, k)
Solución de una ecuación
cuadrática
 La solución de una ecuación cuadrática es
lo mismo que hallar los ceros de la
ecuación cuadrática.
 Los ceros de una ecuación cuadrática son
los puntos donde la parábola intercepta el
eje de x.
Formas de hallar la solución de
una función cuadrática
Factorización
Raíz cuadrada
Completando al cuadrado
Fórmula Cuadrática
Hallando la solución por
factorización
Ejemplo 1
Halla la solución mediante factorización:
x2 – 8x + 7 = 0
Observemos si hay factores comunes.
La otra forma de factorizar un trinomio es por tanteo :
( ___ ____ ) ( _____ _____)
Observemos si es cuadrado perfecto.
x x
Factores de x2
Factores de 7 que sumado o restado de a -8
-7 -1
Por lo tanto
x2 – 8x + 7 = 0
(x-7) (x-1) = 0
(x-7) = 0 ó (x-1) = 0 Propiedad del producto
de cero
x = 7 ó x = 1
Esto implica que los ceros de esa
parábola son (7,0) y (1,0)
Ejemplo 2
Halla la solución mediante factorización:
6x2 – 19x – 7 = 0
( ) ( ) = 02x 3x-7 + 1
Verifica que el término del
medio sea -19x
2x
-21x(2x – 7) = 0 ó (3x + 1) = 0
x = 7/2
ó x = -1/3
Los cero son (3 ½, 0) y (-1/3, 0 )
Ejemplo 3
Halla la solución mediante factorización:
x2 - 6x + 5 = 0
( ) ( ) = 0x x- 5 - 1
(x – 5) = 0 ( x – 1 )= 0
x = 5 ó x = 1
Los puntos son (5,0) y ( 1 ,0)
Ejemplo 4
Halla la solución mediante factorización:
2x2 = 3x
2x2 - 3x = 0 Igualamos a cero
Hay un factor común por lo tanto la factorización sérá:
x ( 2x – 3) = 0
x = 0 ó x = 3/2
Los interceptos son: (0,0) y (3/2,0)
Hallando la solución por
raíz cuadrada
Solución por raíz cuadrada:
2
3
x
2
2

Ejemplo 1: 2x2 – 3 = 0
2x2 = 3Despejemos por la variable
x2 = 3/2
2
6

Los interceptos son: ( , 0) y ( , 0)2
6
2
6

Solución por raíz cuadrada:
9x
Ejemplo 2 3x2 + 27 = 0
3x2 = -27
x2 = -27/3
x2 = -9
ix 3
Los interceptos son: (3i, 0) y (-3i, 0)
Solución por raíz cuadrada:
4
5
)
2
1( x
2
5
)
2
1( x
2
5
2
1
x
Ejemplo 3 (x + ½ )2 = 5/4
Primero elimina el exponente 2
Ahora elimino el 1/2
Los interceptos son:
)
2
5-1-
(y)0,
2
51
(

Importante:
Para resolver por raíz cuadrada la
ecuación debe tener dos términos.
Ejercicios:
Hoja fotocopiada p. 3
Hallando la solución
completando al cuadrado
Repasemos
Multiplica mentalmente:
1. (x+3)2
2. (x-4)2
3. (2x-7)2
4. (3x+2)2
Solución
Multiplica mentalmente:
1. (x+3)2
2. (x-4)2
3. (2x-7)2
4. (3x+2)2
x2 + 6x + 9
x2 – 8x + 16
4x2 – 28x + 49
9x2 + 12x + 4
Generalización:
El resultado de la multiplicación mentalmente del
cuadrado de un binomio :
1. Siempre será un trinomio
2. El primer y tercer término es el cuadrado
del primer y segundo término del binomio.
3. El segundo término es el doble del producto
del primer y segundo término del binomio.
Factoriza cada trinomio si es posible
1. x2 – 12x + 36
2. m2 + 10m + 25
3. 4t2 – 20t + 25
4. h2 – 7h + 49
5. y2 + 14y + 14
6. 9 – 6t – t2
Solución
1. (x – 6)2
2. (m + 5)2
3. (2t – 5)2
4. No
factorizable
5. No factorizable
6. No factorizable
¿Cómo saber si un trinomio es cuadrado
perfecto?
1. El primer y tercer término son
cuadrados perfectos y positivos.
2. El segundo término es el doble del
producto de un factor de primer y tercer
termino del trinomio.
¿Cómo completar al cuadrado un
trinomio?
Para completar el cuadrado de
un trinomio, se debe obtener el
tercer término.
¿Cómo completar al cuadrado un
trinomio?
El tercer término se obtiene
dividiendo el segundo término por 2 y
cuadralo.
Generalización:
22
2
22













b
x
b
bxx
Ejercicios:
Completa al cuadrado.
1.x2 + 2x + _____
2.x2 –12x + _____
3.x2 + 3x + _____
1
36
9
4
Ejemplos:
Resuelve cada ecuación cuadrática,
completando al cuadrado.
1.x2 - 8x = -36
x2 - 8x + ____= -36
-8
2
( )2 = 16
16 +16
Ejemplos:
Resuelve cada ecuación cuadrática,
completando al cuadrado.
x2 - 8x + 16 = -20
(x – 4)2 = -20
x   4 20
x i  4 2 5 x i 4 2 5
1. Escribe la ecuación en la
forma x2 + bx + ___ = c
Pasos para resolver una ecuación
cuadrática, completando al cuadrado.
Pasos para resolver una ecuación
cuadrática, completando al cuadrado.
2. Busca el tercer término y
suma éste al termino c.
Pasos para resolver una ecuación
cuadrática, completando al cuadrado.
Obten la raíz cuadrada del
binomio y del término c.
Pasos para resolver una ecuación
cuadrática, completando al cuadrado.
4. Despeja para x.
2. 5x2 = 6x + 8
5x2 - 3x +____= 8 + ___
( )2 ( ) 2
1( )
5
x2 – 3x + ____ = 8
5 5
3
5
=
3
5
9
25 
9
25
25
9
25
40
5
3
2






x
2. 5x2 = 6x + 8
25
49
5
3
2






x
x   
3
5
7
5
25
49
5
3
2






x
x  
3
5
7
5
x x   
3
5
7
5
3
5
7
5
ó
x x 

2
4
5
ó
3. 2x2 + x = 6
2x2 + x + _____ = 6 + ____
2
x2 1
4
3  x+
(x  
1
4
49
16
)2
(x   
1
4
49
16
)2
1
16
1
16
3. 2x2 + x = 6
(x   
1
4
7
4
)
x   
1
4
7
4
x    
1
4
7
4
7
4
ó x = -
1
4
x  
3
2
ó x = -2
4. 2x2 = 3x - 4
2x2 –3x + ____= -4 + _____
2
1( )
2
x2 – 3x + ____= -2 + ____
4
9
16
( )x  
3
4
23
16
2
9
16
4. 2x2 = 3x - 4
x
i
  
3
4
23
4
x
i
 
3
4
23
4
x
i
x
i
   
3
4
23
4
3
4
23
4
ó
Intenta
Halla el conjunto de solución completando
al cuadrado:
1. x2 + 6x – 2 = 0
2. 2x2 –4x + 3 = 0
3. x2 + 8x = 3
Ejercicios de Práctica
Hoja fotocopiada p.4 A, B y C
Advanced Algebra p. 237
(1-6) (9-20)
Hallando la solución
fórmula cuadrática
¿Sabes el objetivo de usar la
fórmula cuadrática?
Esta se deriva de la ecuación
ax2 + bx + c = 0
Y ¿Cómo se usa?
Ejemplo 1:
Halla los valores de la variable en la
ecuación 2x2 + 6x + 1 = 0
a = 2 ; b = 6 ; c = 1
Al sustituir en la fórmula
cuadrática obtendremos:
Y ¿Cómo se usa?
Ejemplo 1:
x
b b ac
a

  2
4
2 )2(2
)1)(2(466 2


4
8366 

x 
 6 28
4 4
726 
 4
72
4
6



2
7
2
3



x 
 3 7
2
Ejemplo 1:
Halla los valores de la variable en la
ecuación 2x2 = -6x - 7
a = 2 ; b = 6 c = 7
x
b b ac
a

  2
4
2
2x2 + 6x + 7 = 0
Ejemplo 1:
Halla los valores de la variable en la
ecuación 2x2 = -6x - 7
x 
  6 6 4 2 7
2 2
2
( ) ( )( )
( ) 4
56366 

4
206 

x
i

 6 2 5
4 4
52
4
6 i



2
5
2
3 i



2
53
ó
2
53 i
x
i
x




El discriminante
El discriminante nos puede indicar si
la solución de una función
cuadrática es una o dos reales; o
complejas.
El discriminante nos puede indicar si
la solución de una función
cuadrática es una o dos reales; o
complejas.
Discriminante
Y....
El discriminante es la parte
de la ecuación cuadrática
b2- 4ac
Discriminante
Y....
Si b2 – 4ac es:
> 0 tiene dos interceptos en x
= 0 tiene un intercepto en x
< 0 no tiene intercepto en x
En otras palabras:
Si el discriminante es:
> 0 Tendrá dos soluciones reales
< 0 Tendrá soluciones complejas o no
reales
= 0 Tendrá solo una solución real
Ejemplo 1:
Halla el discriminante para determinar si la
solución es real o compleja.
1.x2+ 5x – 14 = 0
2.3x2 –7x + 5 = 0
3.x2 – 2x +1 = 0
Solución:
1. 81 Implica que tiene dos soluciones
reales
2. -11
Implica que tiene dos soluciones
complejas
3. 0
Implica que tiene una solución
real
Ejemplo 2:
Halla los valores de la variable en la
ecuación x2 - x - 1 = 0 , utilizando la
fórmula cuadrática.
a = 1 ; b = -1 c = -1
Solución:
Halla los valores de la variable en la
ecuación x2 - x - 1 = 0
a = 1 ; b = -1 c = -1
x
b b ac
a

  2
4
2
)1(2
)1)(1(4)1(1 2

x 
 1 1 4
2 2
51

¿Cómo se halla los interceptos en
una función cuadrática?
Si le das valor de cero a la y podrás
encontrar los valores de x y éstos
serán los interceptos de la función
cuadrática.
Ejemplo 3:
Indica cuántos interceptos en x tiene las
siguientes funciones cuadráticas.
1.x2+ 5x – 14 = 0
2.3x2 –7x + 5 = 0
3.x2 – 2x +1 = 0
Solución:
1. 81 Implica que tiene dos soluciones
reales
2. -11
Implica que tiene dos soluciones
complejas
3. 0
Implica que tiene una solución
real
Intercepto en y:
Si y = 2x2 – 3x + 5 ¿Cuál
será el intercepto en y?
Intercepto en y:
Si le damos valor de x = 0 ...
O sea y = 5
Intercepto en y:
Obtendremos que y = 2(0)2 –3(0) + 5
Intercepto en y:
O sea y = 5
Intercepto en y:
El intercepto en y será (0,5).
Ejemplos:
Halla los interceptos de x de las siguientes
funciones cuadráticas.
1.y = x2+ 5x – 14
2.y = 3x2 –7x + 5
3.y = x2 – 2x +1
Solución:
1. Los puntos son: (-7,0) y (2,0)
2. No tiene interceptos
3. El punto es (1,0)
Ahora podrás hacer la
gráfica de una función
cuadrática con:
Con los puntos reflejos
El vértice y
su eje de simetria
Con los interceptos ( si lo tiene)
Recuerda que...
Para obtener los valores de x hay
varias formas:
Factorización
Raíz Cuadrada
Completando al cuadrado
Fórmula cuadrática
Ejercicios:
Libro Guía...

Más contenido relacionado

La actualidad más candente

Productos notables y factorización (2)
Productos notables y factorización (2)Productos notables y factorización (2)
Productos notables y factorización (2)Jorge Florez
 
Ecuaciónes cuadraticas profesor jose luis acevedo mora
Ecuaciónes cuadraticas profesor jose luis acevedo moraEcuaciónes cuadraticas profesor jose luis acevedo mora
Ecuaciónes cuadraticas profesor jose luis acevedo morajose luis acevedo mora
 
SOlucion de ecuaciones cuadraticas
SOlucion de ecuaciones cuadraticasSOlucion de ecuaciones cuadraticas
SOlucion de ecuaciones cuadraticasUNAM CCH "Oriente"
 
Pre tarea evaluación pre saberes -ecuac difer
Pre tarea   evaluación pre saberes -ecuac diferPre tarea   evaluación pre saberes -ecuac difer
Pre tarea evaluación pre saberes -ecuac diferJuan Carlos Restrepo
 
trabajo de power point equipo ·2
trabajo de power point equipo ·2trabajo de power point equipo ·2
trabajo de power point equipo ·2matematicasec29
 
Matmática básica 1 bm
Matmática básica 1 bmMatmática básica 1 bm
Matmática básica 1 bmJulio Cesar
 
Matemática I - Números Reales
Matemática I - Números RealesMatemática I - Números Reales
Matemática I - Números RealesJoe Arroyo Suárez
 
Algebra 4to...Ecuaciones e inecuaciones de 2º Grado
Algebra 4to...Ecuaciones e inecuaciones de 2º GradoAlgebra 4to...Ecuaciones e inecuaciones de 2º Grado
Algebra 4to...Ecuaciones e inecuaciones de 2º GradoCamilo Solis Yanac
 
Discriminante de una ecuación de segundo grado
Discriminante de una ecuación de segundo gradoDiscriminante de una ecuación de segundo grado
Discriminante de una ecuación de segundo gradoMaría Pizarro
 
2.4 ecuaciones, funciones e inecuaciones cuadráticas (mayo 0
2.4 ecuaciones, funciones e inecuaciones cuadráticas (mayo 02.4 ecuaciones, funciones e inecuaciones cuadráticas (mayo 0
2.4 ecuaciones, funciones e inecuaciones cuadráticas (mayo 0Raul Noguera Morillo
 

La actualidad más candente (20)

Productos notables y factorización (2)
Productos notables y factorización (2)Productos notables y factorización (2)
Productos notables y factorización (2)
 
Ecuaciónes cuadraticas profesor jose luis acevedo mora
Ecuaciónes cuadraticas profesor jose luis acevedo moraEcuaciónes cuadraticas profesor jose luis acevedo mora
Ecuaciónes cuadraticas profesor jose luis acevedo mora
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
Ecuaciones cuadraticas
Ecuaciones cuadraticasEcuaciones cuadraticas
Ecuaciones cuadraticas
 
SOlucion de ecuaciones cuadraticas
SOlucion de ecuaciones cuadraticasSOlucion de ecuaciones cuadraticas
SOlucion de ecuaciones cuadraticas
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Pre tarea evaluación pre saberes -ecuac difer
Pre tarea   evaluación pre saberes -ecuac diferPre tarea   evaluación pre saberes -ecuac difer
Pre tarea evaluación pre saberes -ecuac difer
 
trabajo de power point equipo ·2
trabajo de power point equipo ·2trabajo de power point equipo ·2
trabajo de power point equipo ·2
 
Ecuaciones Simultaneas 3x3
Ecuaciones Simultaneas 3x3Ecuaciones Simultaneas 3x3
Ecuaciones Simultaneas 3x3
 
Matmática básica 1 bm
Matmática básica 1 bmMatmática básica 1 bm
Matmática básica 1 bm
 
Matemática I - Números Reales
Matemática I - Números RealesMatemática I - Números Reales
Matemática I - Números Reales
 
ECUACIONES
ECUACIONESECUACIONES
ECUACIONES
 
Polinomios blog01
Polinomios blog01Polinomios blog01
Polinomios blog01
 
ECUACIONES CUADRATICAS
ECUACIONES CUADRATICASECUACIONES CUADRATICAS
ECUACIONES CUADRATICAS
 
Algebra 4to...Ecuaciones e inecuaciones de 2º Grado
Algebra 4to...Ecuaciones e inecuaciones de 2º GradoAlgebra 4to...Ecuaciones e inecuaciones de 2º Grado
Algebra 4to...Ecuaciones e inecuaciones de 2º Grado
 
Discriminante de una ecuación de segundo grado
Discriminante de una ecuación de segundo gradoDiscriminante de una ecuación de segundo grado
Discriminante de una ecuación de segundo grado
 
Modulo 16 de_a_y_t
Modulo 16 de_a_y_tModulo 16 de_a_y_t
Modulo 16 de_a_y_t
 
Inecuaciones
InecuacionesInecuaciones
Inecuaciones
 
2.4 ecuaciones, funciones e inecuaciones cuadráticas (mayo 0
2.4 ecuaciones, funciones e inecuaciones cuadráticas (mayo 02.4 ecuaciones, funciones e inecuaciones cuadráticas (mayo 0
2.4 ecuaciones, funciones e inecuaciones cuadráticas (mayo 0
 

Destacado

Educacion para la sexualidad
Educacion para la sexualidadEducacion para la sexualidad
Educacion para la sexualidadHarold Urrea
 
Fisica eventos ondulatorios
Fisica eventos ondulatoriosFisica eventos ondulatorios
Fisica eventos ondulatoriosHarold Urrea
 
Taller arquímedes octavo
Taller arquímedes octavoTaller arquímedes octavo
Taller arquímedes octavojuan5vasquez
 
Trabajo final 1 octavo
Trabajo final 1 octavoTrabajo final 1 octavo
Trabajo final 1 octavojuan5vasquez
 
Termodinamica problemas resueltos
Termodinamica problemas resueltosTermodinamica problemas resueltos
Termodinamica problemas resueltosCristobal Rodriguez
 
Cuadernillo de pruebas saber 11
Cuadernillo de pruebas saber 11Cuadernillo de pruebas saber 11
Cuadernillo de pruebas saber 11juan5vasquez
 
Talleres termodinámica
Talleres termodinámicaTalleres termodinámica
Talleres termodinámicajuan5vasquez
 
Taller de dinámica física 10º ab iip 2011
Taller de dinámica física 10º ab  iip 2011Taller de dinámica física 10º ab  iip 2011
Taller de dinámica física 10º ab iip 2011Alba Rojas
 
Guia termodinamica icfes
Guia termodinamica icfesGuia termodinamica icfes
Guia termodinamica icfesAlba Rojas
 
Problemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serwayProblemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serwayDavid Ballena
 
Problemas resueltos termodinmica
Problemas resueltos termodinmicaProblemas resueltos termodinmica
Problemas resueltos termodinmicachocolatin
 
Física 2004 1. resuelto
Física 2004 1. resueltoFísica 2004 1. resuelto
Física 2004 1. resueltoHarold Urrea
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera leycharliebm7512
 

Destacado (20)

Educacion para la sexualidad
Educacion para la sexualidadEducacion para la sexualidad
Educacion para la sexualidad
 
M a-s-estudiantes
M a-s-estudiantesM a-s-estudiantes
M a-s-estudiantes
 
Prueba fisica eo
Prueba fisica eoPrueba fisica eo
Prueba fisica eo
 
Lab 1 octavo
Lab 1 octavoLab 1 octavo
Lab 1 octavo
 
Fisica eventos ondulatorios
Fisica eventos ondulatoriosFisica eventos ondulatorios
Fisica eventos ondulatorios
 
Taller arquímedes octavo
Taller arquímedes octavoTaller arquímedes octavo
Taller arquímedes octavo
 
Calorimetra
CalorimetraCalorimetra
Calorimetra
 
Trabajo final 1 octavo
Trabajo final 1 octavoTrabajo final 1 octavo
Trabajo final 1 octavo
 
46 optica i test
46 optica i test46 optica i test
46 optica i test
 
Termodinamica problemas resueltos
Termodinamica problemas resueltosTermodinamica problemas resueltos
Termodinamica problemas resueltos
 
Cuadernillo de pruebas saber 11
Cuadernillo de pruebas saber 11Cuadernillo de pruebas saber 11
Cuadernillo de pruebas saber 11
 
Talleres termodinámica
Talleres termodinámicaTalleres termodinámica
Talleres termodinámica
 
Taller de dinámica física 10º ab iip 2011
Taller de dinámica física 10º ab  iip 2011Taller de dinámica física 10º ab  iip 2011
Taller de dinámica física 10º ab iip 2011
 
oscilaciones
oscilacionesoscilaciones
oscilaciones
 
Guia termodinamica icfes
Guia termodinamica icfesGuia termodinamica icfes
Guia termodinamica icfes
 
Problemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serwayProblemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serway
 
Problemas resueltos termodinmica
Problemas resueltos termodinmicaProblemas resueltos termodinmica
Problemas resueltos termodinmica
 
Física 2004 1. resuelto
Física 2004 1. resueltoFísica 2004 1. resuelto
Física 2004 1. resuelto
 
Termodinamica ejercicios resueltos
Termodinamica ejercicios resueltosTermodinamica ejercicios resueltos
Termodinamica ejercicios resueltos
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera ley
 

Similar a Funciones cuadrticas

Funciones CuadráTicas
Funciones CuadráTicas Funciones CuadráTicas
Funciones CuadráTicas Carmen Batiz
 
Ecuaciones Cuadráticas Y Sus Gráficas
Ecuaciones Cuadráticas Y Sus GráficasEcuaciones Cuadráticas Y Sus Gráficas
Ecuaciones Cuadráticas Y Sus GráficasCarmen Batiz
 
Semana8 m2-del 20 al 24 enero-2020
Semana8 m2-del 20 al 24 enero-2020Semana8 m2-del 20 al 24 enero-2020
Semana8 m2-del 20 al 24 enero-2020Lorena Covarrubias
 
Semana12 m2-del 22 al 26 de febrero-2021
Semana12 m2-del 22 al 26 de febrero-2021Semana12 m2-del 22 al 26 de febrero-2021
Semana12 m2-del 22 al 26 de febrero-2021LorenaCovarrubias12
 
Ejercicios resueltos matemáticas básicas
Ejercicios resueltos matemáticas básicasEjercicios resueltos matemáticas básicas
Ejercicios resueltos matemáticas básicasOscar Ardila Chaparro
 
Informe de matematica ( expresiones algebraicas)
Informe de matematica ( expresiones algebraicas)Informe de matematica ( expresiones algebraicas)
Informe de matematica ( expresiones algebraicas)anamariawyatt1
 
Resolver una ecuación cuadrática completando el cuadrado
Resolver una ecuación cuadrática completando el cuadradoResolver una ecuación cuadrática completando el cuadrado
Resolver una ecuación cuadrática completando el cuadradojuanreyesolvera3
 
ecuaciones de segundo grado
ecuaciones de segundo gradoecuaciones de segundo grado
ecuaciones de segundo gradomatematicasec29
 
01 Ecuaciones CuadráTicas
01 Ecuaciones CuadráTicas01 Ecuaciones CuadráTicas
01 Ecuaciones CuadráTicasAlejandro Rivera
 
Factorización y fracciones algebraicas
Factorización y fracciones algebraicasFactorización y fracciones algebraicas
Factorización y fracciones algebraicasmatbasuts1
 
6. 1° TUTORIA DE 14 -03 al 4 - 04 PRIMER AÑO INAM.pptx
6. 1°  TUTORIA DE   14 -03  al  4 - 04   PRIMER AÑO INAM.pptx6. 1°  TUTORIA DE   14 -03  al  4 - 04   PRIMER AÑO INAM.pptx
6. 1° TUTORIA DE 14 -03 al 4 - 04 PRIMER AÑO INAM.pptxkarina ivett martinez
 
Operaciones Algebraicas
Operaciones AlgebraicasOperaciones Algebraicas
Operaciones Algebraicasjuliocepeda
 
Matmática básica 1 bm
Matmática básica 1 bmMatmática básica 1 bm
Matmática básica 1 bmjmm63
 

Similar a Funciones cuadrticas (20)

Funciones CuadráTicas
Funciones CuadráTicas Funciones CuadráTicas
Funciones CuadráTicas
 
Ecuaciones de segundo grado
Ecuaciones de segundo gradoEcuaciones de segundo grado
Ecuaciones de segundo grado
 
Ecuaciones Cuadráticas Y Sus Gráficas
Ecuaciones Cuadráticas Y Sus GráficasEcuaciones Cuadráticas Y Sus Gráficas
Ecuaciones Cuadráticas Y Sus Gráficas
 
Semana8 m2-del 20 al 24 enero-2020
Semana8 m2-del 20 al 24 enero-2020Semana8 m2-del 20 al 24 enero-2020
Semana8 m2-del 20 al 24 enero-2020
 
Cano Nieto Mariana Montserrat
Cano Nieto Mariana MontserratCano Nieto Mariana Montserrat
Cano Nieto Mariana Montserrat
 
Semana12 m2-del 22 al 26 de febrero-2021
Semana12 m2-del 22 al 26 de febrero-2021Semana12 m2-del 22 al 26 de febrero-2021
Semana12 m2-del 22 al 26 de febrero-2021
 
Funciones cuadráticas
Funciones cuadráticasFunciones cuadráticas
Funciones cuadráticas
 
Ejercicios resueltos matemáticas básicas
Ejercicios resueltos matemáticas básicasEjercicios resueltos matemáticas básicas
Ejercicios resueltos matemáticas básicas
 
Informe de matematica ( expresiones algebraicas)
Informe de matematica ( expresiones algebraicas)Informe de matematica ( expresiones algebraicas)
Informe de matematica ( expresiones algebraicas)
 
Resolver una ecuación cuadrática completando el cuadrado
Resolver una ecuación cuadrática completando el cuadradoResolver una ecuación cuadrática completando el cuadrado
Resolver una ecuación cuadrática completando el cuadrado
 
1
11
1
 
ecuaciones de segundo grado
ecuaciones de segundo gradoecuaciones de segundo grado
ecuaciones de segundo grado
 
01 Ecuaciones CuadráTicas
01 Ecuaciones CuadráTicas01 Ecuaciones CuadráTicas
01 Ecuaciones CuadráTicas
 
Rosario
RosarioRosario
Rosario
 
Ecuaciones e inecuaciones
Ecuaciones e inecuacionesEcuaciones e inecuaciones
Ecuaciones e inecuaciones
 
Ecuaciones e inecuaciones
Ecuaciones e inecuacionesEcuaciones e inecuaciones
Ecuaciones e inecuaciones
 
Factorización y fracciones algebraicas
Factorización y fracciones algebraicasFactorización y fracciones algebraicas
Factorización y fracciones algebraicas
 
6. 1° TUTORIA DE 14 -03 al 4 - 04 PRIMER AÑO INAM.pptx
6. 1°  TUTORIA DE   14 -03  al  4 - 04   PRIMER AÑO INAM.pptx6. 1°  TUTORIA DE   14 -03  al  4 - 04   PRIMER AÑO INAM.pptx
6. 1° TUTORIA DE 14 -03 al 4 - 04 PRIMER AÑO INAM.pptx
 
Operaciones Algebraicas
Operaciones AlgebraicasOperaciones Algebraicas
Operaciones Algebraicas
 
Matmática básica 1 bm
Matmática básica 1 bmMatmática básica 1 bm
Matmática básica 1 bm
 

Más de juan5vasquez

Cargamateriayleydecoulomb
CargamateriayleydecoulombCargamateriayleydecoulomb
Cargamateriayleydecoulombjuan5vasquez
 
Cargaelectricapresentacion
CargaelectricapresentacionCargaelectricapresentacion
Cargaelectricapresentacionjuan5vasquez
 
2 fisica-banco-preguntas-examen-icfes-mejor-saber-11-un blog
2 fisica-banco-preguntas-examen-icfes-mejor-saber-11-un blog2 fisica-banco-preguntas-examen-icfes-mejor-saber-11-un blog
2 fisica-banco-preguntas-examen-icfes-mejor-saber-11-un blogjuan5vasquez
 
Consolidación 4 2012 2013
Consolidación 4  2012  2013Consolidación 4  2012  2013
Consolidación 4 2012 2013juan5vasquez
 
Consolidación 4 2012 2013
Consolidación 4  2012  2013Consolidación 4  2012  2013
Consolidación 4 2012 2013juan5vasquez
 
Consolidación 3 2012 2013
Consolidación 3  2012  2013Consolidación 3  2012  2013
Consolidación 3 2012 2013juan5vasquez
 
Consolidación 2 2012 2013
Consolidación 2  2012  2013Consolidación 2  2012  2013
Consolidación 2 2012 2013juan5vasquez
 
Consolidación 1 2012 2013
Consolidación 1 2012  2013Consolidación 1 2012  2013
Consolidación 1 2012 2013juan5vasquez
 
Problemas semana 4 undécimo
Problemas semana 4 undécimoProblemas semana 4 undécimo
Problemas semana 4 undécimojuan5vasquez
 
Plan anual física 11 glc
Plan anual  física 11 glcPlan anual  física 11 glc
Plan anual física 11 glcjuan5vasquez
 
Taller conversión 8
Taller conversión 8Taller conversión 8
Taller conversión 8juan5vasquez
 
Movimientoparablico2
Movimientoparablico2Movimientoparablico2
Movimientoparablico2juan5vasquez
 
Sistema internacional de unidades (si)
Sistema internacional de unidades (si)Sistema internacional de unidades (si)
Sistema internacional de unidades (si)juan5vasquez
 

Más de juan5vasquez (20)

Carga eléctrica
Carga eléctricaCarga eléctrica
Carga eléctrica
 
Cargamateriayleydecoulomb
CargamateriayleydecoulombCargamateriayleydecoulomb
Cargamateriayleydecoulomb
 
Cargaelectricapresentacion
CargaelectricapresentacionCargaelectricapresentacion
Cargaelectricapresentacion
 
Optica fisica
Optica fisicaOptica fisica
Optica fisica
 
2 fisica-banco-preguntas-examen-icfes-mejor-saber-11-un blog
2 fisica-banco-preguntas-examen-icfes-mejor-saber-11-un blog2 fisica-banco-preguntas-examen-icfes-mejor-saber-11-un blog
2 fisica-banco-preguntas-examen-icfes-mejor-saber-11-un blog
 
Consolidación 4 2012 2013
Consolidación 4  2012  2013Consolidación 4  2012  2013
Consolidación 4 2012 2013
 
Consolidación 4 2012 2013
Consolidación 4  2012  2013Consolidación 4  2012  2013
Consolidación 4 2012 2013
 
Consolidación 3 2012 2013
Consolidación 3  2012  2013Consolidación 3  2012  2013
Consolidación 3 2012 2013
 
Consolidación 2 2012 2013
Consolidación 2  2012  2013Consolidación 2  2012  2013
Consolidación 2 2012 2013
 
Consolidación 1 2012 2013
Consolidación 1 2012  2013Consolidación 1 2012  2013
Consolidación 1 2012 2013
 
Ondas
OndasOndas
Ondas
 
Sección 13 5
Sección 13 5Sección 13 5
Sección 13 5
 
Problemas semana 4 undécimo
Problemas semana 4 undécimoProblemas semana 4 undécimo
Problemas semana 4 undécimo
 
Plan anual física 11 glc
Plan anual  física 11 glcPlan anual  física 11 glc
Plan anual física 11 glc
 
Fuerzas 2
Fuerzas 2Fuerzas 2
Fuerzas 2
 
Lab 1 octavo
Lab 1 octavoLab 1 octavo
Lab 1 octavo
 
Taller conversión 8
Taller conversión 8Taller conversión 8
Taller conversión 8
 
Movimientoparablico2
Movimientoparablico2Movimientoparablico2
Movimientoparablico2
 
Sistema internacional de unidades (si)
Sistema internacional de unidades (si)Sistema internacional de unidades (si)
Sistema internacional de unidades (si)
 
M.r.u.a.
M.r.u.a.M.r.u.a.
M.r.u.a.
 

Último

Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfmiriamguevara21
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2Eliseo Delgado
 
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)jlorentemartos
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfJosé Hecht
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).hebegris04
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdfGabrieldeJesusLopezG
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docxMagalyDacostaPea
 
describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...DavidBautistaFlores1
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOMARIBEL DIAZ
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOCUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOEveliaHernandez8
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTESaraNolasco4
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.monthuerta17
 
Presentación de cita directa según el Manual de APA
Presentación de cita directa según el Manual de APAPresentación de cita directa según el Manual de APA
Presentación de cita directa según el Manual de APAlcolon
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsxJuanpm27
 

Último (20)

Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdf
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
 
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
 
describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx
 
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOCUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
Presentación de cita directa según el Manual de APA
Presentación de cita directa según el Manual de APAPresentación de cita directa según el Manual de APA
Presentación de cita directa según el Manual de APA
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
 

Funciones cuadrticas

  • 2. Índice  Propiedades de las funciones cuadráticas  Solución de una función cuadrática  Formas para hallar una solución
  • 3. Propiedades de una ecuación cuadrática  Forma estándar cuadrática: ax2 + bx + c = 0 ; a ≠ 0 donde x es una variable y a , b y c son constantes.
  • 4. Propiedades de una ecuación cuadrática  Forma Vértice: y = a(x – h)2 + k Vértice es el punto más bajo o más alto de la parábola. El vértice siempre es: (h, k)
  • 5. Solución de una ecuación cuadrática  La solución de una ecuación cuadrática es lo mismo que hallar los ceros de la ecuación cuadrática.  Los ceros de una ecuación cuadrática son los puntos donde la parábola intercepta el eje de x.
  • 6. Formas de hallar la solución de una función cuadrática Factorización Raíz cuadrada Completando al cuadrado Fórmula Cuadrática
  • 7. Hallando la solución por factorización
  • 8. Ejemplo 1 Halla la solución mediante factorización: x2 – 8x + 7 = 0 Observemos si hay factores comunes. La otra forma de factorizar un trinomio es por tanteo : ( ___ ____ ) ( _____ _____) Observemos si es cuadrado perfecto. x x Factores de x2 Factores de 7 que sumado o restado de a -8 -7 -1
  • 9. Por lo tanto x2 – 8x + 7 = 0 (x-7) (x-1) = 0 (x-7) = 0 ó (x-1) = 0 Propiedad del producto de cero x = 7 ó x = 1 Esto implica que los ceros de esa parábola son (7,0) y (1,0)
  • 10. Ejemplo 2 Halla la solución mediante factorización: 6x2 – 19x – 7 = 0 ( ) ( ) = 02x 3x-7 + 1 Verifica que el término del medio sea -19x 2x -21x(2x – 7) = 0 ó (3x + 1) = 0 x = 7/2 ó x = -1/3 Los cero son (3 ½, 0) y (-1/3, 0 )
  • 11. Ejemplo 3 Halla la solución mediante factorización: x2 - 6x + 5 = 0 ( ) ( ) = 0x x- 5 - 1 (x – 5) = 0 ( x – 1 )= 0 x = 5 ó x = 1 Los puntos son (5,0) y ( 1 ,0)
  • 12. Ejemplo 4 Halla la solución mediante factorización: 2x2 = 3x 2x2 - 3x = 0 Igualamos a cero Hay un factor común por lo tanto la factorización sérá: x ( 2x – 3) = 0 x = 0 ó x = 3/2 Los interceptos son: (0,0) y (3/2,0)
  • 13. Hallando la solución por raíz cuadrada
  • 14. Solución por raíz cuadrada: 2 3 x 2 2  Ejemplo 1: 2x2 – 3 = 0 2x2 = 3Despejemos por la variable x2 = 3/2 2 6  Los interceptos son: ( , 0) y ( , 0)2 6 2 6 
  • 15. Solución por raíz cuadrada: 9x Ejemplo 2 3x2 + 27 = 0 3x2 = -27 x2 = -27/3 x2 = -9 ix 3 Los interceptos son: (3i, 0) y (-3i, 0)
  • 16. Solución por raíz cuadrada: 4 5 ) 2 1( x 2 5 ) 2 1( x 2 5 2 1 x Ejemplo 3 (x + ½ )2 = 5/4 Primero elimina el exponente 2 Ahora elimino el 1/2 Los interceptos son: ) 2 5-1- (y)0, 2 51 ( 
  • 17. Importante: Para resolver por raíz cuadrada la ecuación debe tener dos términos.
  • 20. Repasemos Multiplica mentalmente: 1. (x+3)2 2. (x-4)2 3. (2x-7)2 4. (3x+2)2
  • 21. Solución Multiplica mentalmente: 1. (x+3)2 2. (x-4)2 3. (2x-7)2 4. (3x+2)2 x2 + 6x + 9 x2 – 8x + 16 4x2 – 28x + 49 9x2 + 12x + 4
  • 22. Generalización: El resultado de la multiplicación mentalmente del cuadrado de un binomio : 1. Siempre será un trinomio 2. El primer y tercer término es el cuadrado del primer y segundo término del binomio. 3. El segundo término es el doble del producto del primer y segundo término del binomio.
  • 23. Factoriza cada trinomio si es posible 1. x2 – 12x + 36 2. m2 + 10m + 25 3. 4t2 – 20t + 25 4. h2 – 7h + 49 5. y2 + 14y + 14 6. 9 – 6t – t2
  • 24. Solución 1. (x – 6)2 2. (m + 5)2 3. (2t – 5)2 4. No factorizable 5. No factorizable 6. No factorizable
  • 25. ¿Cómo saber si un trinomio es cuadrado perfecto? 1. El primer y tercer término son cuadrados perfectos y positivos. 2. El segundo término es el doble del producto de un factor de primer y tercer termino del trinomio.
  • 26. ¿Cómo completar al cuadrado un trinomio? Para completar el cuadrado de un trinomio, se debe obtener el tercer término.
  • 27. ¿Cómo completar al cuadrado un trinomio? El tercer término se obtiene dividiendo el segundo término por 2 y cuadralo.
  • 29. Ejercicios: Completa al cuadrado. 1.x2 + 2x + _____ 2.x2 –12x + _____ 3.x2 + 3x + _____ 1 36 9 4
  • 30. Ejemplos: Resuelve cada ecuación cuadrática, completando al cuadrado. 1.x2 - 8x = -36 x2 - 8x + ____= -36 -8 2 ( )2 = 16 16 +16
  • 31. Ejemplos: Resuelve cada ecuación cuadrática, completando al cuadrado. x2 - 8x + 16 = -20 (x – 4)2 = -20 x   4 20 x i  4 2 5 x i 4 2 5
  • 32. 1. Escribe la ecuación en la forma x2 + bx + ___ = c Pasos para resolver una ecuación cuadrática, completando al cuadrado.
  • 33. Pasos para resolver una ecuación cuadrática, completando al cuadrado. 2. Busca el tercer término y suma éste al termino c.
  • 34. Pasos para resolver una ecuación cuadrática, completando al cuadrado. Obten la raíz cuadrada del binomio y del término c.
  • 35. Pasos para resolver una ecuación cuadrática, completando al cuadrado. 4. Despeja para x.
  • 36. 2. 5x2 = 6x + 8 5x2 - 3x +____= 8 + ___ ( )2 ( ) 2 1( ) 5 x2 – 3x + ____ = 8 5 5 3 5 = 3 5 9 25  9 25 25 9 25 40 5 3 2       x
  • 37. 2. 5x2 = 6x + 8 25 49 5 3 2       x x    3 5 7 5 25 49 5 3 2       x x   3 5 7 5 x x    3 5 7 5 3 5 7 5 ó x x   2 4 5 ó
  • 38. 3. 2x2 + x = 6 2x2 + x + _____ = 6 + ____ 2 x2 1 4 3  x+ (x   1 4 49 16 )2 (x    1 4 49 16 )2 1 16 1 16
  • 39. 3. 2x2 + x = 6 (x    1 4 7 4 ) x    1 4 7 4 x     1 4 7 4 7 4 ó x = - 1 4 x   3 2 ó x = -2
  • 40. 4. 2x2 = 3x - 4 2x2 –3x + ____= -4 + _____ 2 1( ) 2 x2 – 3x + ____= -2 + ____ 4 9 16 ( )x   3 4 23 16 2 9 16
  • 41. 4. 2x2 = 3x - 4 x i    3 4 23 4 x i   3 4 23 4 x i x i     3 4 23 4 3 4 23 4 ó
  • 42. Intenta Halla el conjunto de solución completando al cuadrado: 1. x2 + 6x – 2 = 0 2. 2x2 –4x + 3 = 0 3. x2 + 8x = 3
  • 43. Ejercicios de Práctica Hoja fotocopiada p.4 A, B y C Advanced Algebra p. 237 (1-6) (9-20)
  • 45. ¿Sabes el objetivo de usar la fórmula cuadrática?
  • 46. Esta se deriva de la ecuación ax2 + bx + c = 0
  • 47. Y ¿Cómo se usa? Ejemplo 1: Halla los valores de la variable en la ecuación 2x2 + 6x + 1 = 0 a = 2 ; b = 6 ; c = 1 Al sustituir en la fórmula cuadrática obtendremos:
  • 48. Y ¿Cómo se usa? Ejemplo 1: x b b ac a    2 4 2 )2(2 )1)(2(466 2   4 8366   x   6 28 4 4 726   4 72 4 6    2 7 2 3    x   3 7 2
  • 49. Ejemplo 1: Halla los valores de la variable en la ecuación 2x2 = -6x - 7 a = 2 ; b = 6 c = 7 x b b ac a    2 4 2 2x2 + 6x + 7 = 0
  • 50. Ejemplo 1: Halla los valores de la variable en la ecuación 2x2 = -6x - 7 x    6 6 4 2 7 2 2 2 ( ) ( )( ) ( ) 4 56366   4 206   x i   6 2 5 4 4 52 4 6 i    2 5 2 3 i    2 53 ó 2 53 i x i x    
  • 52. El discriminante nos puede indicar si la solución de una función cuadrática es una o dos reales; o complejas.
  • 53. El discriminante nos puede indicar si la solución de una función cuadrática es una o dos reales; o complejas.
  • 54. Discriminante Y.... El discriminante es la parte de la ecuación cuadrática b2- 4ac
  • 55. Discriminante Y.... Si b2 – 4ac es: > 0 tiene dos interceptos en x = 0 tiene un intercepto en x < 0 no tiene intercepto en x
  • 56. En otras palabras: Si el discriminante es: > 0 Tendrá dos soluciones reales < 0 Tendrá soluciones complejas o no reales = 0 Tendrá solo una solución real
  • 57. Ejemplo 1: Halla el discriminante para determinar si la solución es real o compleja. 1.x2+ 5x – 14 = 0 2.3x2 –7x + 5 = 0 3.x2 – 2x +1 = 0
  • 58. Solución: 1. 81 Implica que tiene dos soluciones reales 2. -11 Implica que tiene dos soluciones complejas 3. 0 Implica que tiene una solución real
  • 59. Ejemplo 2: Halla los valores de la variable en la ecuación x2 - x - 1 = 0 , utilizando la fórmula cuadrática. a = 1 ; b = -1 c = -1
  • 60. Solución: Halla los valores de la variable en la ecuación x2 - x - 1 = 0 a = 1 ; b = -1 c = -1 x b b ac a    2 4 2 )1(2 )1)(1(4)1(1 2  x   1 1 4 2 2 51 
  • 61. ¿Cómo se halla los interceptos en una función cuadrática? Si le das valor de cero a la y podrás encontrar los valores de x y éstos serán los interceptos de la función cuadrática.
  • 62. Ejemplo 3: Indica cuántos interceptos en x tiene las siguientes funciones cuadráticas. 1.x2+ 5x – 14 = 0 2.3x2 –7x + 5 = 0 3.x2 – 2x +1 = 0
  • 63. Solución: 1. 81 Implica que tiene dos soluciones reales 2. -11 Implica que tiene dos soluciones complejas 3. 0 Implica que tiene una solución real
  • 64. Intercepto en y: Si y = 2x2 – 3x + 5 ¿Cuál será el intercepto en y?
  • 65. Intercepto en y: Si le damos valor de x = 0 ... O sea y = 5
  • 66. Intercepto en y: Obtendremos que y = 2(0)2 –3(0) + 5
  • 67. Intercepto en y: O sea y = 5
  • 68. Intercepto en y: El intercepto en y será (0,5).
  • 69. Ejemplos: Halla los interceptos de x de las siguientes funciones cuadráticas. 1.y = x2+ 5x – 14 2.y = 3x2 –7x + 5 3.y = x2 – 2x +1
  • 70. Solución: 1. Los puntos son: (-7,0) y (2,0) 2. No tiene interceptos 3. El punto es (1,0)
  • 71. Ahora podrás hacer la gráfica de una función cuadrática con:
  • 72. Con los puntos reflejos
  • 73. El vértice y su eje de simetria
  • 74. Con los interceptos ( si lo tiene)
  • 76. Para obtener los valores de x hay varias formas: